
SOFTWARE & INTERNET
QUALITY WEEK EUROPE

e
Industry Sponsors

SOFTWARE & INTERNET
QUALITY WEEK EUROPE
Brussels, BELGIUM ● November 20-24, 2000

Organized by
Software
Research
Institute

In cooperation with

INITIATIVES FOR THE FUTURE

The New Century has begun! Internet Quality
and Software Quality worries are pressing issues!

QWE2000 focuses on quality technology with
a careful, honest look at current methods and
cautious assessments of future trends.

QWE2000: The 4th year of serving the SQA
community with state-of-the-art information!

IMPORTANT NOTE: This program, speaker biographies, and speaker abstracts are based on the best available
information available but may be subject to change. Updated 05 August 2000.

4th INTERNATIONAL
SOFTWARE QUALITY WEEK EUROPE

(QWE2000)

Brussels, Belgium

20-24 November 2000

TECHNICAL PROGRAM

Theme: Initiatives for the Future

QW Home | QWE2000 Home | Advisory Board | Outline | Brochure Request | Brochure Download |
Brussels

Kudos | Introduction | Outline | PROGRAM | Register | Exhibitors | Sponsors | Hotels | Sponsorships

QUICK ACCESS TO THE FIVE DAY PROGRAM AT QWE2000

Tutorial Day 1 Monday, 20 November 2000

Tutorial Day 2 Tuesday, 21 November 2000

Conference Day 1 Wednesday, 22 November 2000

Conference Day 2 Thursday, 23 November 2000

Conference Day 3 Friday, 24 November 2000

The QWE2000 program is linked to speaker biographies and presentation abstracts.
Click on a Speaker to read a Biography.

Click on a Title to read the Presentation Abstract.

REGISTER FOR QWE2000

Monday, 20 November 2000
TUTORIAL DAY #1

T1
8:30

-
10:00

Coffee

Tutorial A1

Dr. Gualtiero Bazzana
(ONION, S.P.A.)

Web Testing Master
Class

Tutorial B1

Mr. Ruud Teunissen
and Rob Baarda

(Gitek)
Risk Based Test Effort
Estimation with Test

Point Analysis

Tutorial C1

Dr. Alan Cameron Wills
(TriReme International

Ltd)
Component

Architecture and
Business Models

Tutorial D1

Mike Russell
(Insight Consulting Ltd.,
Ireland in association
with Systeme Evolutif,

UK)
ISEB Software Testing
Foundation Certificate

[BACK TO TOP]

10:30
-

12:00

Part I of II
Part I of V

12:00

-
13:30

TUTORIAL DAY LUNCH AND NETWORKING

13:30
-

15:00

Refreshments

15:30
-

17:00

(evening)
18:00-21:00

Tutorial A2

Dr. Gualtiero Bazzana
(ONION, S.P.A.)

Web Testing Master
Class

Part II of II

Tutorial B2

Ms. Alice Lee and Dr.
Eric Wong

(NASA Johnson Space
Center)

A Quantitative Risk
Assessment Model For

Software Quality,
Testing and Safety

Tutorial C2

Dr. Hans-Ludwig
Hausen
(GMD)

On A Standards Based
Quality Framework for

Web Portals

Tutorial D2

Mike Russell
(Insight Consulting Ltd.,
Ireland in association
with Systeme Evolutif,

UK)
ISEB Software Testing
Foundation Certificate

Part II of V

Part III of V:

(evening) 18:00-21:00

Tuesday, 21 November 2000
TUTORIAL DAY #2

T2
8:30

-
10:00

Coffee

10:30
-

12:00

Tutorial E1

Mr. Tom Gilb
(Result planning

Limited)
Requirements

Engineering for SW
Developers and Testers

Tutorial F1

Mr. Robert A. Sabourin
(AimBug.Com)

The Effective SQA
Manager Getting

Things Done

Tutorial G1

Mr. Adrian Cowderoy
(ProfessionalSpirit

Limited)
Cool Q-Quality

Improvement For Multi-
Disciplinary Tasks In
Website Development

Tutorial H1

Mike Russell
(Insight Consulting Ltd.,
Ireland in association
with Systeme Evolutif)
ISEB Software Testing
Foundation Certificate

Part IV of V

12:00
-

13:30
TUTORIAL DAY LUNCH AND NETWORKING

13:30
-

15:00

Refreshments

15:30
-

17:00

Tutorial E2

Mr. Tom Gilb
(Result Planning

Limited)
Specification Quality

Control (SQC): A
Practical Inspection

Workshop on
Requirements
Specification

Tutorial F2

Mr. Tom Drake
(Integrated Computer

Concepts, Inc.)
The Quality Challenge

for Network-Based
Software Systems

Tutorial G2

Mr. Tobias Mayer and
E. Miller

(eValid, Inc.)
WebSite Testing

Tutorial H2

Mike Russell
(Insight Consulting Ltd.,
Ireland in association
with Systeme Evolutif)
ISEB Software Testing
Foundation Certificate

Part V of V

EXAM: Wednesday

[BACK TO TOP]

Part II of II

Morning 8:30 - 10:00
AM

17:00
-

18:00
Welcome Reception

Wednesday, 22 November 2000
CONFERENCE DAY #1

Exhibition: 10:00 AM to 18:00 PM

K1
8:30

PLENARY SESSIONS

Conference Introduction / Session Introduction:
Edward Miller (Conference Chairman)

(Software Research, Inc.)
Keynote K1-1:

Mr. Tom Gilb
(Results Planning, Norway)

The Ten Most Powerful Principles for Quality in Software Organizations
Keynote K1-2:

Mr. Jens Pas
(I2B, Belgium)

Test Out-Sourcing: From Necessary Evil to E-Competitive Advantage
Keynote K1-3:
Dr. Philippe Aigrain

(Head of "Software Technologies" Sector, EC, Brussels, Belgium)
A Wider Look at Software Quality

10:00

REFRESHMENTS IN EXHIBIT HALL

1
10:30

Technology
Track

Track Theme

Applications
Track

Track Theme

Internet
Track

Track Theme

Management
Track

Track Theme

Vendor
Technical

Presentations

Paper 1T
Ms. Miriam
Bromnick

(Ovum ltd,UK)
Automated

Software Testing:
A New Breed of

Tools

Paper 1A

Mr. Jean Hartmann,
Mr. Claudio
Imoberdorf

(Siemens Corporate
Research, USA)

Functional Testing
Of Distributed

Component-Based
Software

Paper 1I

Dr. Lingzi Jin
(FamilyGenetix Ltd.,

UK)
Introducing Quality

Assurance Into
Website

Development: A
Case Study For
Website Quality

Control In A Small
Company

Environment

Paper 1M

Mr. Ton Dekkers
(IQUIP Informatica

B.V.)
Quality Tailor-Made

(QTM)

VT 1

Mr. Robin Bortz
RadView
WebLoad

Integrity Testing
for e-applications

 REFRESHMENTS IN EXHIBIT HALL

EXHIBITS OPEN

2
11:30

Technology
Track

Track Theme

Applications
Track

Track Theme

Internet
Track

Track Theme

Management
Track

Track Theme

Vendor
Technical

Presentations

Paper 2T

Mr. Tom Hazdra
& Lubos Kral

(CertiCon, Czech
Republic)

Enhancing the
Integration
Testing of

Component-
Based Software

Paper 2A

Mr. Olaf Mueller &
Mr. Axel

Podschwadek
(Siemens,
Germany)

A Step-to-Step
Guide to

Incremental Testing:
Managing Feature

Interaction for
Communication

Devices

Paper 2I

Ms. Nicole Levy
(Laboratore PRISM,

France)
Quality

Characteristics to
Select an

Architecture for Real-
Time Internet
Applications

Paper 2M

Mr. Kie Liang Tan
(CMG TestFrame

Finance,
Netherlands)

How To Manage
Outsourcing Of
Test Activities

VT 2

Lisa Hoven
Rational

Successful
Testing Through

Requirements

12:30

CONFERENCE LUNCH AND NETWORKING IN EXHIBIT HALL

3
14:00

Technology
Track

Track Theme

Applications
Track

Track Theme

Internet
Track

Track Theme

Management
Track

Track Theme

Vendor
Technical

Presentations

Paper 3T

Dr. Antonia
Bertolino, F.

Basanieri
(CNR-IEI, Italy)

A Practical
Approach to
UML-based
Derivation of

Integration Tests

Paper 3A

Mr. Rob Hendriks &
Mr. Robert van

Vonderen & Mr. Erik
van Veenendaal
(Improve Quality

Services,
Netherlands)

Measuring Software
Product Quality
During Testing

Paper 3I

Mr. Massimiliano
Spolverini

(Etnoteam -
Consulting Division,

Italy)
Measuring And
Improving The

Quality Of Web Site
Applications

Paper 3M

Mr. Kees Hopman
(IQUIP Informatica
BV, Netherlands)

How to Implement
New Technologies?

Four Proven
Cornerstones for

Effective
Improvements

VT 3

David Walker
Technology

Builders, Inc.
Effective

Requirements
Management
Using Caliber-

RMTo Be
Announced

 REFRESHMENTS IN EXHIBIT HALL

4

Technology
Track

Track Theme

Applications
Track

Track Theme

Internet
Track

Track Theme

Management
Track

Track Theme

Vendor
Technical

Presentations

Paper 4T

Ms. Lisa Crispin
(iFactor-e)

The Need for
Speed:

Automating
Functional

Paper 4A

Mr. Steve Littlejohn
(SIM Group

Limited., UK)
Test Environment
Management -- A
Forgotten Basic

Paper 4I

Mr. Adrian Cowderoy
(ProfessionalSpirit)
Complex WebSites

Cost More to
Maintain - Measure
the Complexity of

Paper 4M

Mr. Andreas Birk &
Wolfgang Mueller

(Fraunhofer
Institute, Germany)

Systematic
Improvement

VT 4

Hans Buwalda
CMG

TestFrame:
Getting Testing

and Test
Automation

[BACK TO TOP]

15:00 Testing in an
eXtreme

Programming
Environment

 Content

Management: A
Method For

Defining And
Controlling
Customized
Improvement

Programs

Under Control

 REFRESHMENTS IN EXHIBIT HALL

5

16:00

Technology
Track

Track Theme

Applications
Track

Track Theme

Internet
Track

Track Theme

Management
Track

Track Theme

Vendor
Technical

Presentations

Paper 5T

Mr. Ruud
Teunissen

(Gitek)
Improving

Developer's
Tests

Paper 5A

Dr. Erik P.
vanVeenendaal
(Improve Quality

Services BV,
Netherlands)
GQM Based

Inspection

Paper 5I

Mr. Rakesh Agarwal,
Bhaskar Ghosh,

Santanu Banerjee &
Soumyendu Pal

(Infosys
Technologies Ltd,

India)
Challenges And
Experiences In

Establishing WebSite
Quality

Paper 5M

Mr. Oliver Niese,
Tiziana Margaria,

Markus
Nagelmann,

Bernhard Steffen,
Georg Brune &
Hans-Dieter Ide
(META Frame
Technologies

GmbH)
An Open

Environment for
Automated

Integration Testing

VT 5

Mr. Alexander
Malshakov & Mr.
George St. Clare
(Amphora Quality

Technologies)
Optimizing

Iteration Testing

17:00
-

18:00
COCKTAIL PARTY IN EXHIBIT HALL

Thursday, 23 November 2000
CONFERENCE DAY #2

Exhibition: 10:00 AM to 18:00 PM

K2
8:30

PLENARY SESSIONS

Session Introduction:
Edward Miller

(Software Research, USA)

Keynote K2-1:
Ms. Lisa Crispin

(iFactor-e)
Stranger in a Strange Land: Bringing QA to a Web Startup

Keynote K2-2:
Mr. Hans Buwalda

(CMG Finance)

Soap Opera Testing

QWE2K Awards
Announcement of the QWE2000 Best Paper Award

10:00 REFRESHMENTS IN EXHIBIT HALL
EXHIBITS OPEN

6
10:30

Technology
Track

Track Theme

Applications
Track

Track Theme

Internet
Track

Track Theme

Management
Track

Track Theme

Vendor
Technical

Presentations

Paper 6T

Mr. Francesco
Piazza
(Alenia

Aerospazio, Italy)
A Requirements
Trace Application

Paper 6A

Mr. Jacobus
DuPreez & Lee D.

Smith
(ARM Ltd.)

SPI: A Real-World
Experience

Paper 6I

Mr. Olivier Denoo
(ps_testware,Belgium)

Usability: A web Review

Paper 6M

Mr. Karl Lebsanft
& Mr. Thomas

Mehner
(Siemens AG,

Germany)
CMM in

Turbulent Times
- Is CMM a

Contradiction to
Innovation?

VT 6

Panos
Ntourntoufis
UPSPRING

Software, Inc.
An Automated
Approach to

Software Defect
Prevension

 REFRESHMENTS IN EXHIBIT HALL

7
11:30

Technology
Track

Track Theme

Applications
Track

Track Theme

Internet
Track

Track Theme

Management
Track

Track Theme

Vendor
Technical

Presentations

Paper 7T

Mr. William E.
Lewis

(Technology
Builders, Inc.,

Canada)
Requirements-

Based Testing: An
Overview (Process
and Techniques for

Successful
Development

Efforts

Paper 7A

Ms. Jill Pritchet &
Mr. Ian Lawthers

(Centre for
Software

Engineering)
Software Process
Improvement for

Small
Organizations

using the "SPIRE"
Approach

Paper 7I

Mr. Fernando T. Itakura,
Ms. Silvia R. Verfilio
(Crosskeys Systems
Corporation,Brazil)

Automatic Support For
Usability Evaluation of A

Web Application

Paper 7M

Mr. Luis Filipe D.
Machado, Ms.
Kathia M. de

Oliveira & Ms.
Ana Regina C.

Rocha
(Federal

University Of Rio
de Janeiro,

Brazil)
Using Standards

And Maturity
Models For The

Software
Process
Definition

VT 7

Mr. Matthew
Brady

McCabe &
Associates UK

Ltd
How to Test

Better - Not Test
More

12:30 CONFERENCE LUNCH AND NETWORKING
Technology

Track
Track Theme

Applications
Track

Track Theme

Internet
Track

Track Theme

Management
Track

Track Theme

Vendor
Technical

Presentations

Paper 8T Paper 8A Paper 8I Paper 8M VT 8

8
14:00

Mr. Tobias Mayer

(eValid, Inc.)
Browser-Based
WebSite Testing

Technology

Mr. Gunthard

Anderer
(CMG ORGA -
Team GmgH,

Germany)
Testing E-
Commerce
Systems -

Requirements And
Solutions

Mr. Eric Messin

(Vality Technology,
USA)

Ensuring Data Quality
for E-Commerce

Systems

Mr. Martin S.

Feather, Mr. Tim
Kurtz

(NASA Glenn
Research

Center, USA)
Putting It All
Together:
Software
Planning,

Estimating And
Assessment For

A Successful
Project

Ruud Teunissen

Gitek
TWeb: Testing e-

Business
Applications

 REFRESHMENTS IN EXHIBIT HALL

9

15:00

Technology
Track

Track Theme

Applications
Track

Track Theme

Internet
Track

Track Theme

Management
Track

Track Theme

Vendor
Technical

Presentations

Paper 9T

Dr. Rainer Stetter
(Software Factory

& ITQ Gmbh,
Germany)

Test Strategies for
Embedded

Systems

Paper 9A

Dasha Klyachko
(Allied Testing,

UK)
Specifics of E-

Testing:
Difference
Between

Traditional and
On-Line Software
Development and

Its Effect on
Testing

Paper 9I

Mr. Adrian Cowderoy
(ProfessionalSpirit

Limited,UK)
Ensuring Data Quality Is

Just The Start -- The
Real Battle Is

Commercial Quality

Paper 9M

Dr. Esther
Pearson
(Genuity

Corporation,
USA)

Website
Operational
Acceptance

Testing; Process
Assessment and

Improvement

VT 9

Peter
 Sterck [Belgium]

(ps_testware)
The Challenge

of e-business
 Testing

 REFRESHMENTS IN EXHIBIT HALL

10
16:00

Technology
Track

Track Theme

Applications
Track

Track Theme

Internet
Track

Track Theme

Management
Track

Track Theme

Vendor
Technical

Presentations

Paper 10T

Dr. Ray Paul & Dr.
Wei-Tek Tsai

(USA)
Assurance-Based

Testing: A New
Quality Assurance

Technique

Paper 10A

Mr. Bob Bartlett
(SIM Group

Limited., UK)
A Practical

Approach to
Testing your

eCommerce Web
Server

Paper 10I

Mr. Robert L. Probert,
Wujun Li, Mr. Paul Sims
(School of Information

Technology and
Engineering, Canada)

A Risk Directed E-
Commerce Test Strategy

Paper 10M

Mr. William E.
Lewis

(Technology
Builders, Inc.,

Canada)
A Continuous

Quality
Improvement

Testing
Methodology

VT 10

Edward Miller
(eValid, Inc.)

The Argument for
Client-Side

Testing

[BACK TO TOP]

17:00
-

18:00
Special Evening Event (To Be Announced)

Friday, 24 November 2000
CONFERENCE DAY #3

11
8:30

Technology
Track

Track Theme

Applications
Track

Track Theme

Internet
Track

Track Theme

Management
Track

Track Theme

Vendor
Technical

Presentations

Paper 11T

Mr. Richard
Kasperowski &

Mr. Spencer
Marks

(Altisimo
Computing,

USA)
Building Better

Java
Applications

Paper 11A

Dr. Nigel Bevan
(Serco Usability

Services, UK), Mr.
Itzhak Bogomolni

(Israel Aircraft
Industries, Israel)

Incorporating User
Quality

Requirements In
The Software
Development

Process

Paper 11I

Mr. Bob Bartlett
(SIM Group

Limited., UK)
Experience
Testing E-
Commerce

Systems

Paper 11M

Mr. Vassilios Sylaidis, Mr.
Dimitrios Stasinos, Mr.
Theodoros [Greece]
(INTRACOM S.A.)

Software Development Process
Improvement For

Telecommunications
Applications By Applying Gilb's

Inspection Methodology

VT 11

 Bruno
Bouyssounouse

(PolySpace)
Detect All Run-
time Error With-
out Test-Beds

 REFRESHMENTS

12
9:30

Technology
Track

Track Theme

Applications
Track

Track Theme

Internet
Track

Track Theme

Management
Track

Track Theme

Vendor
Technical

Presentations

Paper 12T

Mr. Sanjay
DasGupta &

Indrajit Sanyal
(Usha

Communications
Technology,

INDIA)
A Java-XML

Integration for
Automated

Testing

Paper 12A

Mr. Adam Kolawa
(ParaSoft, USA)
Testing Dynamic

Web Sites

Paper 12I

Mr. Steven D.
Porter

(Practical
Consulting

Group, USA)
From Web Site
To Web App:

Ensuring Quality
In A Complex

Enviroment

Paper 12M

Ms. Tuija Lamsa
(University of Oulu, Finland)

Using Knowledge Management
in the Quality Improvement of
the Development Processes

VT 12

Mr. Bob
Bartlett

SIM Group
The dream

comes true -
Scriptless
Automated

Testing

10:30 REFRESHMENTS

PLENARY SESSIONS

Keynote K3-1:
Rik Daems

Minister of Telecommunications

[BACK TO TOP]

K3
11:00

Government of Belgium
Belgium's Five-Star Plan to Develop The Information Society

Keynote K3-2:
Mr. Tom Drake

(ICCI)
The Future of Software Quality - Our Brave New World - Are We Ready?

QWE2K Awards
Announcement of the QWE2000 Best Presentation Award

Conference Conclusion:
Edward Miller

(Software Research, USA)

12
9:30

Paper 12T

Mr. Sanjay
DasGupta &

Indrajit Sanyal
(Usha

Communications
Technology,

INDIA)
A Java-XML

Integration for
Automated

Testing

Paper 12A

Mr. Adam
Kolawa

(ParaSoft,
USA)

Testing
Dynamic
Web Sites

Paper 12I

Mr. Steven
D. Porter
(Practical

Consulting
Group,
USA)

From Web
Site To Web

App:
Ensuring

Quality In A
Complex

Enviroment

Paper 12M

Ms. Tuija Lamsa
(University of Oulu,

Finland)
Using Knowledge

Management in the
Quality

Improvement of the
Development

Processes

VT 12

Mr. Bob
Bartlett

SIM Group
The dream

comes true -
Scriptless
Automated

Testing

10:30 REFRESHMENTS

K3
11:00

PLENARY SESSIONS

Keynote K3-1:
Rik Daems

Minister of Telecommunications
Government of Beligum

Belgium's Five-Star Plan to Develop The Information Society

Keynote K3-2:
Mr. Tom Drake

(ICCI)
The Future of Software Quality - Our Brave New World - Are We Ready?

QWE2K Awards
Announcement of the QWE2000 Best Presentation Award

Conference Conclusion:
Edward Miller

(Software Research, USA)

[BACK TO TOP]

Extra Presentations

EP

Wednesday

Mr. Leif Balter[Sweden]
(Cap Gemini Ernst &

Young)
Create Your Own Testtool

Thursday

Mr. Olivier Denoo
[Belgium]

(ps_testware)
Assuring Your

E-commerce Revenue

Friday

Mr. Richard
Kasperowski

(Altisimo Computing)
Opportunistic Software

Quality

4th International Software Quality Week Europe (QWE2000) - Technical Program

http://www.soft.com/QualWeek/QWE2K/qwe2k.program.html (12 of 13) [10/27/2000 12:54:54 PM]

http://www.soft.com/QualWeek/QWE2K/Papers/VT12.html
http://www.soft.com/QualWeek/QWE2K/Papers/VT12.html
http://www.soft.com/QualWeek/QWE2K/Papers/VT12.html
http://www.soft.com/QualWeek/QWE2K/Papers/VT12.html
http://www.soft.com/QualWeek/QWE2K/Papers/VT12.html
http://www.soft.com/QualWeek/QWE2K/Papers/VT12.html
http://www.soft.com/QualWeek/QWE2K/Papers/VT12.html
http://www.soft.com/QualWeek/QWE2K/Papers/K32.html
http://www.soft.com/QualWeek/QWE2K/Papers/K32.html
http://www.soft.com/QualWeek/QWE2K/Board/Miller.html

QWE2000 Tutorial A1 - A2

Dr. Gualtierio Bazzana
(ONION, S.P.A)

"Web Testing Master Class"

Key Points

To gain industry recognition for testing as an essential and professional software
engineering specialisation.

●

Through the BCS Professional Development Scheme and the Industry Structure Model,
provision of a standard framework for the development of testers' careers.

●

To enable professionally qualified testers to be recognised by employers, customers and
peers, and to raise the profile of testers.

●

To promote consistent and good testing practice within all software engineering disciplines.●

To identify testing topics that are relevant and of value to industry.●

To enable software suppliers to hire certified testers and thereby gain commercial
advantage over their competitors by advertising their tester recruitment policy.

●

To provide an opportunity for testers or those with an interest in testing to acquire an
industry recognised qualification in the subject.

●

Presentation Abstract

First of all, peculiarities of Web-based applications will be presented from a technical
point of view, explaining their effects on testing practices. Moreover, the tutorial will
deal with testing management aspects which are fundamentally affected by the
nature of Web applications, including: RAD, regression issues, Testing solution will
then be presented, both for static aspects (related to HTML, pictures, XML) and
dynamic aspects (ASP, CGI, Proxies, Cookies, etc.).Room will be devoted also to
commercial tools available in order to give the audience an overview of the existing
technologies, highlighting also experience reports from their introduction, including
ROI analysis. Special emphasis will then be given to the Web Accessibility Initiative
(WAI) guidelines that have been issued by W3C and can significantly help testing of
Web-based applications. Last but not least, the tutorial will touch the issues raised by
integration testing between ERP and Web and in the validation of E-business
solutions. Case studies will cover: testing of e-commerce sites, testing of commercial
Internet Web sites, testing of Intranet sites, testing of home banking/ trading on-line
applications

About the Speaker

QWE2000 -- Tutorial Summary

http://www.soft.com/QualWeek/QWE2K/Tutorials/A1.html (1 of 2) [9/28/2000 10:45:32 AM]

Born in 1966, at university, he graduated with 110/110 and honour in Information
Science at the University of Milan, in February 1989. His PhD won the special AICA
award for topics related to quality in Information Technology. After working as
software developer in a telecommunication company and as consultant/ manager in
a consulting company he set-up ONION. His activities cover two areas of interest:
consulting - projects in software engineering for various industrial companies and
research in the field of software quality and networking (especially in the Internet/
Intranet domain). As far as consulting/ projects in industry are concerned, he
matured and exploited know-how in conducting various medium sized and large
projects for several companies in various application domains (telecommunications,
data processing, MIS, process control, etc.), covering topics like: Internet services,
Intranet applications, Supply Chain management, etc. Moreover he has matured
significant experiences in the ERP domain, notably with SAP R/3. He has matured
significant technical experiences especially in the telecommunications domain
(notably: switching systems and GSM mobile radio systems) in CIM and in
networking, including Internet/ Intranet/ Extranet services and solutions. He has also
dealt with sw development and testing, testing methods and tools, quality planning,
test planning, reliability analysis, software product evaluation, process assessment
and improvement, definition of quality systems in accordance to ISO 9001 and
9000/3, reviews and inspections, FDA computer system validation and so forth His
research activity spanned in various fields of software engineering, ranging from
Petri Nets to development methodologies, functional and structural test coverage,
metrics and related tools, CAST, reliability evaluation, software development process
evaluation and improvement, management by metrics, software product quality
evaluation, security technology transfer and total quality management techniques.
Moreover, he has co-ordinated several European Research Projects. He has
published a book: ("Software Metrics for Product Assessment", McGraw Hill, London,
1995, International Software Quality Assurance Series, ISBN 0-07-707923-X),
contributed to 4 other books (in the last one he has been author of four chapters
dedicated to Software Process Improvement; it has been published by IEEE
Software) and published over 50 papers at international conferences on topics
related to software quality and software testing

QWE2000 -- Tutorial Summary

http://www.soft.com/QualWeek/QWE2K/Tutorials/A1.html (2 of 2) [9/28/2000 10:45:32 AM]

QWE2000 Tutorial B1

Mr. Ruud Teunissen
and Rob Baarda

(Gitek)

"Risk Based Test Effort
Estimation with Test

Point Analysis"

Key Points

Well defined steps from business risks to test coverage●

Early and stronger test involvement of all parties concerned●

Useful for all tests●

Presentation Abstract

Testing of an information system should be based on the business risks for the
organisation in using that information system. In practice, the test manager often
takes the steps to go from risks to test coverage in an intuitive way. In this
presentation, the steps to define a testing strategy are made explicit. This gives all
parties involved better insight and provides a sound basis for negotiating testing
depth.

A good risk assessment is a part of these steps. Very important is that this explicit
way of looking at risks clearly shows that a test manager or tester can't do this alone.
The involvement of users and managers of the client organisation and of project
people like the developers, testers, QA'ers and project manager is necessary.
Discussing risks and testing in the above way proves in practice to be real
eye-openers for all parties concerned. This also enables negotiating about testing
depth by letting the customer choose what should be tested how thoroughly.

The stepwise defining of the test strategy can be used for any test level and also for
an overall strategy, including and co-ordinating all test levels and even inspections.

About the Speaker

Since 1989 Ruud Teunissen is employed in the testing world. He has been involved
in a large number of ICT projects and has performed several functions within the
testing organisation: tester, test specialist, test advisor, test manager, etc. Based on
his experience, Ruud participated in the development of the structured testing
methodology TMap® and is co-author of several books on structured testing. The

QWE2000 -- Tutorial Summary

http://www.soft.com/QualWeek/QWE2K/Tutorials/B1.html (1 of 2) [9/28/2000 10:45:45 AM]

last years Ruud is involved in implementing structured testing within organisations on
the Belgian and Dutch market. At this moment Ruud is working in Belgium for Gitek
n.v. as Manager Testen. Ruud is frequently speaking in Benelux and Great Britain.

Rob Baarda is an information systems professional for more than 20 years, following
the path from programmer to consultant. Since 1986 he specialised in the field of
testing. Starting with developing automated tests, Rob moved after a few years to
the methodology of testing. He is now part-time researching various test subjects in
the R&D department of IQUIP, besides working as an international test consultant
and teaching TMap½ and TPI½. He also presented in QWE'99 about Risk Based
Test Strategy.

QWE2000 -- Tutorial Summary

http://www.soft.com/QualWeek/QWE2K/Tutorials/B1.html (2 of 2) [9/28/2000 10:45:45 AM]

QWE2000 Tutorial C1

Dr. Alan Cameron Wills
(TriReme International Ltd)

"Component Architecture and
Business Models"

Key Points

Flexible systems are built from pluggable components●

Pluggable components need interoperable architecture●

Interoperability requires unambiguous business models●

Presentation Abstract

The pace of change in business requires a very rapid software production cycle. The
only way to meet rapidly changing requirements is to build software from an evolving
kit of predefined components. The software architect must design an extensible
family of products, not just a single application.

How do we specify and build such architectures? How do we assure reliability?

This session will provide a clear definition of component architecture as a framework
for interoperable components. We will see how to use UML to define the interfaces
between them, based on models of the business; and how to derive from these
models unambiguous conformance tests for the components, as well as definitions
of interoperation protocols (for example in XML).

The material is based on the Catalysis approach to CBD.

About the Speaker

Alan Cameron Wills has been a consultant in software development methods since
1990, working with clients in a wide variety of application areas, on both sides of the
Atlantic. He is joint developer and author of the Catalysis approach to component
based development. Dr Wills is Technical Director of Trireme International Ltd, a
UK-based consultancy.

QWE2000 -- Tutorial Summary

http://www.soft.com/QualWeek/QWE2K/Tutorials/C1.html [9/28/2000 10:45:58 AM]

QWE2000 Tutorial D1

Mike Russell
(Insight Consulting Ltd., Ireland

in association with Systeme
Evolutif, UK)

"ISEB Software Testing Foundation
Certificate"

The Information Systems Examination Board (ISEB), a division of British
Computer Society, has accredited the standard full course for delegates of
Quality Week Europe, with some experience in testing, who wish to take
the examination leading to the Foundation Certificate in Software Testing.
The course will take 18 hours, including a 'closed book' exam; which
consists of forty multiple-choice questions.

The exam will be offered during the conference, supervised by an ISEB
invigilator. The results and certificates will be presented at a special
announcement during QWE2000.

Objectives of the Qualifications

Through the Software Testing qualifications offered by ISEB, the Subject Board has the
following objectives:

To gain industry recognition for testing as an essential and professional software
engineering specialization.

●

Through the BCS Professional Development Scheme and the Industry Structure Model,
provision of a standard framework for the development of testers' careers.

●

To enable professionally qualified testers to be recognized by employers, customers and
peers, and to raise the profile of testers.

●

To promote consistent and good testing practice within all software engineering disciplines.●

To identify testing topics that are relevant and of value to industry.●

To enable software suppliers to hire certified testers and thereby gain commercial
advantage over their competitors by advertising their tester recruitment policy.

●

To provide an opportunity for testers or those with an interest in testing to acquire an
industry recognized qualification in the subject.

●

Presentation Abstract

QWE2000 -- Tutorial Summary

http://www.soft.com/QualWeek/QWE2K/Tutorials/D1.html (1 of 2) [9/28/2000 10:46:10 AM]

Syllabus Topics for the Foundation Certificate in Software Testing:

● Principles of Testing
● Testing thoughout the lifecycle
● Dynamic Testing Techniques
● Static Testing
● Test Management
● Tool Support for Testing (CAST).

Fees

The fee for sitting the examination is currently 200 Euros - 17.5% VAT included,
payable to ISEB., through Software Research Institute. (see registration form)

About the Speaker

Mike Russell (B.Sc., M.Sc. in Computer Science) has over 12 years experience in
the software industry, working for companies such as Digital, Motorola and Nellcor
Puritan Bennett. His expertise covers methods and techniques for both software
development and independent system level testing that includes significant hands-on
experience of test management, test specification/implementation and tools. He has
designed and delivered numerous test-related training courses for organizations and
performed numerous project assignments including the introduction of structured
testing methodologies for the V-model and OO development lifecycles. In addition,
Mike is also involved in the areas of Software Project Management and Quality
Assurance.

QWE2000 -- Tutorial Summary

http://www.soft.com/QualWeek/QWE2K/Tutorials/D1.html (2 of 2) [9/28/2000 10:46:10 AM]

QWE2000 Tutorial B2

Ms. Alice Lee and Dr. Eric
Wong

(NASA Johnson Space
Center and Telcordia

Technologies)

"A Quantitative Risk
Assessment Model For

Software Quality, Testing
and Safety"

Key Points

Quantitative Risk Management for software●

Test Efficiency and Improvement●

Software Quality and Maturity Level Improvement●

Presentation Abstract

The risk management model was created and validated by the instructor for NASA.
The model was created to meet the challenge of the prevailing schedule/cost
constraints without sacrificing product quality for highly safety-critical space flight
software. The model, which has been applied to critical NASA flight software and
ground test facilities, presents a quantitative approach to assessing the software's
quality, test efficiency, and functional criticality. It can be used throughout the
software development life cycle phases.

The model quantitatively measures the software down to the module level, and
derives a risk index to present the module's risk level. The risk index provides a
quick reference for project managers to understand the status of the software quality,
so as to determine the budget and schedule more accurately prior to delivery. The
risk index also provides the developers and testers with insight into where the
problems are, and what causes the problems. With this approach, unnecessary
testing was eliminated and test planning was more effective. The risk index along
with the measurements of the composite elements served as a useful tool for
managing schedule and budget risk and allowed the designers and testers to focus
on improvement areas and mitigating risks. In addition, the application of the model
can promote the Capability Maturity Level of the software to levels 4 and 5.

The assessment work is performed with automated tools. Part I of this seminar

QWE2000 -- Tutorial Summary

http://www.soft.com/QualWeek/QWE2K/Tutorials/B2.html (1 of 2) [9/28/2000 10:46:27 AM]

describes the concept, approach, and methodology of the risk model. The quality
measurement tool will also be introduced in-depth. Part II of the seminar will discuss
in detail a more efficient approach for software testing and maintenance.

About the Speaker

Alice Lee is currently the Chief Technologist for SR&QA (Safety Reliability and
Quality Assurance) Office at NASA Johnson Space Center. She is also Assistant
Division Chief for the Technology Division of SR&QA. She attended Purdue
University, USA, for undergraduate studies in Computer Science. Received a
Master's Degree in Computer Science from Rice University, USA, in 1986. She was
also selected to attend MIT in 1994 under a NASA fellowship for Advanced
Engineering Studies. She created this quantitative risk model for NASA.

Eric Wong is currently a Research Scientist at Telcordia Technologies (formerly
known as Bellcore). He is one of the principal investigators at Telcordia responsible
for developing a set of metrics for evaluating the overall quality of highly complex
telecommunication systems and to identify their fault-prone software modules. He
received his B.S. in Computer Science from Eastern Michigan University, and his
M.S. and Ph.D. in Computer Science from Purdue University.

QWE2000 -- Tutorial Summary

http://www.soft.com/QualWeek/QWE2K/Tutorials/B2.html (2 of 2) [9/28/2000 10:46:27 AM]

QWE2000 Tutorial C2

Dr. Hans-Ludwig Hausen
(GMD)

"On A Standards Based Quality
Framework for Web Portals"

Key Points

Are web portals so peculiar that the advantages of defining a quality model for web portal
overcomes the disadvantage of having standard proliferation?

●

How can the quality characteristics/sub-characteristics defined and suggested by such
attributes as given by, for example, ISO 9126 be covered by the expected properties of a
web portal

●

What are possible quality profiles (i. e., lists of expected relative "values" of
characteristics/sub-characteristics) for web portals according to a model conform to a quality
standard, e.g. ISO 9126, ISO12119, ISO14598, QoS?

●

Presentation Abstract

General, abstract definitions of quality have often been attempted. The concept may
be discussed for long and may give rise to different, subjective formulations, each of
them acceptable on the basis of some points of view. What is interesting here, is that
precisely defined models can be proposed for quality. A quality model is a very
general concept: it can be conceived as a structured set of properties, or
characteristics, that can be established for an object to declare it a quality object.
The model can be used as a guideline for developing an object or a reference to
evaluate properties of a software system.

For software systems, various quality models have been explicitly or implicitly
proposed (by Bogen, Deutsch, Azuma, Rae, et.al.). All of them address a
methodology to define a hierarchic structure of characteristics and a way to relate
these characteristics to some technical aspects of the system. In literature, there is
little evidence of showing whether or not the characteristics depend on the
application domain the system belongs to. This point is even purposely avoided,
probably due to searching for a model as general as possible. In fact, these and
other efforts have led to define and approve a very popular standard for software
system quality, like the ISO/IEC 9126 resp. ISO14598 or the QoS frameworks and
guidelines.

The model referred by this standard defines quality as a set of six characteristics
(Functionality, Reliability, Usability, Maintainability, Efficiency, Portability) and
proposes a further decomposition of each characteristic into a set of

QWE2000 -- Tutorial Summary

http://www.soft.com/QualWeek/QWE2K/Tutorials/C2.html (1 of 2) [9/28/2000 10:46:38 AM]

sub-characteristic, wisely not included in the standard. Among the great variety of
software products, web portal have widely grown both in the number of media and
technologies involved and in the target which they are addressed to.

About the Speaker

Speaker Bio to be added later

QWE2000 -- Tutorial Summary

http://www.soft.com/QualWeek/QWE2K/Tutorials/C2.html (2 of 2) [9/28/2000 10:46:38 AM]

QWE2000 Tutorial E1

Mr. Tom Gilb
(Result Planning Limited)

Requirements Engineering for SW
Developers and Testers

Key Points

Use a well structured defined requirements language to plan your testing●

Use similar good requirements thinking to plan you test organization●

Insist that colleagues and customers use similar good requirements practice before handing
specifications to you to work with

Avoid garbage in, have entry and exit controls❍

base controls on numeric Inspection defect levels❍

●

Presentation Abstract

System Requirements Engineering Course will teach an innovative fresh approach to
system requirements. It is distinguished from all previous requirements approaches
by its level of quantification of critical system requirements. Its all based on a
practical, defined 'language for specification which produces rigor and clarity to any
requirements specification process. All cases of system design requirements are
encompassed, including quality requirements, resource requirements and design
constraints.

About the Speaker

Tom Gilb is an independent consultant, teacher and author. He works mainly in UK,
Europe and North America. He is resident in Norway.

Tom coined the term 'Software Metrics' with the publication of his book of the same
name in 1976 (European edition) and 1977 (USA edition). This work is the
acknowledged (by R. Radice and W. Humphrey) as inspiration for much of the
Software Engineering Institute's Capability Maturity Model Level 4 (SEI CMM Level
4). His other books include Principles of Software Engineering Management (1988,
now in 13th printing) and Software Inspection (1993 with Dorothy Graham). His main
professional interest is the development of powerful Systems Engineering methods
(covering Requirements, Design, Quality Control and Project Management)

QWE2000 -- Tutorial Summary

http://www.soft.com/QualWeek/QWE2K/Tutorials/E1.html [9/28/2000 10:47:00 AM]

QWE2000 Tutorial F1

Mr. Robert A. Sabourin
(Purkinje Inc.)

"The Effective SQA Manager -
Getting Things Done"

Key Points

SQA Management●

Effective Process●

Process improvement●

Presentation Abstract

This interactive tutorial walks you through several "down to earth" practical aspects
of running an SQA team.

The tutorial is presented in parable form. In this tutorial the audience will experience
the real life problems encountered by a NOGO.COMs neophyte SQA Manager
"Fred". "Fred" must turn around an enthusiastic but severely under staffed and under
budget team of SQA professionals working in a chaotic development environment
into a productive effective team! "Fred" is under the gun - he has to get things done!

About the Speaker

Robert Sabourin has been involved in all aspects of development, testing and
management of software engineering projects. Robert graduated from McGill
University in 1982. Since writing his first program in 1972, Robert has become an
accomplished software engineering management expert. He is presently the
President of AmiBug.Com, Inc.; a Montreal-based international firm specializing in
software engineering and and software quality assurance training, management
consulting and professional development. AmiBug helps companies set up software
engineering and quality assurance teams and process through a combination of
training and management consulting. Robert was the Director of Research and
Development at Purkinje Inc where he was charged with developing world class
critical medical software used by clinicians at the point of care. Previously, Robert
managed Software Development at Alis Technologies for over ten years. He has
built several successful software development teams and champions the
implementation of "light effective process" to achieve excellence in delivering
on-time, on-quality, on-budget commercial software solutions.

Robert has championed many complex international multilingual software

QWE2000 -- Tutorial Summary

http://www.soft.com/QualWeek/QWE2K/Tutorials/F1.html (1 of 2) [9/28/2000 10:47:10 AM]

development and globalization efforts involving several intricate business
partnerships and relationships including international government (Czech, Egypt,
France, Morocco, Algeria...) and commercial entities (Microsoft, IBM, AT&T, HP,
Thompson CSF, Olivetti...). Systems included concurrent coordinated multilingual
multiplatform product releases.

Robert's pioneering work with Infolytica Corporation led to the development of the
first commercially available platform independent graphics standard GKS and
several toolkits which allowed for cross platform development and porting of complex
CAD, Graphics, Analysis and Non-Destructive Simulation systems.

Robert is a frequent guest lecturer at McGill University where he relates theoretical
aspects of Software Engineering to real world examples with practical hands-on
demonstrations.

In 1999, Robert completed a short book illustrated by his daughter Catherine entitled
"I Am a Bug" (ISBN 0-9685774-0-7). Written in the style of a children's book, "I am a
Bug" explains elements of the software development process using a fun metaphor.
Throughout his career, he has also been the author of several articles and papers,
and has given presentations relating to software development at a number of
international conferences. Robert presented an interactive half-day tutorial on Bug
Priority and Severity at Software Quality Week in Belgium - November 1999, a
half-day tutorial on becoming and effective SQA manager at Quality Week 2000 in
San Fransisco, and frequently gives courses on Software Testing, Development
related subjects.

Robert has received professional recognition for many accomplishments over the
years. At TEPR 2000 - award for best electronic patient record product to EHS using
the Purkinje CNC component. Byte Middle-East's 1992 Product of the Year for the
AVT-710 product family achieving a ZERO FIELD REPORTED software defect rate
with over 15,000 units installed. (Project involved over 27-man month's effort!);
Quebec Order of Engineers' recognition for creating and managing the Alis R&D
Policy Guide - Development Framework and process.

QWE2000 -- Tutorial Summary

http://www.soft.com/QualWeek/QWE2K/Tutorials/F1.html (2 of 2) [9/28/2000 10:47:10 AM]

QWE2000 Tutorial G1

Mr. Adrian Cowderoy
(ProfessionalSpirit)

"Cool Q- Quality Improvement For
Multi-Disciplinary Tasks In Website

Development"

Key Points

Player identification. Identification of the business/marketing players. Use of profiling and
stereotyping to model the great diversity that are common at most websites. Identification of
the key content and domain experts who understand how to make the website effective for
its primary business purpose. Identification of the tool features and legacy systems/content
that constraint that website.

●

Feature identification. Use of checklists, questionnaires, models and behaviour monitoring
to identify the features required by the different players.

●

Quality profiling to support constructive negotiation between the different players, and to
assure a complete view of all important quality features.

●

Commercial design. Achieving the balance between system constraints (technical quality)
and system benefits. Design websites that are engaging, inspiring and (if you have the
talent) cool.

●

Killer-feature monitoring, to identify and track commercially sensitive system benefits.●

Use of size and complexity measures (and quality features) to identify components and
design decisions that create high maintenance costs and risks for website content.

●

Use of risk and cost assessment to optimize the quality profile and design complexity.●

Use of risk management planning to indicate how to improve quality in the project by
appropriate staffing, testing, monitoring, and other quality-improvement actions.

●

Creating a learning organization. Combining commercial training materials and in-house
know-how to create a simple knowledge-base of good practice.

●

Presentation Abstract

The tutorial is targeted at website producer/directors and managers. It is also
strongly recommended for software quality people who are moving into the Internet
business. The tutorial addresses website content and structure, and the functionality
resulting from using Internet development tools.

The tutorial begins by explaining the background of how the web embraces
multi-disciplines and multi-practices, and how new web-savvy organizations go
beyond the boundaries of traditional industries.

QWE2000 -- Tutorial Summary

http://www.soft.com/QualWeek/QWE2K/Tutorials/G1.html (1 of 3) [9/28/2000 10:47:22 AM]

The tutorial continues by introducing a set of quality improvement methods that have
been developed over the last three years, for web-site development. An explanation
is provided of how these methods support each of the main archetypes that are used
in the workplace. That is, the engineer, the hunter/trickster, the gatherer, and the
warrior.

About the Speaker

Adrian Cowderoy is Managing Director of the Multimedia House of Quality Limited, a
company which he established to promote quality-improvement methods for the
production of websites and multimedia.

Mr Cowderoy was the General chair of ESCOM-SCOPE-99 and
ESCOM-ENCRESS-98 conferences, and was Program chair for ESCOM 96 and 97
(The European Software Control and Metrics conference promotes leading-edge
developments in industry and research, worldwide û see www.escom.co.uk). He is
the METRICS-ESCOM Coordinator for IEEE METRICS 2001 and was on the
Program committee of Metrics 98 and 99, European Quality Week 99 and
COCOMO/SCM 96-99. In 1998 he was acting Conference Chair of the Electronics
and Visual Arts conference in Gifu, Japan. He is a registered expert to the European
Commission DGXIII.

He has provided consultancy and industrial training courses on quality management,
risk management, and cost estimation to the aerospace and medical industries in the
UK, Germany and Italy since 1995. He also lectures at Middlesex University
(www.mdx.ac.uk) on e-commerce project management and managing Internet
start-up's, and at City University, London (www.city.ac.uk), on project management
for systems development.

Mr Cowderoy was project manager and technical director of MultiSpace, a 14-month
million-dollar initiative sponsored by the European Commission in which 12
European organizations explored the potential to apply quality-improvement methods
to multimedia and website development projects. (See www.mmhq.co.uk/multispace
and www.cordis.lu/esprit.)

He was a Research fellow at City University from 1990-1998, and a Research
Associate at Imperial College from 1986-1989. He was also a quality consultant and
software developer at International Computers Limited, UK, from 1980-1985, where
he worked on operating and networking systems for mainframes and distributed
systems.

His academic qualifications include an MSc in Management Science from Imperial
College, University of London in 1986, and is a member of the Association of MBA's.
He received a BSc in Physics with Engineering from Queen Mary College, University
of London, in 1979.

Mr. Cowderoy has published and presented extensively on multimedia quality and
software cost estimation. He was joint editor of Project Control for 2000 and Beyond
(Elsevier, 1998), Project Control for Software Quality (Elsevier, 1999), and Project

QWE2000 -- Tutorial Summary

http://www.soft.com/QualWeek/QWE2K/Tutorials/G1.html (2 of 3) [9/28/2000 10:47:22 AM]

Control: The Human Factor (Elsevier, 2000).
QWE2000 -- Tutorial Summary

http://www.soft.com/QualWeek/QWE2K/Tutorials/G1.html (3 of 3) [9/28/2000 10:47:22 AM]

QWE2000 Tutorial E2

Tom Gilb
(Result Planning Limited)

"Specification Quality Control
(SQC): A Practical Inspection
Workshop on Requirements

Specification"

Key Points

Point 1...●

Point 2...●

Point 3...●

Presentation Abstract

A. Narrative Description 40-60% of all software bugs which escape test to the field
user have been traced to requirements and design specifications before coding. It
has then been proved that Inspecting the specifications sharply reduces this
problem. This workshop will explore all aspects of Specification Quality Control in a
hands on practical workshop. Participants will actively experience the technology
necessary to attack this quality challenge.

B. Learning Objectives. 1. To learn the problem and the solutions mainly by means
of personal experience. You will get a series of individual tasks which will teach you
basic principles of specification and quality control of specification.

C. Detailed Outline 1. The Ambiguity Test: proving that specifications are
unintelligible.

2. Rules: Selecting strong standards for specification which enable quality control.

3. Process Control: Deciding on the economically allowable Major Defect density
allowed for a specification to be released to your colleagues

4. Planning: Selecting a suitable sample to check. Selecting checklists. Allocating
specialist checking roles on the team. Deciding on checking rates using optimum
rate data.

5. Checking: Individual effort to find defects, and especially Major defects.

6. Data Collection: Gathering data on the checking phase: defects, Majors, Rate,
Sample size.

QWE2000 -- Tutorial Summary

http://www.soft.com/QualWeek/QWE2K/Tutorials/E2.html (1 of 2) [9/28/2000 10:48:00 AM]

7. Extrapolation: Calculating probable team result of unique Major defects/ Logical
Page. Calculating total defect density. Calculating defects remaining after corrections
{per page, total}. Calculating total future rework costs based on remaining Major
defects.

8. Drawing Conclusions: Can the document exit according to our Exit Conditions? If
not, what should we do?

9. Observations. What did you learn? What surprised you the most? What do you
think you should do back at your own work about these things? What barriers do you
see to doing them? What can you do to remove the barriers?

About the Speaker

Tom Gilb is an independent consultant, teacher and author. He works mainly in UK,
Europe and North America. He is resident in Norway.

Tom coined the term 'Software Metrics' with the publication of his book of the same
name in 1976 (European edition) and 1977 (USA edition). This work is the
acknowledged (by R. Radice and W. Humphrey) as inspiration for much of the
Software Engineering Institute's Capability Maturity Model Level 4 (SEI CMM Level
4). His other books include Principles of Software Engineering Management (1988,
now in 13th printing) and Software Inspection (1993 with Dorothy Graham). His main
professional interest is the development of powerful Systems Engineering methods
(covering Requirements, Design, Quality Control and Project Management)

QWE2000 -- Tutorial Summary

http://www.soft.com/QualWeek/QWE2K/Tutorials/E2.html (2 of 2) [9/28/2000 10:48:00 AM]

QWE2000 Tutorial F2

Tom Drake
(Integrated Computer Concepts,

Inc)

"The Quality Challenge for Network
Based Software Systems"

Key Points

Internet quality for network centric systems●

Enterprise testing●

Quality network systems theory●

Presentation Abstract

This presentation would introduce a biologically inspired model-based conceptual
framework for network-centric testing and quality assurance. It involves an
architecture that can deal with computers and software viewed as a system of
interactive and dynamic behavioral objects rather than strictly for data processing
and number crunching that are themselves part of a larger system.

This conceptual framework for testing and quality assurance would allow for testing a
range of behaviors and outcomes and the possible interactions for these application
objects without the necessity for fully understanding them in advance! This could
permit testing the fundamental structure of the program and the application
environment and the executable functional mechanisms underneath as a testing and
quality assurance framework that is anchored in living systems theory. It permits an
inside out approach such that testing and quality engineering activities are based on
the genetic makeup of the expected and anticipated dynamic state attributes and
characteristics of the system using its own behavioral specifications as the test
instruments for locating and stimulating the weak links.

This quickstart/tutorial presentation will also examine the significant challenges
posed by network-based software systems and provide the context and background
for understanding the daunting task faced by quality specialists and information
technology management in dealing with this future frontier, today!

About the Speaker

Mr. Drake is a software systems quality specialist and management and information
technology consultant for Integrated Computer Concepts, Inc. (ICCI) in the United
States. He currently leads and manages a U.S. government agency-level Software

QWE2000 -- Tutorial Summary

http://www.soft.com/QualWeek/QWE2K/Tutorials/F2.html (1 of 2) [9/28/2000 10:48:22 AM]

Engineering Center’s quality engineering initiative. In addition, he consults to the
information technology industry on technical management and software engineering
and code development issues. As part of an industry and government
outreach/partnership program, he holds frequent seminars and tutorials covering
code analysis, software metrics, OO analysis for C++ and Java, coding practice,
testing, best current practices in software development, the business case for
software engineering, software quality engineering practices and principles, quality
and test architecture development and deployment, project management,
organizational dynamics and change management, and the people side of
information technology. He is the principal author of a chapter on Metrics Used for
Object-Oriented Software Quality for a CRC Press Object Technology Handbook
published in December of 1998. In addition, Mr. Drake is the author of a theme
article entitled: Measuring Software Quality: A Case Study published in the
November 1996 issue of IEEE Computer. He also had the lead, front page article
published in late 1999 for Software Tech News by the US Department of Defense
Data & Analysis Center for Software (DACS) entitled: Testing Software Based
Systems: The Final Frontier. Mr. Drake is listed with the International Who’s Who for
Information Technology for 1999, is a member of IEEE and an affiliate member of
the IEEE Computer Society. He is also a Certified Software Test Engineer (CSTE)
from the Quality Assurance Institute (QAI).

QWE2000 -- Tutorial Summary

http://www.soft.com/QualWeek/QWE2K/Tutorials/F2.html (2 of 2) [9/28/2000 10:48:22 AM]

QWE2000 Tutorial G2

Mr. Tobias Mayer and
Edward Miller
(eValid, Inc.)

Website Testing

BACK TO QWE2000 PROGRAM

Key Points

In the past few years web sites have grown from simple, static collections of HTML pages to
complex pieces of software using advanced technologies including ASP, XML, script
languages, e-commerce and more.

●

Testing of such complexity is a forever-growing challenge.●

Testing of passive vs. interactive pages & static vs. dynamic pages will be explored.●

Presentation Abstract

In the past few years web sites have grown from simple, static collections of HTML
pages to complex pieces of software using advanced technologies including ASP,
XML, script languages, e-commerce and more. Testing of such complexity is a
forever-growing challenge. Testing of passive vs. interactive pages & static vs.
dynamic pages will be explored. The use of a 'Test Enabled Web Browser' will be
emphasised as the most effective way of realistically testing most web sites.

About the Speakers

Tobias Mayer is a senior software engineer at Software Research, Inc. He is
reponsible for the main design and implementation of the "eValid" Web Test engine.
Tobias has a (UK) BSc from South Bank University, London. He is a member of, and
OO Metrics consultant to, the Center for Systems & Software Engineering (CSSE) at
South Bank University. Tobias has presented and published a number of papers on
OO metrics, including papers at IEEE 'TOOLS' 1999 and British Computer Society
'SQM' 1999. During this year, Tobias has presented a number of seminars on
Website Testing strategies in the UK. He also presented the "Quickstart - Website
Testing" seminar at the 'Quality Week 2000' conference in San Francisco, June
2000.

Dr. Edward Miller is President of Software Research, Inc., San Francisco, California,
where he has been involved with software test tools development and software
engineering quality questions. Dr. Miller has worked in the software quality
management field for 25 years in a variety of capacities, and has been involved in

QWE2000 -- Tutorial Summary

http://www.soft.com/QualWeek/QWE2K/Tutorials/G2.html (1 of 2) [10/23/2000 2:37:32 PM]

the development of families of automated software and analysis support tools.

He was chairman of the 1985 1st International Conference on Computer
Workstations, and has participated in IEEE conference organizing activities for many
years. He is the author of Software Testing and Validation Techniques, an IEEE
Computer Society Press tutorial text. Dr. Miller received his Ph.D. (Electrical
Engineering) degree from the University of Maryland, an M.S. (Applied Mathematics)
degree from the University of Colorado, and a BSEE from Iowa State University.

BACK TO QWE2000 PROGRAM

QWE2000 -- Tutorial Summary

http://www.soft.com/QualWeek/QWE2K/Tutorials/G2.html (2 of 2) [10/23/2000 2:37:32 PM]

QWE2000 Keynote Session K1-1

Tom Gilb
(Results Planning Limited)

The Ten Most Powerful Principles for Quality in
Software Organizations

Presentation Abstract

Software knows it has a problem. Solutions abound. But which solutions work? What
are the most fundamental underlying principles we can observe behind those
successful solutions? Can these principles guide us to select successful solutions
and avoid time wasters? One hint: in observing successful software organizations in
the US, the dominant principle seems to be feedback and control.

About the Speaker

Tom Gilb is an independent consultant, teacher and author. He works mainly in UK,
Europe and North America. He is resident in Norway.

Tom coined the term 'Software Metrics' with the publication of his book of the same
name in 1976 (European edition) and 1977 (USA edition). This work is the
acknowledged (by R. Radice and W. Humphrey) as inspiration for much of the
Software Engineering Institute's Capability Maturity Model Level 4 (SEI CMM Level
4). His other books include Principles of Software Engineering Management (1988,
now in 13th printing) and Software Inspection (1993 with Dorothy Graham). His main
professional interest is the development of powerful Systems Engineering methods
(covering Requirements, Design, Quality Control and Project Management)

QWE2000 -- Conference Presentation Summary

http://www.soft.com/QualWeek/QWE2K/Papers/K11.html [9/28/2000 10:49:20 AM]

1

10 Powerful Principles. ©
Gilb@acm.org, 2000

Slide 1

"The Ten Most Powerful Principles for Quality in
[Software and] Software Organizations"

ABSTRACT:
Software knows it has a problem. Solutions abound. But which solutions work?

What are the most fundamental underlying principles we can observe behind those
successful solutions? Can these principles guide us to select successful solutions

and avoid time wasters? One hint: in Observing successful software organizations in
the US, the dominant principle seems to be feedback and control.

Quality Week Europe, Brussels

 Wednesday 22 November 2000 0830-1000

By Tom Gilb, Result Planning Limited

Gilb@acm.org, www.result-planning.org

Version 1.1 : 6 Oct 2000

10 Powerful Principles. ©
Gilb@acm.org, 2000

Slide 2

“Principle” is ...
Webster’s New World™ College Dictionary (Third Edition) on PowerCD®

prin•ci•ple (prinse pel)
n.
1 the ultimate source, origin, or cause of something

2 a natural or original tendency, faculty, or endowment
3 a fundamental truth, law, doctrine, or motivating force, upon which others are based

[moral principles]

4 a) a rule of conduct, esp. of right conduct b) such rules collectively c) adherence to
them; integrity; uprightness [a man of principle]

5 an essential element, constituent, or quality, esp. one that produces a
specific effect [the active principle of a medicine]

6 a) the scientific law that explains a natural action [the principle of cell division] b) the
method of a thing's operation [the principle of a gasoline engine is internal combustion]

in principle

theoretically or in essence
on principle

because of or according to a principle

2

10 Powerful Principles. ©
Gilb@acm.org, 2000

Slide 3

1. Feedback
• Rapid feedback allows rapid

correction.
– Methods using rapid feedback succeed,

those without seem to fail.
• Methods:

– Defect Prevention Process (CMM 5, Mays,
IBM 1985)

– Inspection (Fagan, IBM 1975) *

– Evolutionary Project Management (Mills,
IBM, Cleanroom, 1970) *

– Statistical Process Control (SPC): Shewhart,
Deming, Juran (1920’s)

* reprints are in IBM Systems
Journal, 2&3 1999

10 Powerful Principles. ©
Gilb@acm.org, 2000

4

Slide 4

Marie’s Learnability Curve

0
5

10
15
20
25
30

Number of
estimated
remaining

majors defects

1st doc 2nd doc 3rd doc 4th doc 5th doc 6th doc 7th doc

Number of Document
Inspections where she got useful
feedback about quality and rules.

3

10 Powerful Principles. ©
Gilb@acm.org, 2000

5

Slide 5

Defect Prevention Experiences:
Most defects can be prevented from getting in

there at all

North Carolina

IBM Research Triangle Park Networking Laboratory

10 Powerful Principles. ©
Gilb@acm.org, 2000

6

Slide 6Prevention + Pre-test Detection
is the most effective and efficient

• Prevention data based on state of the art prevention experiences (IBM RTP),
Others (Space Shuttle IBM SJ 1-95) 95%+ (99.99% in Fixes)

• Cumulative Inspection detection data based on state of the art Inspection (in an
environment where prevention is also being used, IBM MN, Sema UK, IBM UK)

\

70% Detection
 by Inspection

95% cumulative detection
by Inspection (state of the art limit)

Test

100%Use

4

10 Powerful Principles. ©
Gilb@acm.org, 2000

7

Slide 7
IBM MN & NC DPP Experience.

High quantity feedback leads to real change.

• 2162 DPP Actions implemented

– between Dec. 91 and May 1993 (30 months) <-Steve Kan
• RTP about 182 per year for 200 people. <-Robert Mays 1995

– 1822 suggested ten years (85-94)

– 175 test related

• RTP 227 person org <- Mays slides
– 130 actions (@ 0.5 work years

– 34 causal analysis meetings @ 0.2 work years

– 19 action team meetings @ 0.1work years

– Kickoff meeting @ 0.1 work years

– TOTAL costs 1% of org. resources

• total ROI (Return On Investment) DPP 10:1 to 13:1,
• internal ROI 2:1 to 3:1
• Defect Rates at all stages 50% lower with DPP

10 Powerful Principles. ©
Gilb@acm.org, 2000

8

Slide 8Fault Density versus Checking Rate: Raytheon 95
Feedback on optimum rates leads to orders of

magnitude better performance

Why do you think they avoid using the optimum rate?
Hint: “Our process mandates 100% inspection coverage”

KDSI/Hour

<-“Statistically
preferred levels”

Action items

per KDSI 100 to 250

DSI/hour

5

10 Powerful Principles. ©
Gilb@acm.org, 2000

9

Slide 9Effectiveness a function of checking rate (Buck)
Feedback on optimum rates permits more effective performance

60 95 125 160

Checking Rate
in Lines per hour

10

20.4

13.8

7

0

5

10

15

20

25

60 95 125 160

Checking Rate
in Lines per hour

Bugs found

of 21
maximum

known

From Frank Buck IBM 1980

10 Powerful Principles. ©
Gilb@acm.org, 2000

Slide 10Evo ‘Learning’ model
Project feedback improves requirements and design and process!

System
Requirements

System
Design Evo Step 1

Evo Step 2

Evo Step n

Evo Step
1. Requirements
2. Step Design
3. Assemble
4. Deliver Step
5. Study Step

6

10 Powerful Principles. ©
Gilb@acm.org, 2000

Slide 11
Evo shortens project by feedback (MS)

• “It appears that this incremental
approach takes longer, but it almost
never does, because it keeps you in
close touch with where things really
are”

• Brad Silverberg, Sr. VP for Personal
Systems Microsoft in
CUSUMANO95 , page 202

10 Powerful Principles. ©
Gilb@acm.org, 2000

Slide 12

Wednesday Development Team Users

Monday ü System Test and Release
Version N

ü Decide What to Do for Version
N+1

ü Design Version N+1
Tuesday ü Develop Code ü Use Version N and Give

Feedback
Wednesday ü Develop Code

ü Meet with users to Discuss
Act ion Taken Regarding
Feedback From Version N-1

ü Meet with developers to Discuss
Act ion Taken Regarding
Feedback From Version N–1

Thursday ü Complete Code
Friday ü Test and Build Version N+1

ü Analyze Feedback From Version
N and Decide What to Do Next

Customer feedback weekly!
An example of a typical one-week Evo cycle at
the HP Manufacturing Test Division during a

project. [MAY96, HP* Journal Aug 96]

* one of my direct customers, TG

7

10 Powerful Principles. ©
Gilb@acm.org, 2000

Slide 13

Direct Customer Input (MS)

• “Microsoft’s general philosophy
has been to ….. focus on evolving
features and whole products
incrementally, with direct input
from customers during the
development process.”
CUSUMANO95 , 13, Microsoft Secrets

10 Powerful Principles. ©
Gilb@acm.org, 2000

Slide 14
Harlan Mills on Project Control:

2% deliveries feedback gives full project control!

• “Software Engineering began to emerge in FSD” (IBM Federal Systems Division, from 1996 a part
of Lockheed Martin Marietta) “some ten years ago [about 1970] in a continuing evolution that is
still underway.

– Ten years ago general management expected the worst from software projects – cost overruns, late
deliveries, unreliable and incomplete software.

– Today [1980] , management has learned to expect on-time, within budget, deliveries of high-quality
software.

• A Navy helicopter ship system, called LAMPS, provides a recent example.
– LAMPS software was a four-year project of over 200 person-years of effort,
– developing over three million, and integrating over seven million words of program and data for eight

different processors distributed between a helicopter and a ship,

– in 45 incremental deliveries.

– Every one of those deliveries was on time and under budget.
• A more extended example can be found in the NASA space program,

– where in the past ten years, FSD has managed some 7,000 person-years of software development,
developing and integrating over a hundred million bytes of program and data for ground and space
processors in over a dozen projects.

– “There were few late or overrun deliveries in that decade, and none at all in the past
four years.” Harlan Mills [IBM Systems Journal No. 4, 1980, p. 415], Reprinted IBM SJ Vol. 38 1999,
289-295

8

10 Powerful Principles. ©
Gilb@acm.org, 2000

Slide 15

User Feedback (JPL)
• Evo “expects active feedback from the experience gained from one

incremental delivery to the requirements from the next.

• As Evo periodically delivers to the users an increment of
capability, the users are able to provide understanding of how
effectively that delivery is meeting their needs.

• As the users assess the impact of a delivery on their operations, the
system developer is able to work with them to adjust the system
requirements to better satisfy their operational needs.

• Evo lets that adjusted set of requirements be the basis for all
subsequent incremental deliveries.

• This feedback process is formal and proactive. It is a key element
in making Evo effective from a user’s perspective.”

• [SPUCK93] Jet Propulsion Labs

10 Powerful Principles. ©
Gilb@acm.org, 2000

Slide 16

2. Critical Measurement

• If you do not focus on the few
measures critical to your
system, then it will fail.

• This principle is supported by the slide
detail for several other principles here, so I
will not comment in more detail just here.
TG

9

10 Powerful Principles. ©
Gilb@acm.org, 2000

Slide 17

3. Multiple Objectives

• If you cannot control multiple
measures of quality and cost
simultaneously, then your system
will fail due to the ones you did not
control.

10 Powerful Principles. ©
Gilb@acm.org, 2000

Slide 18

Step #1
Plan
A:
{Design-
X,
Function
-Y}

Step
#1
Actual

Differe
-nce.
 - is
bad
+ is
good

Total
Step 1

Step #2
Plan
 B:
{Design
Z,
Design
F}

Step #2
Actual

Step #2
Differe-
nce

Total
Step
1+2

Step #3
Next
step
plan

Reliabil-
ity
99%-
99.9%

50%
±50%

40% -10% 40% 30%
±20%

20% -10% 60% 0%

Perform
-ance
11sec.-1
sec.

80%
±40%

40% -40 40 30%
±50%

30% 0 70% 30%

Usability
30 min.
-30 sec.

10%
±20%

12% +2% 12% 20%
±15%

5% -15% 17% 83%

Capital
Cost
 1 mill.

20%
±1%

10% +10% 10% 5%
±2%

10% -5% 20% 5%

Enginee
-ring
Hours
10,000

2%
±1%

4% -2% 4% 10%
±2.5%

3% +7% 7% 5%

Calend-
ar Time

1 week 2
weeks

-1week 2
weeks

1 week 0.5
weeks

+0.5
wk

2.5
weeks

1 week

Impact Table for Step Management: how to directly control many cost and quality
objectives in small evolutionary project steps simultaneously

10

10 Powerful Principles. ©
Gilb@acm.org, 2000

Slide 19

4. Evolution
• You must evolve in small steps towards

your goals; large step failure kills the
entire effort.
– And early frequent result delivery is

politically and economically wise.

– 2% of total is a small step, you can afford to
fail on

10 Powerful Principles. ©
Gilb@acm.org, 2000

Slide 20

Tao Te Ching (500BC)

• That which remains quiet, is easy to handle.

• That which is not yet developed is easy to manage.

• That which is weak is easy to control.

• That which is still small is easy to direct.

• Deal with little troubles before they become big.

• Attend to little problems before they get out of hand.

• For the largest tree was once a sprout,

• the tallest tower started with the first brick,

• and the longest journey started with the first step.
– From Lao Tzu in Bahn, 1980 Penguin book

11

10 Powerful Principles. ©
Gilb@acm.org, 2000

Slide 21

Value delivery early

© Gilb@acm.org 1999 5

OMAR Case delivery value vs Waterfall (1998)

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22
Project Month

Project FF Cumulative Delivered Functionality
Project FF Benefit / Cost
OMAR Cumulative Delivered Functionality
OMAR Benefit / Cost

Stuart Woodward: Evolutionary project
Management

IEEE Computer Oct 1999, page
49-57
s.woodward@computer.org

10 Powerful Principles. ©
Gilb@acm.org, 2000

22

Slide 22

Cost Of Quality= COConformance+CONonconformance
CONC= cost of ‘fix and check fix’.

COC=Appraisal + Prevention

Cost for doing it right

Cost for doing it wrong(ly)

1988 1989 19911990 1992 1993 1994 1995
0%

5%

10%

15%

20%

25%

30%

35%

40%

45%

50%

Project Cost = {Cost of Quality + Cost of Performance}.
Cost of Performance={Planning, Documentation, Specification}.

Philip Crosby concepts

Cost of Quality versus Time: Raytheon 95
The 8 year evolution of rework reduction.

12

10 Powerful Principles. ©
Gilb@acm.org, 2000

Slide 23

Multiple Levels of Microsoft Evo:
Ms does Evo daily!

Office 2001 Level

6->10 Weeks 6->10 Weeks

Go to next Graphic

10 Powerful Principles. ©
Gilb@acm.org, 2000

Slide 24Early simple proof of concept (Ericsson):
Ericsson used Evo to deliver a 15 month project

in 9 months to Japan

• “Organic integration [Evo] is a way of getting rid of the myth [that
problems don’t exist] very early on.

• You could say that organic integration demands of an organization
that it do the specifications, the system, the design and the
verification for one first very small task very quickly.

• It also demands of the organization that it do this right in terms of
delivering products correctly.

• If the organization cannot even manage its first simple task in the
time agreed, it certainly should question the ability to manage more
difficult tasks.

• This process of questioning is very healthy. It may for example
prevent the delusions of grandeur so common in nearly all
organizations”.

• [Ericsson94], page 26, Jack Järkvik, in the context of building mobile
telephone base stations

13

10 Powerful Principles. ©
Gilb@acm.org, 2000

Slide 25

5. Quality Control
• Quality Control must be done as early as

possible, in planning, to reduce the
delays from late defect finding.
– Use numeric Exit from development

process
• Like “Maximum 0.2 Majors/Page”

– Use Inspection sampling to keep costs
down, and to permit early, before
completion, action and learning.

August 1999

10 Powerful Principles. ©
Gilb@acm.org, 2000

Slide 26

10 Top Advanced Inspection Principles

• Pr1. Prevention is more effective than Cure

• Pr2. Avoidance is more efficient than removal

• Pr3. Feedback teaches effectively

• Pr4. Measurement gives facts to control the process

• Pr5. Priority to the Profitable

• Pr6. Forget perfection, you can’t afford it!

• Pr7. Teach fishing, rather than ‘give fish’

• Pr8. Framework for Freedom beats bureaucracy

• Pr9. Reality rules

• Pr10. Facts beat intuition

14

10 Powerful Principles. ©
Gilb@acm.org, 2000

27

Slide 27
The downstream alternative cost of quality

at a Defence Electronics Factory
(all types of documents).

Mean time to find and correct a Major
after Inspection was 9.3 Hours.Number of

defects of
the 1,000
sampled
Majors

 0 10 30 50 70

Estimated hours to find and correct
in test or in field.

Range 1 to 80 hours

It cost about 1
hour to find and
fix a Major using
Inspection

10 Powerful Principles. ©
Gilb@acm.org, 2000

Slide 28

Advanced Inspection Objectives
• Central Objectives

– 1. Engineering Process Control

– 2. Measuring Document Quality

– 3. Reduce Project Time & Cost

• Secondary Objectives
– 4. Identify and Remove Major Defects

– 5. Reduce Service/Maintenance Costs
• NOT Objectives

– Approve document ‘content’
– Remove minor defects
– ‘Improve’ Quality

15

10 Powerful Principles. ©
Gilb@acm.org, 2000

29

Slide 29

Larger set of Inspection Objectives
1. Time-to-Delivery
2. Measurement

•document quality
•doc. process quality
•inspection value/cost

3. Release “downstream”
4. Identify defects
5. Fix defects

avoid new defect injection
6. Improve process

product producers
inspection itself

7. On-the-job training

8. Motivation
9. Help Author
10. Effectiveness (Quality)
11. Efficiency (Productivity)
12. Train Inspection team
leader
13. Certify the leader
14. Motivate Managers
15. Reduce Maintenance
Costs
16. Relieve Project Leader.
17.many others

10 Powerful Principles. ©
Gilb@acm.org, 2000

Slide 30

6. Motivation

• The ‘best methods’ work only when people
are motivated
– ‘Drive out fear’ (Deming)

16

10 Powerful Principles. ©
Gilb@acm.org, 2000

Slide 31

Motivation ‘is Everything!’
• People are ‘sensitive’
• Avoid all ‘threats’
• Give ‘positive’ motivators
• Very many ‘details’ support

this attitude
• You will respect this, or

fail!
• Do unto others, as you

would have them do with
your work!

10 Powerful Principles. ©
Gilb@acm.org, 2000

Slide 32Positive Motivators
in our Inspection version

• Group-work
• Team
• Freedom
• Learning
• Game
• Experiments
• Challenge
• Numeric Feedback
• Process Improvement
• Positive Leadership
• Sampling

17

10 Powerful Principles. ©
Gilb@acm.org, 2000

Slide 33

Potentially Negative Motivators
in bad Inspection practice

• Time Pressure

• Result Pressure

• Personal Attacks

• Bureaucracy

• Small-minded Leader

• Personal-fault blaming

• Process corruption

• High volume/cleanup

10 Powerful Principles. ©
Gilb@acm.org, 2000

Slide 34

Motivational Philosophy
• Intelligent Inspection

• Maximum Leverage

• Process causes Defects

• Trust people

• Empower people

• Allow experiment

• Let results decide

• Continuously improve

18

10 Powerful Principles. ©
Gilb@acm.org, 2000

Slide 35Gary's Personal Learning
(to follow process) Curve

(Douglas Aircraft, 1988, private report)

4 Cognizant Engineer Gary
was” document author”

at points 1 to 5
Experience as Checker

•0
1 2 3 5

80

40
23
8

•

•
••

Issues
Identified

•

10 Powerful Principles. ©
Gilb@acm.org, 2000

Slide 36

THE BUSINESS IMPACT OF
REACHING

CMU/SEI LEVEL 5
Roger G. Fordham

Ex Managing Director

“The Senate”, No. 33A, Ulsoor Road
Bangalore-560 042, India

Ph: +91-80-559-8866; Fx: +91-80-559-8843
Visited by Gilb March 2000

Slides July 1996 Given Gilb by Fordham 1999

Motorola India Electronics Ltd.

19

10 Powerful Principles. ©
Gilb@acm.org, 2000

Slide 37

MIEL ~ THE EXPERIMENT

Org Structure
Training

Reinforcement

Communication
Rewards &
Recognition

Continuous improvement

ORGANIZATIONAL VALUE SYSTEM & MANAGEMENT COMMITMENT

Motorola India Electronics Ltd.

10 Powerful Principles. ©
Gilb@acm.org, 2000

Slide 38

CONCLUSION
• Benefits of a well-controlled process in terms of

quality, productivity and cycle time are very
apparent.

• Developing software across an ocean can be
done in no other better way.

• Process maturity provides a sense of self-esteem
for individuals.

• Process ownership has to lie with the decision
makers.

• Complete commitment, cooperation &
participation from all levels of management
required.

Motorola India Electronics Ltd.

20

10 Powerful Principles. ©
Gilb@acm.org, 2000

Slide 39

• Process maturity requires an open & mature
culture.

• Fear of making / admitting failures should not
exist, however all failures should provide lessons
learnt & same mistakes should not be repeated.

• Involvement wears out resistance.

• Empowerment is key to process maturity. It must
be tempered with explicit bounds on what
employees can & cannot address.

• Long term cost benefit orientation will help in
directing organizational change.

CONCLUSION(2)
Motorola India Electronics Ltd.

10 Powerful Principles. ©
Gilb@acm.org, 2000

Slide 40

RESULTS (1 of 2)

• LINES OF CODE RELEASED IN 1995
- OVER 3 MILLION

• PRODUCTIVITY
- 2 TIMES THE INDUSTRY AVERAGE

• POST-RELEASE QUALITY
- 190 TIMES INDUSTRY AVERAGE*
– (they had 2 bugs in 800,000 LOC!, TG)

• 85% OF PROJECTS ARE DELIVERED ON SCHEDULE
• CUSTOMER SATISFACTION HAS BEEN CONSISTENTLY

BETWEEN GOOD & EXCELLENT.

Motorola India Electronics Ltd.

* US AVERAGE POST
RELEASE DEFECTS OF
0.75 DEFECTS/FUNCTION
POINT
(6 DEFECTS/1024LOC) Industry average

SOURCE: CAPERS JONES

21

10 Powerful Principles. ©
Gilb@acm.org, 2000

Slide 41

RESULTS (2)
• BUILT BASELINES OF PRODUCTIVITY & DEFECT

DENSITY FOR ELEVEN CATEGORIES OF
PROJECTS.

• HAVE ACHIEVED BETTER THAN 20%
ACCURACY FOR DEFECT PROJECTIONS 50% OF
THE TIME

• BUILT SUFFICIENT HISTORICAL DATA FOR A
BETTER REFINEMENT OF THE REGRESSION
MODEL.

• BUSINESS HAS GROWN 300% IN THE LAST 5
YEARS.

10 Powerful Principles. ©
Gilb@acm.org, 2000

Slide 42

7. Process Improvement

• Eternal Process improvement is necessary
as long as you are in competition
– Paraphrasing Deming about PDSA cycle end.

22

10 Powerful Principles. ©
Gilb@acm.org, 2000

Slide 43

10 Powerful Principles. ©
Gilb@acm.org, 2000

Slide 44Process
BrainstormingThe Road To Wisdom : Piet Hein

"The road to wisdom

is plain and simple to express,

to err, and err, and err again,

but,

less, and less, and less."

Piet Hein,
 (Danish Philosopher

23

10 Powerful Principles. ©
Gilb@acm.org, 2000

Slide 45Process
BrainstormingThe PB Process

• Team Stays together after
‘Logging’
– Same room
– Same people

– Maybe a break first
– Same documents

– Up to half an hour

• Shift mentality!
– Not the project

– The process, our organization
– How we feel it can be improved

for us

– So we are not ‘forced’ to make
mistakes

Quick Break from Logging

Leader Picks a real Sample Major Issue
from Log, tells Team (1 min)

Team Brainstorms ‘Root
Cause’ (1 min)

Team Brainstorms ‘Cause
Cure’ (1 min)

10 Powerful Principles. ©
Gilb@acm.org, 2000

Slide 46

The P.B. Log

• Brainstorming Rules: no criticism, flow ideas in

• Getting ‘Grass Roots’ opinions, investigation later

Item Issue Classify Root Causes Improvement
Suggestions

1 10 Oversight • Time pressure
• no tools
• no info

• optimum time
• build tool
• give info on PC

2 8 Education • trainees don’t
know
• manual not
updated

• special meeting
for trainees
• manual on Web

3 3 Commun-
ication

• authors are
unknown

• publish their
email on doc. head

Process
Brainstorming

24

10 Powerful Principles. ©
Gilb@acm.org, 2000

Slide 47Defect Prevention Process within ‘Inspection’

Inspection Process

Quality
Assurance
Database

Field
Operation
Fault Data

Product
Testing

 & Fixing
Fault Data

Select Improvement Target
 (Pareto analysis)

Delegate Analysis and Design of Improvement
to ‘Process Investigators’

Evaluate Effect of Trial Improvements
on real project

Spread Improvements with your
organization

See ‘Software Inspection’ Chapters 7 and 17 for detail.

Process
Brainstorming

10 Powerful Principles. ©
Gilb@acm.org, 2000

Slide 48

• Brainstormed suggestions
– Are input to Process

Improvement Teams.
– Are part of the inputs

• & cost of defect data
• & frequency of defect.

– PB Insights are
• Accurate
• Decentralized

• Real time
• Socially acceptable

• Proven (Mays) to work better
than centralized efforts
(Fagan’s Method 1973)

Process
BrainstormingThe Process Brainstorming Aftermath

Item Issue Classify Root Causes Improvement
Suggestions

1 10 Oversight • Time pressure
• no tools
• no info

• optimum time
• build tool
• give info on PC

2 8 Education • trainees don’t
know
• manual not
updated

• special meeting
for trainees
• manual on Web

3 3 Commun-
ication • authors are

unknown
• publish their
email on doc. head

Item Issue Classify Root Causes Improvement
Suggestions

1 10 Oversight • Time pressure
• no tools
• no info

• optimum time
• build tool
• give info on PC

2 8 Education • trainees don’t
know
• manual not
updated

• special meeting
for trainees
• manual on Web

3 3 Commun-
ication • authors are

unknown
• publish their
email on doc. head

Quality
Assurance
Database

25

10 Powerful Principles. ©
Gilb@acm.org, 2000

Slide 49

8. Persistence

• Years of persistence are necessary to
change a culture.

• W. Edwards Deming
– It takes 2-3 years to change a project, and a

generation to change a culture

• Piet Hein (Denmark)
– Things Take Time (TTT)

10 Powerful Principles. ©
Gilb@acm.org, 2000

Slide 50

Secrets of Software Quality
Software Quality Week

Craig Kaplan, Ph.D.

ckaplan@iqco.com
I.Q. Company

http:\\www.iqco.com

1

26

10 Powerful Principles. ©
Gilb@acm.org, 2000

Slide 51

20% Savings on Service Costs
Note the 4 year time perspective.

0%
2%
4%
6%
8%

10%
12%
14%
16%
18%
20%

% Savings
in Service

Costs

1990 1991 1992 1993

Cost Savings at IBM
STL

Source: Secrets of Software Quality by Kaplan, Clark, & Tang (McGraw-Hill 1995)

10 Powerful Principles. ©
Gilb@acm.org, 2000

Slide 52

56% Increase in
Revenue per Employee

0%

20%

40%

60%

80%

100%

120%

140%

160%

% 1989
Baseline

1989 1990 1991 1992

Revenue per Employee at
IBM STL

Source: Secrets of Software Quality by Kaplan, Clark, & Tang (McGraw-Hill 1995)

27

10 Powerful Principles. ©
Gilb@acm.org, 2000

Slide 53

14% Improvement in
 Customer Satisfaction

85%
90%

95%

100%
105%

110%
115%

% of 1991
Baseline

1991 1992 1993

IBM STL
Competitors

Source: Secrets of Software Quality by Kaplan, Clark, & Tang (McGraw-Hill 1995)

10 Powerful Principles. ©
Gilb@acm.org, 2000

Slide 54

46% Reduction in Field Defects

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%

100%

% of 1989
Baseline

1989 1991 1993

Defects at IBM
STL

Source: Secrets of Software Quality by Kaplan, Clark, & Tang (McGraw-Hill 1995)

28

10 Powerful Principles. ©
Gilb@acm.org, 2000

Slide 55Raytheon 95 Software Productivity 2.7X better.
Note the 5 years to peak time perspective.

+

170%

Productivity

1988 1994

Thursday, October 12, 2000 10 Powerful Principles. ©
Gilb@acm.org, 2000

56

Slide 56
Achieving Project Predictability: Raytheon 95:

This miracle took almost 2 years

140%

100%

1988 19941990

Cost At Completion / Budget %

29

10 Powerful Principles. ©
Gilb@acm.org, 2000

Slide 57Overall Product Quality: Raytheon 95
Defect Density Versus Time: 3 times better.

This took about 4 years.

 Source:http://www.sei.cmu.edu/products/publications/95.reports/95.tr.017.html

17 defects per 1000
source instructions

10 Powerful Principles. ©
Gilb@acm.org, 2000

Slide 58

9. Multiple Impacts

• Any method you choose will have multiple
quality and cost impacts, whether you like
them or not!
– We need to estimate all impacts on our

objectives

– We need to reduce or accept negative impacts

– We must avoid simplistic one-dimensional
arguments

30

10 Powerful Principles. ©
Gilb@acm.org, 2000

Slide 59

Next-Step Candidate A:
{Design-X, Function-Y}

Next-Step Candidate B:
{Design Z, Design F}

Reliability 99%-
99.9%

50% 100%

Performance 11sec.-1
sec.

80% 30%

Usability 30 min.-30
sec.

-10% 20%

Capital Cost 1 mill. 20% 5%
Engineering Hours
10,000

2% 10%

Performance/Capital
Cost Ratio

80/20= 4.0 30/5= 6.0

Quality/Cost Ratio 120/22=5.46 150/15=10.00

Single next Step Comparison Table
Evaluating multiple impact to decide which step to deliver first.

For written details of Impact Estimation
method: see Competitive Engineering, free at
www.result-planning.org and available from
Addison Wesley

10 Powerful Principles. ©
Gilb@acm.org, 2000

Slide 60

Step Candidate A:
{Design-X, Function-Y}

Step Candidate B:
{Design Z, Design F}

Reliability
99%-99.9%

50% ±50% 100% ±20%

Performance
11sec.-1 sec.

80% ±40% 30% ±50%

Usability
30 min.-30 sec.

-10% ±20% 20% ±15%

Capital Cost
1 mill.

20% ±1% 5% ±2%

Engineering Hours
10,000

2% ±1% 10% ±2.5%

Worst Case B/C
ratio

(1 to 3)

(0+40-30)/(21+3) =0.42 (80-20+5)/(7+12.5) =3.33

Best Case B/C
ratio

(100+120+10)/(19+1) = 11.5 (120+80+35)/(3+7.5)= 22.38

Risk Analysis for each Step
Which is ‘best’ when risk is considered, on multiple

qualities and costs?

31

10 Powerful Principles. ©
Gilb@acm.org, 2000

Slide 61

Step Candidate A:
{Design-X, Function-Y}

Step Candidate B:
{Design Z, Design F}

Reliability 99%-99.9% 50% ±50% 100% ±20%
Performance 11sec.-1
sec.

80% ±40% 30% ±50%

Usability 30 min.-30
sec.

-10% ±20% 20% ±15%

Capital Cost 1 mill. 20% ±1% 5% ±2%
Engineering Hours
10,000

2% ±1% 10% ±2.5%

Worst Case B/C ratio (0+40-30)/(21+3) =0.42 (80-20+5)/(7+12.5) =
3.33

“Worst Worst” case
considering estimate
credibility factor

0.8 x 0.42= 0.33 0.2 x 3.33= 0.67

A’s Credibility=0.8

(High)

B’s Credibility=0.2

(Low)

Step Choice with ‘Credibility’
Evaluating multiple impacts with respect to
experience spread and evidence credibility.

10 Powerful Principles. ©
Gilb@acm.org, 2000

Slide 62

10. Results Orientation

• You must keep your focus on the essential
results, and never fall victim to the means.

• “Perfection of means and confusion of ends
seem to characterize our age”
– Albert Einstein.

32

10 Powerful Principles. ©
Gilb@acm.org, 2000

Slide 63

1

Software Engineering Productivity Study

lAn example of setting objectives for
process improvement

lFor 1997 Multinational Electronics
Company with 70% software labor
development content in products

l Copyright Tom Gilb, Gilb@acm.org, 1997-2000

10 Powerful Principles. ©
Gilb@acm.org, 2000

Slide 64

4

Levels of objectives.
– 1. Fundamental Objectives (above us)
– 2. Generic Constraints (our given framework)

• Political Practical

• Design Strategy Formulation Constraints

• Quality of Organization Constraints

• Cost/Time/Resource Constraints

– 3. Strategic Objectives (objectives at our level)

– 4. Means Objectives: (supporting our objectives)

33

10 Powerful Principles. ©
Gilb@acm.org, 2000

Slide 65

5

Strategic Objectives

– Support the Fundamental Objectives
(Profit, survival)
• Software Productivity: Lines of Code

Generation Ability

• Lead-Time:

• Predictability.

• TTMP: Predictability of Time To Market:

• Product Attributes:

• Customer Satisfaction:

• Profitability:

10 Powerful Principles. ©
Gilb@acm.org, 2000

Slide 66

11

Predictability of Time To Market:
A sample strategic objective

• TTMP: Predictability of Time To Market:
» Gist: From Ideas created to customers can use it. Our ability to meet agreed

specified customer and self-determined targets.

• Scale: % overrun of actual Project Time compared to planned
Project Time

– Project Time: Defined: time from the date of Toll-Gate 0 passed, or other Defined Start Event,
to, the Planned- or Actually- delivered Date of All [Specified Requirements], and any set of agreed
requirements.

– Specified Requirements: Defined: written approved Quality requirements for products with respect
to Planned levels and qualifiers [when, where, conditions].
And, other requirements such as function, constraints and costs.

• Meter: Productivity Project or Process Owner will collect data from all
projects, or make estimates and put them in the Productivity Database for
reporting this number.

• Past [1994, A-package] < 50% to 100%> <- Palli K. guess.
[1994, B-package] 80% ?? <- Urban Fagerstedt and Palli K. guess

• Record [IBM Federal Systems Division, 1976-80] 0%
<- RDM 9.0 quoting Harlan Mills in IBM SJ 4-80

• “all projects on time and under budget”
• [Raytheon Defense Electronics, 1992-5] 0% <- RDE SEI Report 1995

Predictability.
• Must [All future projects, from 1999] 5% or less <- discussion level TG
• Plan [All future projects, from 1999] 0% or less <- discussion level TG

34

10 Powerful Principles. ©
Gilb@acm.org, 2000

Slide 67

6

Means Objectives:

– Support the Strategic Objectives

• Complaints:
• Feature Production:
• Rework Costs:
• Installation Ability:
• Service Costs:
• Training Costs:
• Specification Defectiveness:
• Specification Quality:
• Improvement ROI:

10 Powerful Principles. ©
Gilb@acm.org, 2000

Slide 68

17

Complaints:
a sample ‘means’ objective

– Complaints:
• "Customer complaint rate to us"

– Gist:
• Means Goal: for Customer Satisfaction (Strategic).

– Scale: number of complaints per customer in
[defined time into <operation>]

– Past [Syracuse Project , 1997] ?? <bad> <- ML
– Plan [Long term, software component, in first 6

months in Operation] zero complaints <- R
PROJECT 96 1.1 b

– "zero complaints on software features"

35

10 Powerful Principles. ©
Gilb@acm.org, 2000

Slide 69

7

Strategies
Intended to impact strategic objectives

– (means to achieve objectives)

– Evo [Product development]:(serious)

– DPP [Product Development Process]:
Defect Prevention Process.

– Inspection?

– Motivation.Stress-Management-AOL

– Motivation.Carrot

– DBS

– Automated Code Generation

– Requirement -Tracability

– Competence Management

– Delete-Unnecessary -Documents

– Manager Reward:?

– Team Ownership:?

– Manager Ownership:?

• Training:?

• Clear Common Objectives:

• Application Engineering area:

• Brainstormed List (not
evaluated or prioritized yet)?

• Requirements Engineering:

• Brainstormed Suggestions?

• Engineering Planning:

• Process Best Practices: (silly)

• Brainstormed Suggestions?

• Push Button Deployment:

• Architecture Best Practices:

• Stabilization:

• World-wide Co-operation?

A mixture of silly and serious
strategies! 2 examples given.

10 Powerful Principles. ©
Gilb@acm.org, 2000

Slide 70
US Army Example: PERSINSCOM

STRATEGIES è

OBJECTIVES

Technolog

y
Investment

Business

Practice
s

People Empow

-erment

Principles
of IMA
Management

Business

Process
Re-

engineering

SUM

Customer Service

?è0 Violation of agreement

50% 10% 5% 5% 5% 60% 185%

Availability

90% è 99.5% Up time

50% 5% 5-10% 0 0 200% 265%

Usability
200 è 60 Requests by

Users

50% 5-10% 5-10% 50% 0 10% 130%

Responsiveness

70% è ECP’s on time

50% 10% 90% 25% 5% 50% 180%

Productivity

3:1 Return on Investment

45% 60% 10% 35% 100% 53% 303%

Morale

72 è 60 per mo. Sick
Leave

50% 5% 75% 45% 15% 61% 251%

Data Integrity

88% è 97% Data Error %

42% 10% 25% 5% 70% 25% 177%

Technology Adaptability

75% Adapt Technology

5% 30% 5% 60% 0 60% 160%

Requirement Adaptability

? è 2.6% Adapt to Change

80% 20% 60% 75% 20% 5% 260%

Resource Adaptability

2.1M è ? Resource
Change

10% 80% 5% 50% 50% 75% 270%

Cost Reduction

FADS è 30% Total
Funding

50% 40% 10% 40% 50% 50% 240%

SUM IMPACT FOR
EACH SOLUTION

482% 280% 305% 390% 315% 649%

Money % of total budget 15% 4% 3% 4% 6% 4%

Time % total work
months/year

15% 15% 20% 10% 20% 18%

SUM RESOURCES 30 19 23 14 26 22
BENEFIT/RESOURCES

RATIO

16:1 14:7 13:3 27:9 12:1 29:5

36

10 Powerful Principles. ©
Gilb@acm.org, 2000

Slide 71Sample of Objectives/Strategy definitions

Example of a real Impact Estimation table from a Pro-Bono Client (US DoD, US Army, PERSINSCOM).
Thanks to the Task Force, LTC Dan Knight and Br. Gen. Jack Pallici for full support in using my methods.

Source: Draft, Personnel Enterprise, IMA End-State 95 Plan, Vision 21, 2 Dec. 1991. “Not procurement sensitive”.

Example of one of the Objectives:

Customer Service:
Gist: Improve customer perception of quality of service provided.

Scale: Violations of Customer Agreement per Month.
Meter: Log of Violations.
Past [1991] Unknown Number çState of PERSCOM Management Review
Record [NARDAC] 0 ? ç NARDAC Reports 1991

Must : <better than Past, Unknown number> çCG
Plan [1991, PERSINCOM] 0 “Go for the Record” ç Group SWAG

Technology Investment:
Exploit investment in high return technology. Impacts: productivity, customer service and conserves resources.

An example of one of the strategies defined.

• Example of one of the Objectives:

Customer Service:

Gist: Improve customer perception of quality of service provided.

Scale: Violations of Customer Agreement per Month.

Meter: Log of Violations.

Past [1991] Unknown Number çState of PERSCOM Management Review

Record [NARDAC] 0 ? ç NARDAC Reports 1991

Must : <better than Past, Unknown number> çCG

Plan [1991, PERSINCOM] 0 “Go for the Record” ç Group SWAG

Technology Investment:

Exploit investment in high return technology.

Impacts: productivity, customer service and conserves resources.

• An example of one of the strategies defined.

10 Powerful Principles. ©
Gilb@acm.org, 2000

Slide 72

The summary principle

Motivate people

towards real results

by giving them numeric
feedback frequently

and the ability to change
anything for success.

37

10 Powerful Principles. ©
Gilb@acm.org, 2000

Slide 73

 SOFTWARE POLICY

• (suggestion, draft)

• Version SEPTEMBER 20 2000

• OWNER:

• Editor: Gilb@acm.org. Detailed practical technical
background for this draft see www.result-planning.com
and especially ‘Priority Management’ (116 pages
manuscript).

10 Powerful Principles. ©
Gilb@acm.org, 2000

Slide 74

Purpose:

• to define a powerful framework
– for improving your organization’s ability
– to improve their software organization’s

capability,
– as defined in their quantified objectives.

• Constraint:
– this policy should never exceed one physical page, to

keep it focussed.

38

10 Powerful Principles. ©
Gilb@acm.org, 2000

Slide 75

.STAKEHOLDER VALUE:
• For all software and systems engineering projects

– we will formally identify all critical stakeholders, internal and
external.

– We will identify their critical and profitably-served requirements.
– The requirements will be testable and, if variable,

• they will be quantified.

– Delivering this defined value to these stakeholders
• will be the primary focus and measure

• of all product development process activity.

• Rationale: to focus our efforts on critical needs, listen to ‘voice of
stakeholders’.

10 Powerful Principles. ©
Gilb@acm.org, 2000

Slide 76

.ENDS/MEANS CLARITY:
• project requirements will focus on the real ‘stakeholder-

perceived value’ as the ‘requirements’.
– They will NOT allow design or strategy to replace the real

stakeholder needs.
– Requirements and design to meet those requirements will be

rigorously separated

• in terms of project specification and work processes.

• Rationale:

– extreme clarity of real needs,

– never confusing this with technology with good intent.

– Help engineers to focus efforts on serving and competing on the
market.

39

10 Powerful Principles. ©
Gilb@acm.org, 2000

Slide 77.NUMERIC CLARITY:
• all notions of qualities (stakeholder values) and costs will

– in all contexts (requirements, design impacts, project progress, contracts with
customers and suppliers)

– be expressed in terms of numeric levels on defined scales of measure,

– and measured in practice with defined ‘Meters’.
– If it varies, if you can say ‘improved’,

• then you must convert these ideas into numbers
• on defined scales of measure,
• which become the language of the project.

• Rationale:

– we must have perfect clarity of the stakeholder-critical values,

– and numeric definition is the ONLY acceptable way to do that.

– This is necessary for multinational communication.

– This saves time to market, human resource and will more effectively target our
stakeholder values.

– It allows feedback and correction processes to operate.

10 Powerful Principles. ©
Gilb@acm.org, 2000

Slide 78.NUMERIC DEVELOPMENT PROGRESS:

• the primary instrument for tracking development progress will be
– the numeric progress for defined stakeholder values (product and service

qualities)
• towards defined and agreed targets,
• with respect to time.

– A secondary set of measures will be with respect to the costs or resources
planned.

• Rationale:

– this management tracking concept is intended to allow projects to monitor
their own progress realistically,

– using the same measures which any other level of managers would use to
judge them.

– It is intended to be the main component for discussion and evaluation for any
meeting, review, milestone or judgement.

– It should replace conventional milestone progress reporting.

40

10 Powerful Principles. ©
Gilb@acm.org, 2000

Slide 79

.WORK PROCESS
ENTRY/EXIT CONTROL:

• All software engineering specifications (from contract to code)
– will be subject to formal entry and exit control.
– This is primarily numeric and based on ‘Major defects remaining’ levels,

• i.e. economic suitability for downstream work processes.
• Default level maximum 1 major defect remaining per page.

• Rationale:

– to make sure that poor specification practices do not

• pollute downstream activity,

• and threaten time to market, human resources or product quality.

Work Process NEXT Work Process
ExitEntry

The Ten Most Powerful Principles for Quality in
(Software and) Software Organizations

Tom Gilb, Result Planning Limited.

QWE Wednesday 22nd Nov 2000

Summary:
Software knows it has a problem. Solutions abound. But which solutions work? What are
the most fundamental underlying principles we can observe in successful projects? This
paper presents10 powerful principles that are not widely taught or appreciated. They are
based on ideas of measurement, quantification and feedback. Our maturity level with
respect to 'numbers' is known to be poor. Hopefully, as we move to higher maturity levels
we will also begin to appreciate the power of measurement and numeric expression of idea.
What can we do right now? I suggest the first step is to recognize that all your quality
requirements can and should be specified numerically. I am not talking about 'counting
bugs'. I am talking about quantifying qualities such as security, portability, adaptability,
maintainability, robustness, usability, reliability and performance. Decide to make them
numeric on your project. Draft some numeric requirements today, surprise your team
tomorrow!

Tom Gilb, Result Planning Limited.
www.Result-Planning.com. Email: Gilb@acm.org

Introduction

All projects have some degree of failure, compared to initial plans and promises. Far too many software
projects fail totally. In the mid 1990s, the US Department of Defense estimated that about half of their software
projects were total failures! (Source N Brown). The civil sector is no better (Morris, 1995). So what can be
done to improve project success? This paper outlines ten key principles of successful software development
methods, which characterize best practice.
These 10 most powerful software quality principles are selected because there is practical experience showing
that they really get us control over qualities, and over the costs of qualities. They have a real track record. This
record often spans decades of practice in companies like IBM, HP and Raytheon. There is nothing 'new' about
them. They are classic. But the majority of our community is young and experientially new to the game, so my
job is to remind us of the things that work well. Your job is to evaluate this information and start getting the
improvements your management wants in terms of quality and the time and effort needed to get it.
"Those who do not learn from history, are doomed to repeat it" (Santayana, 1903, The Life of Reason).

Principle 1: Use Feedback
Experience of formal feedback methods is decades old, and many do appreciate their power. However, far too
many software engineers and their managers are still practicing low-feedback methods, such as Waterfall
project management (also known as Big Bang, Grand Design). Far too many also are checking the quality of
their systems by relying on testing, ‘late in the day’, when they have finished producing their entire system.
Even many textbooks and courses continue to present low-feedback methods. This is not from conscious
rejection of high-feedback methods, but from ignorance of the many successful and well-documented projects,
which have detailed the value of feedback.
Methods using feedback succeed; those without seem to fail. ‘Feedback’ is the single most powerful principle
for software engineering. (Most of the other principles in this paper are really ideas, which support the use of
feedback.) Feedback helps you get better control of your project by providing facts about how things are
working in practice. Of course, the presumption is that the feedback is early enough to do some good. This is
the crux: rapid feedback. We have to have the project time to make use of the feedback (for example, to
radically change direction, if that is necessary). Some of the most notable rapid high-feedback methods include:

Defect Prevention Process [originated Mays and Jones, IBM 1983] The Defect Prevention Process (DPP)
equates to Software Engineering Institute CMM Level 5 as practiced at IBM from 1983-1985 and on. See
(Mays, 1993). DPP is a successful way to remove the root causes of defects. In the short term (a year) about
50% defect reduction can be expected; within 2-3 years, 70% reduction (compared to original level) can be
experienced and over a 5-8 year timeframe, 95% defect reduction is possible (Sources: IBM Experience,
Raytheon Experience (Dion, 1995)).
The key feedback idea is to ‘decentralize’ the initial causal analysis activity investigating defects to the grass
roots programmers and analysts. This gives you the true causes and acceptable, realistic change suggestions.
Deeper ‘cause analysis’ and ‘measured process-correction’ work can then be undertaken outside of deadline-
driven projects by the more specialized and centralized Process Improvement Teams.
The feedback mechanisms are many. For example, same-day feedback is obtained from the people working
with the specification and, early numeric process change-result feedback is obtained from the Process
Improvement Teams.

Inspection [originated Fagan, IBM 1975] The Inspection method originated in IBM in work carried out by M.
Fagan, H. Mills (‘Cleanroom’) and R. Radice (CMM inventor). It was originally primarily focussed on bug
removal in code and code design documents. Many continue to use it in this way today. However, Inspection
has changed character in recent years. Today, it can be used more cost-effectively by focussing on measuring
the Major defect level (software standards violations) in sample areas (rather than processing the entire
document) of any software or upstream marketing specifications (Gilb, 1993). The defect level measurement
should be used to decide whether the entire specification is fit for release (exit) downstream to be used, say for
a ‘go/no-go’ decision-making review or for further refinement (test planning, design, coding).
The main Inspection feedback components are:
• feedback to author from colleagues regarding compliance with software standards.
• feedback to author about required levels of standards compliance in order to consider their work releasable.

Evolutionary Project Management [originated large scale within ‘Cleanroom’ methods, Mills, IBM 1970]
Evolutionary Project Management (Evo) has been successfully used on the most demanding space and military
projects since 1970 (Mills, 1980; May 1996; Cotton 1996; Gilb 1988; Gilb 2000). The US Department of
Defense changed their software engineering standard (2167a) to an Evo standard (MIL-STD-498, which
derived succeeding public standards (for example, IEEE)). The reports (op. cit.) and my own experience, is that
Evo results in a remarkable ability to delivery on time and to budget, or better, compared to conventional
project management methods (Morris, 1994).
An Evo project is consciously divided up into small, early and frequently delivered, stakeholder result-focussed
steps. Each step delivers benefit and build towards satisfaction of final requirements. Step size is typically
weekly or 2% of total time or budget. This results in excellent regular and realistic feedback about the team’s
ability to deliver meaningful measurable results to selected stakeholders. The feedback includes information on
design suitability, stakeholders’ reaction, requirements’ tradeoffs, cost estimation, time estimation, people
resource estimation, and development process aspects.

Statistical Process Control [originated Shewhart, Deming, Juran: from 1920’s] Statistical Process Control
(SPC) although widely used in manufacturing (Deming, 1986) is only to a limited degree actually used in
software work. Some use is found in advanced Inspections (Dion, 1995; Florac, 1997). The Plan Do Study (or
Check) Act cycle is widely appreciated as a fundamental feedback mechanism.

Principle 2: Identify Critical Measures
It is true of any system, that there are several factors, which can cause a system to die. It is true of your body,
your organization, your project and your software or service product. Managers call them ‘Critical Success
Factors.’ If you analyzed systems looking for all the critical factors, which caused shortfalls or failures, you
would get a list of factors needing better control. They would include both stakeholder values (such as
serviceability, reliability, adaptability, portability and usability) and the critical resources needed to deliver
those values (such as people, time, money and data quality).You would find, for each of these critical factors, a
series of faults, which would include:

• failure to systematically identify all critical stakeholders and their critical needs
• failure to define the factor measurably. Typically, only buzzwords are used and no indication is given of the
survival failure) and target (success) measures
• failure to define a practical way to measure the factor
• failure to contract measurably for the critical factor
• failure to design towards reaching the factor’s critical levels
• failure to make the entire project team aware of the numeric levels needed for the critical factors
• failure to maintain critical levels of performance during peak loads or on system growth.
Our entire culture and literature of ‘software requirements’ systematically fails to account for the majority of
critical factors. Usually, only a handful, such as performance, financial budget and deadline dates are specified.
Most quality factors are not defined quantitatively at all. In practice, all critical measures should always be
defined with a useful scale of measure. However, people are not trained to do this, and managers are no
exception. The result is that our ability to define critical ‘breakdown’ levels of performance and to manage
successful delivery is destroyed from the outset.

Principle 3: Control Multiple Objectives
You do not have the luxury of managing qualities and costs at whim. You cannot decide for a software project
to manage just a few of the critical factors, and avoid dealing with the others. You have to deal with all the
potential threats to your project, organization or system. You must simultaneously track and manage all the
critical factors. If not, then the ‘forgotten factors’ will probably be the very reasons for project or system
failure.

Table 1: An example of an IE table.

I have developed the Impact Estimation (IE) method to enable tracking of critical factors, but it does rely on
critical objectives and quantitative goals having been identified and specified. Given that most software
engineers have not yet learned to specify all their critical factors quantitatively (Principle 2), this next step,
tracking progress against quantitative goals (this principle), is usually impossible.
IE is conceptually similar to Quality Function Deployment (Akao, 1990), but it is much more objective and
numeric. It gives a picture of reality that can be monitored (Gilb, 1988, Gilb, 2000). See Table 1, an example of
an IE table. It is beyond the scope of this paper to provide all the underlying detail for IE. To give a brief
outline, the percentage (%) estimates (see Table 1) are based, as far as possible, on source-quoted, credibility
evaluated, objective documented evidence. IE can be used to evaluate ideas before their application, and it can
also be used (as in Table 1) to track progress towards multiple objectives during an Evolutionary project. In
Table 1, the ‘Actual’ and ‘Difference” and ‘Total’ numbers represent feedback in small steps for the chosen set

S tep #1
P lan
A :
{D es ign -
X ,
F u n c tio n
-Y}

S tep
#1
Ac tual

D if fere
-n ce .
 - i s
bad
+ is
good

T otal
S tep 1

S tep #2
P lan
 B :
{D es ign
Z ,
De sig n
F }

S tep #2
Ac tual

S tep #2
D if fere -
n ce

T otal
S tep
1 + 2

S tep #3
Ne xt
s te p
pla n

Re liabil -
ity
99%-
99.9%

50%
± 50%

40% -10% 40% 30%
± 20%

20% -10% 60% 0%

P er fo rm
-an ce
11 s ec .-1
sec .

80%
± 40%

40% -40 40 30%
± 50%

30% 0 70% 30%

U sabili ty
30 mi n .
-30 se c.

10%
± 20%

12% + 2% 12% 20%
± 15%

5% -15% 17% 83%

C apital
C ost
 1 mill.

20%
± 1%

10% + 10% 10% 5%
± 2%

10% -5% 20% 5%

E ngin ee
-r ing
Hou rs
10,000

2%
± 1%

4% -2% 4% 10%
± 2.5%

3% + 7% 7% 5%

C al end-
a r Tim e

1 we ek 2
we ek s

-1 wee k 2
we ek s

1 we ek 0.5
we ek s

+ 0.5
w k

2.5
we ek s

1 we ek

of critical factors that management has decided to monitor. If the project is deviating from plans, this will be
easily visible and can be corrected on the next step.

Principle 4: Evolve in small steps
Software engineering is by nature playing with the unknown. If we already had exactly what we needed, we
would re-use it. When we choose to develop software, there are many types of risk, which threaten the result.
One way to deal with this is to tackle development in small steps, one step at a time. If something goes wrong,
we will immediately know it. We will also have the ability to retreat to the previous step, a level of satisfactory
quality, until we understand how to progress again.
It is important to note that the small steps are not mere development increments. The point is that they are
incremental satisfaction of identified stakeholder requirements. Early stakeholders might be salespeople
needing a working system to demonstrate, system installers/help desk/service/testers who need to work with
something, and finally, early trial users.
The duration of each small step is typically a week or so. The smallest widely reported steps are the daily
builds used at Microsoft, which are useful-quality systems. They cumulate to 6-10 week ‘shippable quality’
milestones (Cusomano, 1995).

Figure 1: From Woodward99: One advantage of Evo is that you can focus on delivering high value increments to critical
stakeholders early. The upper line represents high value at early stages.

Principle 5: A stitch in time saves nine
Quality Control must be done as early as possible, from the earliest planning stages, to reduce the delays caused
by finding defects later. There needs to be strong specification standards (such as ‘all quality requirements must
be quantified’) and rigorous checking to measure that the rules are applied in practice. When the specifications
are not of some minimum standard (like < 1 Major defect/page remaining) then they must be edited until they
become acceptable.
• Use Inspection sampling to keep costs down, and to permit early, before specification completion,

correction and learning.
• Use numeric Exit from development processes, such as “Maximum 0.2 Majors per page”.
It is important that quality control by Inspection be done very early for large specifications, for example within
the first 10 pages of work. If the work is not up to standard then the process can be corrected before more effort
is wasted. I have seen half a day of Inspection (based on a random sample of 3 pages) show that there were
about 19 logic defects per page in 40,000 pages of air traffic control logic design (1986, Sweden). The same

1 3 4 52 6 8 10 12 14 222018161197 15 17 19 2113

For Evolutionary Project: Benefit / Cost
For Evolutionary Project: Cumulative Delivered Functionality
For Waterfall Project: Benefit / Cost
For Waterfall Project: Cumulative Delivered Functionality

Project Months

managers, who had originally ‘approved’ the logic design for coding carried out the Inspection with my help.
Needless to say the project was seriously late.
In another case I facilitated (USA, 1999, Jet parts supplier) eight managers sampled two pages out of an 82
page requirements’ document and measured that there were 150 ‘Major’ defects per page. Unfortunately they
had failed to do such sampling three years earlier when their project started, so they had already experienced
one year of delay; and told me they expected another year delay while removing the injected defects from the
project. This two-year delay was accurately predictable given the defect density they found, and the known
average cost from Major defects. They were amazed at this insight, but agreed with the facts. In theory, they
could have saved two project years by doing early quality control against simple standards: clarity,
unambiguous and no design in requirements were the only rules we used.
These are not unusual cases. I find them consistently all over the world. Management frequently allows
extremely weak specifications to go unchecked into costly project processes. They are obviously not managing
properly.

Principle 6: Motivation moves mountains
Motivation is everything! When individuals and groups are not motivated positively. They will not move
forward. When they are negatively motivated (fear, distrust, suspicious) they will resist change to new and
better methods. Motivation is a type of method. In fact there are a lot of large and small items contributing to
your group’s ‘sum of motivation’. We can usefully divide the ‘motivation problem’ into four categories:

• the will to change
• the knowledge of change direction
• the ability to change
• the feedback about progress in the desired change direction.

Leaders (I did not say ‘managers’) create the will to change by giving people a positive, fun, challenge and, the
freedom and resources to succeed. John Young, CEO of Hewlett Packard during the 1980’s, inspired his troops
by saying that he thought they needed to aim to be measurably ten times better in service and product qualities
(“10X”) by the end of the decade (1980-1989). He did not demand it. He supported them in doing it. They
failed. Slightly! They reported getting about 9.95 times better, on average, in the decade. The company was
healthy and competitive during a terrible time for many others, such as IBM.
The knowledge of change direction is critical to motivation; people need to channel their energies in the right
direction! In the software and systems world, this problem has three elements, two of which have been
discussed in earlier principles:
• measurable, quantified clarity of the requirements and objectives of the various stakeholders (Principle 2)
• knowledge of all the multiple critical goals (Principle 3)
• formal awareness of constraints, such as resources and laws.
These elements are a constant communication problem, because:
• we do not systematically convert our ‘change directions’ into crystal clear measurable ideas; people are
unclear about the goals and there is no ability to obtain numeric feedback about movement in the ‘right’
direction. We are likely to say we need a ‘robust’ or ‘secure’ system; and less likely to convert these rough
ideals into concrete, measurable, defined, agreed, requirements or objectives.
• we focus too often on a single measurable factor (such as ‘% built’ or ‘budget spent’) when our reality
demands that we simultaneously track multiple critical factors to avoid failure and to ensure success. We don’t
understand what we should be tracking, and we don’t get enough ‘rich’ feedback.

Principle 7: Competition is eternal
Our conventional project management ideas strongly suggest that projects have a clear beginning and a clear
end. In our competitive world, this is not as wise a philosophy as the one Deming suggests, “Eternal Process
improvement is necessary as long as you are in competition.” We can have an infinite set of ‘milestones’ or
evolutionary steps of result delivery, and use them as we need; the moment we abandon a project, we hand
opportunity to our competitors. They can sail past our levels of performance, and take our markets.
The practical consequence is that our entire mindset must always be on setting new ambitious numeric
‘stakeholder value’ targets, both for our organizational capability and for our product and service capabilities.

Continuous improvement efforts in the software and services area at IBM, Raytheon and others (Mays, 1993;
Dion, 1995; Kaplan, 1994; Hewlett Packard (10X, Young)) show that we can improve critical cost and
performance factors by 20 to 1, in five- to eight-year timeframes. Projects must become eternal campaigns to
get ahead and stay ahead.

Figure 2: The Shewhart Cycle for Learning and Improvement - the P D S A Cycle.
Reproduction from a letter from W. Edwards Deming, 18 May, 1991 to the author.

Principle 8: Things take time

“It takes 2-3 years to change a project, and a generation to change a culture.” W. Edwards Deming
“Things Take Time” (TTT). Piet Hein (Denmark)

Technical management needs to have a long-term plan for improvement of the critical characteristics of their
organization and their products. Such long-term plans need to be numerically trackable, and to be stated in
multiple critical dimensions. At the same time visible short-term progress towards those long-term goals should
be planned, expected and tracked.

Figure 3: Cost of Quality versus Time: Raytheon 95 - the 8 year evolution of rework reduction. In the case of Raytheon
process improvements (Dion, 1995), many years of persistent process change for 1,000 programmers was necessary to
drop rework costs from 43% of total software development costs, to below 5%.

Principle 9: The bad with the good
Any method (means, solution, design) you choose will have multiple quality and cost impacts, whether you like
them or not! In order to get a correct picture of how good any idea is, for meeting our purposes, we must
• have a quantified multidimensional specification of our requirements; our quality objectives and our resources
(people, time, money)
• have knowledge of the expected impact of each design idea on all these quality objectives and resources
• evaluate each design idea with respect to its total, expected or real, impact on our requirements; the unmet
objectives and the unused cost budgets.

A P

S D (Do) Carry out the change or
the test (preferably on a small
scale).

Plan a change or a test,
aimed at improvement.

Study the Result.

Act. Adopt the change, or Abandon
it, or Run through the cycle again,
Possibly under different conditions.

Cost Of Quality = CONC (Cost of Non-conformance) + COC (Cost of Conformance)

CONC= cost of Ōfix and check fixÕ

COC=Appraisal + Prevention

Cost of doing it right

Cost of doing it wrong(ly)

1988 1989 19911990 1992 1993 1994 1995

0%

5%

10%

15%

20%

25%

30%

35%

40%

45%

50%
Philip Crosby concepts

Project Cost = {Cost of Quality + Cost of Performance}.
Cost of Performance={Planning, Documentation, Specification}.

 We need to estimate all impacts on our objectives. We need to reduce, avoid or accept negative impacts.
We must avoid simplistic one-dimensional arguments. If we fail to use this systems engineering discipline, then
we will be met with the unpleasant surprises of delays, and bad quality, which seem to be the norm in software
engineering today. One practical way to model these impacts is using an IE table (as in Table 1).

Principle 10: Keep your eye on where you are going

“Perfection of means and confusion of ends seem to characterize our age” Albert Einstein
To discover the ‘real’ problem we have only to ask of a specification: “Why?” The answer will be a higher
level of specification, nearer the real ends. There are too many designs in our requirements!
You might say, why bother? Isn’t the whole point of software to get the code written? Who needs high level
abstractions; cut the code! But somehow that code is late and of unsatisfactory quality. The reason is often lack
of attention to the real needs of the stakeholders and the project. We need these high-level abstractions of what
our stakeholders need, so that we can focus on giving them what they are paying us for! Our task is to design
and deliver the best technology to satisfy their needs at a competitive cost.
One day, software engineers will realize that the primary task is to satisfy their stakeholders. They will learn to
design towards stakeholder requirements (multiple simultaneous requirements!). One day we will become real
systems engineers, and we realize that there is far more to software engineering than writing code!

Conclusion
Motivate people, towards real results, by giving them numeric feedback frequently and the freedom to use any
solution, which gives those results. It is that simple to specify. It is that difficult to do.

References

Yoji Akao (Editor): Quality Function Deployment: Integrating Customer Requirements into Product Design. Productivity Press,
Cambridge Mass. USA, 1990.
Todd Cotton: Evolutionary Fusion: A Customer-Oriented Incremental Life Cycle for Fusion. Hewlett-Packard Journal, August
1996, Vol. 47, No. 4, pages 25-38.
Michael A. Cusumano and Richard W. Selby: Microsoft Secrets: How the World’s Most Powerful Software Company Creates
Technology, Shapes Markets, and Manages People. The Free Press (a division of Simon and Schuster), 1995, ISBN 0-028-74048-
3, 512 pages.
W. Edwards Deming: Out of the Crisis. MIT CAES Center for Advanced Engineering Study, Cambridge MA USA-02139,
1986, ISBN 0-911-37901-0, 507 pages, hard cover.
Raymond Dion: The Raytheon Report. http://www.sei.cmu.edu/products/publications/95.reports/95.tr.017.html.
Michael E. Fagan: Design and code inspections. IBM Systems Journal, Vol. 15 (3), pages 182-211, 1976. Reprinted IBM
Systems Journal, Vol. 38, Nos. 2&3, 1999, pages 259-287. www.almaden.ibm.com/journal
Tom Gilb: Principles of Software Engineering Management. Addison-Wesley, UK/USA, 1988, 442 pages. ISBN 0-201-19246-2,
Soft-cover, £24.95.
Tom Gilb and Dorothy Graham: Software Inspection. Addison-Wesley, 1993 471 pages. ISBN 0-201-63181-4. Japanese
Translation, August 1999, Yen 5,000. 450 pages including index, Soft-cover. ISBN 4-320-09727-0, C3041 (code next to ISBN).
Tom Gilb: Competitive Engineering, Addison-Wesley, UK, End 2000.
There will always be a version of this book free at my website, http://www.result-planning.com
Craig Kaplan, Ralph Clark and Victor Tang: Secrets of Software Quality, 40 Innovations from IBM. McGraw Hill, ISBN 0-
079-11975-3, 383 pages.
Ralph L. Keeney: Value-focused Thinking: A Path to Creative Decision-making. Harvard University Press, Cambridge
Mass/London, 1992, ISBN 0-674-93197-1.
Elaine L. May and Barbara A. Zimmer: The Evolutionary Development Model for Software. Hewlett-Packard Journal, August
1996, Vol. 47, No. 4, pages 39-45.
Robert Mays: Practical Aspects of the Defect Prevention Process. (Gilb, 1993, Chapter 17 written by Mays)
Harlan D. Mills: IBM Systems Journal, 1980 (4). Also republished IBM Systems Journal, Nos. 2&3, 1999.
Peter W. G. Morris: The Management of Projects. Thomas Telford, London, 1994, ISBN 0-727-7169-3.
Tom Peters: Reinventing Work, The Project 50. Alfred A. Knopf, New York, 2000, ISBN 0-375-40773-1.
William A. Florac, Robert E. Park and Anita D. Carleton: Practical Software Measurement: Measuring for Process
Management and Improvement. Guidebook from Software Engineering Institute, Reference: CMU/SEI-97-HB-003,
Downloadable from SEI web site (Acrobat Reader): ftp://ftp.sei.cmu.edu/ for publications, and main site http://www.sei.cmu.edu,
1997, 240 pages.
Stuart Woodward: Evolutionary Project Management. IEEE Computer, Oct 1999, pages 49-57.

QWE2000 Keynote Session K1-2

Mr. Jens Pas
(I2B)

Test Out-Sourcing: From Necessary Evil to
E-Competitive Advantage

Key Points

Test Outsourcing as a strategic organisation model●

Humanity as a cause of errors●

Human behaviour when dealing with errors●

The benefits of a dedicated Test Partner●

Presentation Abstract

This presentation explains why Test Outsourcing is the only way to organise testing
correctly. Test Outsourcing is explained as a strategic and corporate decision. It
concerns setting up long-term relationships with test services suppliers. The
motivation behind this idea is found in the paper below.

The presentation starts by explaining from a human perspective how errors are
made. It explains why our humanity is the most real cause of bugs. In a second part
the presentation discusses our human behaviour when encountering errors. Here the
logic is built to come to the solution of Test Outsourcing. The third chapter of the
presentation provides first a model on how to define responsibilities and secondly
gives an example of how developers and testers should be organised in an
outsourced situation. Examples are given of the distribution of tasks, the use of
metrics and the definition of the accountabilities.

Where relevant, real cases will be used to illustrate the model. These real cases are
not mentioned in the paper below for reasons of confidentiality.

About the Speaker

Jens Pas is Managing and founding Partner of I2B and President of the Board of
Directors. Jens Pas is an authority in the business of Software Testing. He
developed a unique method for structured software testing. His method was
introduced in and adopted by major Belgian and Dutch companies. He has also
development Test Assessment programs and has conducted them at directors and
top-management level at various sites in larger IT environments. He published
various articles regarding the methodology of Software Testing and is the author of
the textbook that accompanies the course ôIntroduction to Structured Software

QWE2000 -- Conference Presentation Summary

http://www.soft.com/QualWeek/QWE2K/Papers/K12.html (1 of 2) [9/28/2000 10:49:32 AM]

Testingö. He is a speaker and track chairman on many Software Engineering and
Quality Conferences (Eurostar 98 Munich, 99 Barcelona & 2000 Copenhagen,
Quality Week Europe, Fesma Brussels, Software Automation, Novi Amsterdam,
Technological Institute of the Royal Society of Belgian Civil Engineers, SQE Europe
Test Congress 2000). Currently he is specialising in Innovation Management
services.

Jens Pas was co-founder and General Manager of a Belgian consultancy company
specialised in testing. Previously he was responsible for the re-engineering of the
pan-European IT-support department of Quaker Oats Europe and for setting up the
Application Support department of the ETS division of Barco Graphics.

Jens Pas is an engineer and holds an Executive International Master in Business
Administration degree from the Vlerick Leuven Gent Management School.

QWE2000 -- Conference Presentation Summary

http://www.soft.com/QualWeek/QWE2K/Papers/K12.html (2 of 2) [9/28/2000 10:49:32 AM]

 PAPER QUALITY WEEK EUROPE 2000

T E S T O U T S O U R C I N G

FROM NECESSARY EVIL TO COMPETITIVE

ADVANTAGE

By

Jens Pas
Managing Director – CEO

Idea to Business (I2B)
Kwaadstraat 25
B-9750 Zingem

Belgium
Tel.: +32 (9) 384.86.27
Fax: +32 (9) 384.30.46
E-mail: jens.pas@i2b.be

http://www.i2b.be

ABSTRACT

This presentation explains why Test Outsourcing is the only way to organise testing
correctly. Test Outsourcing is explained as a strategic and corporate decision. It concerns setting
up long-term relationships with test services suppliers. The motivation behind this idea is found
in the paper below.

The presentation starts by explaining from a human perspective how errors are made. It
explains why our humanity is the most real cause of bugs. In a second part the presentation
discusses our human behaviour when encountering errors. Here the logic is built to come to the
solution of Test Outsourcing. The third chapter of the presentation provides first a model on
how to define responsibilities and secondly gives an example of how developers and testers
should be organised in an outsourced situation. Examples are given of the distribution of tasks,
the use of metrics and the definition of the accountabilities.

C o p y r i g h t © 2 0 0 0 , A l l r i g h t s r e s e r v e d b y I 2 B

COPYRIGHT © 2000, ALL RIGHTS RESERVED BY I2B 2/2

TEST OUTSOURCING: PAPER

Who gets hired as a programmer when he admits during the interview that he will program errors? Who gets
hired as a programmer when he claims that he only wants to be hired if his friend, the tester, gets hired as well? No
one. Which manager states that the software his company makes is free of errors? Also no one. What is it that
makes people believe that they are doing a good job whilst at the same time they know with empirical evidence that
their good job isn’t as good as it is intended to be…

The above paradox is the fundamental cause why still today testing has hard times getting
introduced in organisations. Even though we all know and by now even agree that testing is an
essential activity of our software engineering process, getting it organised remains a significant
weakness.

It is a fact. We make errors, certainly when we try to make software. We all have heard the
issues of software being intangible and complex, causing us to confuse things and forget links
between the different parts of code that we’ve written. Hence, we make a lot of errors. For many
years, solutions to increase the quality of software has been sought in improvements in
programming techniques and setting up software “engineering” processes. We tried to develop
many preventative solutions to reduce the amount of bugs made. And when we still concluded
that too many defects slipped through, we installed remedial activities such as system tests,
factory acceptance tests, site acceptance tests, parallel installations, beta-installations and pilot
sites. Each and every one of these activities costs a lot of money and still today they have not
given a satisfactory result. Automatic cash-distributors (ATM’s) still get blocked on a busy
Saturday afternoon and pc’s still crash at moments we did not save our documents. I even
experienced it when writing this paper. So, there is indeed still a lot to be done to solve the
problem of bad software quality.

This paper will not discuss the preventative and remedial actions that can be taken to
improve software quality. The paper will not even discuss which software testing methods that
must be applied. The reader can find these elements covered in the many presentations of the
Quality Week conference and in the increasingly growing literature on software testing.

This paper will look at testing from a human behavioural point of view. It will develop a
logic that will lead to testing solutions that will find their implementation through the
organisation of these humans. In a first part, we will discuss the cause of error creation from a
human perspective. In a second part we will analyse the human behaviour when facing these
failures. The final part of the document will describe how we should tackle the error prevention,
creation, detection and repairing process with a sound test organisation.

WHY WE MAKE ERRORS

We have empirical evidence that we do make errors. This is not an axiom. It is a fact. Many
studies have been conducted to find the root causes of these errors. Communication has been
pointed at as being the most popular cause of errors. In short, users are not able to completely
communicate to the programmers what they need. And vice versa, programmers are not able to
fully understand what users are explaining. Hence a lot of misunderstandings, assumptions and
consequently bad software are being made. Our experience in computer science has also been
seen for a long time as one of the key problems. The fact that so-called software engineering
processes are more craftsmen-activities has proven to be responsible for an irregular pattern of
software quality levels. Our experience has, however increased and many initiatives have been
taken to improve the level of engineering in our software creation process. CMM, Spice, Tick-IT
are examples of the latter.

COPYRIGHT © 2000, ALL RIGHTS RESERVED BY I2B 3/3

One very difficult cause of errors to measure or investigate is we, humans. It was Dorothy
Graham that claimed in the beginning of the nineties that humanity itself was a major source of
problems. “Humans and computers are incompatible”, she said. Graham explained that
humans have four characteristics that make them make errors. For one, humans are very limited
when it comes to managing complexity. Try for instance to memorise the following 14-digit
number:

13655212283031

We will use this number later…

If you are a programmer, you experienced the difficulty to understand your own lines of
code, even of a straightforward procedure, when you haven’t had a look at it for a couple of
months. It is a fact, we cannot grasp complex information. In marketing this human limitation is
known. There is a marketing law that states that commercial one-liners should not exceed more
then seven words. Above seven, people forget some of them. It is not the purpose of this paper
to explain why we cannot manage a high level complexity but it is somewhere related to the fact
that we interpret things rather than register. Those people who have seen the movie Rainman,
where Dustin Hoffman plays Raymond Babbit, an autistic man, have seen that autistic people can
manage complexity much easier than “normal” people can. Autistic people have a lower level of
interpretation. They take things rather literally. Circumstantial information does not distract
them, which in most cases is essential to understand the information received. Raymond Babbit
can count all the matches that fell out of a matchbox and that are scattered around on the ground
with the blink of an eye. When we look at the falling sticks, we see chaos, we start thinking of
how to clean it up and we lose focus on the real fact. Raymond Babbit stops in the middle of the
street when he notices that the pedestrian sign turns from “Walk” into “Don’t Walk”. We
interpret the circumstances and we know that the “Don’t Walk” sign only means don’t walk if we
are still on the sidewalk of the street. “Don’t Walk” even means “walk faster” when we are in the
middle of the street, the opposite. Understanding complexity is one of our weaknesses.

Second, Graham states that humans are optimistic. We are optimistic, but so what? Being
optimistic means that we believe that what we’ve done was OK, without errors. We have strong
conviction that our work was OK. If we would’ve made one or two mistakes we would have
noticed and repaired it immediately. Our optimism regarding our results creates blind spots. We
are not able to see our own errors.

This optimism ties into our subconsciousness that rules over our behaviour. Everyone has
the experience that when proof-reading the letter one write himself reveals less errors then
having the letter read by another person. You, the writer, know what you mean with your text
and as such assume that what is written is clear and understandable. Words that are missing and
typos are overlooked as a consequence of our involvement with the text.

Finally, humans are creative. We invent things as we go along. How well structured our plans
and designs might be, once we start programming we add and change things, sometimes even
without noticing (again this subconsciousness). Typical is the situation where we discover a new
feature in our programming environment that simplifies (so it looks at first) a way of coding a
procedure. We are convinced that this new feature can substitute the other way we originally
designed our algorithm and we start writing code that differs from the design. Having narrowed
down our focus to this local piece of code, we forget the impact the change has on other parts of
the software. We discover much later that the use of the new feature has caused a problem in a
part of the software lines away from the place where we altered the design. We discover this
problem most probable when doing system or acceptance tests. Since the design does not match
the code anymore, we can hardly trace back the root of the problem. This is one very typical
example of the consequences of our creativity. There are others. It has been proven that some
software, particularly in banks, where programs have a large legacy and a strong integration, can

COPYRIGHT © 2000, ALL RIGHTS RESERVED BY I2B 4/4

add up to 80% of dead code. Dead code is code which is not used anymore but which still is part
of the program. Nobody dares to remove the code since nobody knows what the impact will
be…

In short, humans are limited, optimistic, use their undocumented subconsciousness and
cannot help being creative and as such create bugs.

Do you still remember the number you memorised on the previous page? If not, remember
that 1 normal calendar year counts 365 days, 52 weeks and 12 months which have 28, 30 or 31
days. You will not forget this 14-digit number anymore…You see, we need structure and
interpretation…

OUR ATTITUDE AGAINST ERRORS

We now know that our human behaviour is responsible for the creation of errors. If we
know all this, how come that we don’t prevent this from happening. If we understand the
mechanism of the human subconsciousness, why can’t we prevent it from interfering?

By the nature of the cause, humanity, we cannot prevent making errors. If we would be able
to eliminate that we would have to eliminate humanity. We can reduce human intervention – this
is the field of software engineering – but we cannot eliminate humanity itself. Even if we could,
we would eliminate also the source that is capable of creating things. Humanity might be a cause
of errors; it is also the element that allows us to make software.

So, we must catch the errors before they can cause any harm. Here, a new human constraint
surfaces. We know that we are creative creatures, assuming that we make qualitative things. We
organise ourselves in organisations and companies to work together and realise great products.
We organise ourselves in constructive teams that strive towards the creation of sound products.
Our complete way of interaction with each other is based on this model of constructive teams.
We define incentives related to the creation of good products. We measure our importance and
status based on the “constructive part” that we cover in the product creation process. Software
programmers consider themselves much more as the father or even owner of the program they
wrote then the system manager that maintains and manages the development environment. Our
complete way of managing organisations is based upon this “value-added” feeling. Companies
consider their programmers as their “human capital”. Although having a clean desk and office is
essential as well, the cleaning personnel is not considered as key element to the creation process
of our software. It is here that a new problem lies. The testers, where do they fit in?

Do tester build things? Yes, they make tests. But do they make the products, which the
company they work for sells? No, they do not make the programs, nor do they add elements to
the program. Many say that the testers improve the quality of the software and as such create
added value. This is wrong. Testers do not add any value at all. If we hadn’t made the mistakes in
the first place, we wouldn’t have needed the testers. Testers are a necessary evil. They are a cost,
which we preferably would not want to make. Of course, since we know that we cannot prevent
errors from appearing we might say that testing is as natural or existential as breathing. Still
testing is not creating a product. Testing is verifying and validating what has been created.

COPYRIGHT © 2000, ALL RIGHTS RESERVED BY I2B 5/5

Rescuer/
Enabler

Victim

Persecutor

Testers don’t even fix the bugs. They are not allowed to. It would be very inefficient if testers
where allowed to fix bugs. For one, they don’t know the code (they should not know) and second
they didn’t make the errors in the first place. Allowing testers to fix bugs or even making testers
responsible for the final quality is a suicide of the testers. Lee Copeland gave a very impressive

talk about this at Eurostar 98 in Munich. He
explained to all of us what co-dependency was.
Co-dependency is a psychological phenomenon
where one person takes over the responsibility of
someone else’s actions. It would lead too far to
explain co-dependency in this paper but simply
consider how a tester would behave if he were
responsible for the final quality of the software.
Would he report many defects? Wouldn’t the
programmers who made all the errors that caused
him to be blamed frustrate him? There is a
complete psychological model, called Karpmann’s

Drama Triangle, which explains the different phases a co-dependent person goes through. If a
tester were to be responsible for the quality, he would first act as a Rescuer, finding (and
repairing) bugs and saving the world. Programmers, who would not be held accountable for the
bugs, would not know what has happened and would continue in making the same amount of
errors. The tester would start to feel unappreciated since he takes all the blame and nothing
improves. The tester would start feeling as being a victim of the situation and of the
programmers, which by then he would consider as aggressors. Finally, the tester would start
persecuting the programmers. Any feedback that goes back to the programmer in the persecuting
atmosphere would not at all be constructive. The tester is by now even the enabler of the bad
behaviour of the programmers. Which brings us back to the starting point.

For testers to do their job correct, there is only one thing they should do: Find bugs! No
matter what nice definitions that are given to the nature of testing: “the effort to check whether
programs do what they are supposed to do” or “to check that they don’t do what they are not
supposed to do”. Other combinations of the above statements are also used. This is all worthless.
Testers should find errors. That’s all there is to it. Nothing more, nothing less. Of course, the
objective of the testing activity is to get to a certain point of validation that shows that the
software is ok, but the testing work itself is all about finding errors.

If testers would concentrate on trying to prove that the software is ok, they would adapt their
behaviour and develop and execute those tests that serve that purpose. This is what people do.
Myers already wrote about this behaviour in his book “The Art of Software Testing1”. People act
according to the goal they want to achieve. And they try to find the easiest way to get to it. So, if
we stress on the fact that testing is a constructive activity, that it must help us to improve quality,
we are very likely to reach that goal as easy as possible, by not finding many bugs. The smaller the
amount of bugs found, the faster we can claim that the software is of good quality. Whether this
is reality, is a different issue. We do not live by what is real, but by what we perceive as being real.

The problem becomes even worse if we look at the sociological behaviour of our testers.
Testers work in an organisation. This organisation and all its employees and co-workers with it
are proud of what they realise: a sound competitive product. Organisations praise those who
make these sound products. We all know that we await a brilliant career if we prove to be good
programmers, analysts or managers. A genius programmer might be awkward to work with, he
will still be regarded as key to the corporation. Companies even insure themselves against the risk
of losing these key people.

1 Myers, Glenford, “The Art of Software Testing”, John Wiley & Sons, 1979

COPYRIGHT © 2000, ALL RIGHTS RESERVED BY I2B 6/6

What happens to the genius tester? The guy or girl that is so brilliant in developing nasty tests
that reveal the many mistakes our company is making and illustrates how lousy our products
really are? Do we praise those people? Or do we call them over-acting critics? Will a tester get a
pat on the back when he was capable of finding that bug that prevented the release of the
software on the next trade show? Will he get a raise because he “saved the company from trouble
which has not happened yet” (=read bad press due to introducing a low quality product into the
market). Will the company be spending a large investment budget on testing tools so that we can
show even more easily how bad the software is we make? Or will we spend this money on the
latest multimedia object library that will make our products “look” good?

Testers are not popular. Testers are a pain in the ass. Testers are a necessary evil. We hate
them, we despise them, we want them out of our lives. For all clarity, I’m a tester too. I know
what I’m talking about.

HOW WE SHOULD ORGANISE TESTING

As we can see above, it is not possible for a company to genuinely organise their testing
properly. Even if we send some of our people to testing courses, our testers will not have the
right attitude for finding bugs. Even if we set-up a separate test department for our testers and
give them incentives for the amount of bugs they find, we will never do a good job. The internal
power of “being the best company with the best products” is so strong that it beats all other
internal behaviour that tries to obstruct reaching this goal.

This does not mean that companies are not interested in testing, or that they do not want to
invest in testing. In this era of ICT as it is called today (Information & Communication
Technology), the need for testing is more then ever present. Computer crashes, stalled programs
or other devices that won’t do what they are supposed to do continuously hinder us. We even
start to understand the costs that are associated with the bugs. A cost, by the way, which is
increasing exponentially. The more we become dependent of computers the more severe the
impact of the bugs. Companies are interested in testing. This is the good news for all of us
testers. We do have a nice and bright future ahead of us. There will be more job openings for
testers and we will get our respected place in society. This place however is, not within our
current product building organisation.

Testers must be independent from the organisations they are working for. As long as testers
remain part of the same company as the programmers, they will always be the underdogs. If it
comes to a final decision to release or not to release a product, companies will (almost) never
follow the advice of the testers. Consider the introduction of a new television set by a European
consumer electronics company. If stalling the release of the TV because of software problems,
means that the Japanese competitor will come to the market first, we will most probably take the
risk and release an unstable product. The marketing people will not only have the (biased)
economical calculations on their side (the fact that a loss of market share is more costly then
some “problems” with the first customers), they will also have the political power and intrinsic
belief of how good we are on their side.

The only good solution to organise the testing, is to involve external testers, testers from an
independent company, a test services supplier. These external testers are not hired bodies you
take in, because you didn’t have the people or because no one did want the lousy job. We are not
talking about hiring capacity here. This is about setting up a business model with one or more
external companies that consistently provide the testing services to a particular client. These
external companies are partners. They are integrated in your organisation, but they remain
external. What is the difference with own testers? The difference lies in the fact that hired testers
are considered as experts, experts that are supposed to be good at testing, hence at finding errors.

COPYRIGHT © 2000, ALL RIGHTS RESERVED BY I2B 7/7

These external experts have no or very little political pressure. Their supplier-contract manages
this pressure. Their lives are all about finding as many defects as they can. That’s what they are
paid for. The mission statement of professional testing companies is all about helping their
clients in achieving high quality by seeking for bugs. The goal of every testing company is to find
bugs, not to make qualitative software programs. Professional testing companies are bug busters.
That’s their reason of existence.

The above-described organisation is not new. It is the classical outsourcing concept. We
already discovered that window cleaning, office cleaning and machine maintenance is much
better dealt with if we outsource it. Our own cleaning lady was until recently considered as a cost.
Consequently we paid here a low wage and still expected her to make everything nice and neat.
Preferably without too much of our interventions. We even ask her to come by late at night,
when everyone has gone home. The cleaning lady has little pride in her job. She felt as being a
necessary evil. One day our cleaning lady leaves our company and become the hygienical operator
of the company Clean corp. The mission statement of Clean corp. is to provide every customer a nice
tidy working space. The hygienical operators (read cleaning ladies) even get skilled in how to clean
desks and computer equipment. They are trained in the purposes of certain chemical products;
which ones you can mix and which ones you cannot mix. Since we lost our cleaning lady, we hire
Clean corp. to do the job and all of a sudden, our cleaning lady is back. But now, she is an expert,
walking around with a professional trolley with outstanding cleaning products and a shiny Clean
corp. uniform. She even performs preventative checks and looks for optimisation of the waste
bin collecting system. When we change our office furniture we even ask her opinion regarding
floors carpeting; which ones are easy to maintain and which ones are not.

Through outsourcing, a cost becomes an opportunity. Maintenance companies, who
maintain factory equipment, execute preventative maintenance, reducing the downtime of our
factory. They give us a new advantage.

Even more than cleaning and maintenance is testing an activity that can genuinely be
outsourced. We outsource cleaning and maintenance because they are non-core activities. They
are activities that are not considered as our distinctive competence. The outsourcing of testing is
different. Testing is a part of the software engineering process. Consequently, it is be part of
many companies’ competitive advantage. This is why many companies believe that they should
master the testing themselves; because it is a part of their core-competence. Testing must be
outsourced for human reasons explained above, but not because of the peripheral (non-core)
value. The outsourcing of testing is a strategic decision that creates a competitive advantage.

When we decide to outsource testing we must consider the outsourcing structure as setting
up a strategic relationship with one or more suppliers. I would advise to have more than one
supplier for the testing services, purely for risk-reasons. Single sourcing always creates an
unbalance in the relationship between customer and supplier. But that is a different story. The
outsourcing of testing means that an external company will get a great deal of insight in the
engineering processes of your company, not to speak about the knowledge of the quality of the
products. Working with an external testing partner requires a great deal of trust. It is therefore of
the utmost importance that the relationship with a testing services supplier is well balanced and
healthy. Participation in each other’s stakes is not allowed. Monopoly-positions (single-sourcing)
should not occur. Outsourcing of testing is an activity that should not be organised on a project
level. It should be set-up on a corporate level. Today many companies believe that they are
performing outsourcing, but in reality they are merely using body-shopping as a means to resolve
resource problems.

When a company starts to invest in professional structured testing, the company should
know that they are investing in the future. Structured testing creates short-term benefits (the
quality of the product under test improves) but creates a competitive advantage in the long term.
This is where the real benefit is found. If companies seek for a testing partner, they should seek

COPYRIGHT © 2000, ALL RIGHTS RESERVED BY I2B 8/8

for a solid partner that will help them in the long run. The external testers that are hired should
not come in for that one project only. The testers should invest in their customer’s business
domain and become acquainted with that environment. The testers should build their testware
with a long-term perspective, allowing the client to benefit from it in the future. The supplier
should not fear these fundamental investments he is making, because it will give him a stable seat
for the future. Becoming the “house-supplier” regarding testing assures future incomes without
the need for new sales investments. If both supplier and client believe in the model, they will
both benefit a lot. Setting up a strategic alliance really creates the classical Win-Win relationship.
Even more, the ultimate goal gets served: the final user of the software receives a higher quality
product. The result is Win-Win-Win.

The set-up of such an outsourced model requires a careful organisational architecture. Of the
many elements that must be taken into account the most important and core-issue to solve is the
one of responsibility. It is extremely difficult to correctly define the responsibility of the testing
partner. On the one hand he must get a large authority to report defects and to advise about the
quality, on the other hand, the testing partner may not become co-dependent by assuming
responsibility for the end quality. The client on his side also needs to know - and more important
- accept the boundaries of his authority. Furthermore, the client must guard that his
responsibilities do not drift of. A typical behaviour that takes place when a testing partner is
introduced is called TIM-J (That Isn’t My Job). The awareness that someone will “take care of
the bugs” makes the creators of the software negligent. “We don’t have to check anymore, that’s
why we pay those expensive test experts”. Consequently, the software quality goes down and the
error detection and correction process takes longer and as such becomes more expensive. TIM-J
is the opposite of co-dependency. The balance between these two extreme attitudes is very
fragile.

Before moving to a typical example of which responsibilities should go to which party, let us
first set-up a meta-model for describing the responsibilities. Many people think defining
responsibilities is as simple as drawing up a list of tasks each party must do. There is, however,
much more to it.

First of all, there is indeed the definition of what we call the responsibility. The
responsibility is an area in which we are supposed to realise a certain result or performance. “It is
my responsibility to clean the windows” means that I must make sure that the windows are clean.
This area can be described by a list of tasks, but more preferably it should be described by a list
of results.

To be able to carry a responsibility, authority is required. One cannot be responsible for
cleaning windows if one cannot decide when and how often (and how) the windows must be
cleaned. Delegating or assigning an authority is as giving the different parties a conscience, a will.
They have a decision power to start or stop actions within their responsibility area.

Carrying an authority is only possible if one can measure the result of the decision taken. If
you have not defined what a “clean window” means, how will you be able to decide to start
cleaning or not? An authority only works if you provide both parties with an agreed
controllability. Controllability means having a set of metrics of which both parties have agreed
that they are valid and may be used to rule.

Finally, both parties must be motivated to realise the expected performance of the
responsibility area. If the window cleaner gets his pay by the hours he spent cleaning, he will
most probably clean a lot and very slow, regardless of the neatness of the window. It is even in
his advantage to make the windows dirtier by cleaning them with wastewater, allowing him to
come back over and over again. If on the other hand, he would get paid by the amount of light
that can fall through the window, in other words, by the neatness of the window, he will behave

COPYRIGHT © 2000, ALL RIGHTS RESERVED BY I2B 9/9

as we expected and make clean windows. Installing an incentive or motivation mechanism is
called setting up accountability.

If any of the four elements: responsibility, authority, controllability and accountability is
missing, chances are high that both parties will not have a successful relationship. The
outsourcing model will fail.

Below is a typical example of an outsourcing model, taken from a live case.

CLIENT (SOFTWARE BUILDER) SUPPLIER (TESTER)

RESPONSIBILITY RESPONSIBILITY

• Write software

• Repair errors found

• Quality of the software

• Find errors

• Quality of tests

• Quality of the test advice

AU T H O R I T Y AU T H O R I T Y

• Define the specs

• Repair errors

• Release software

• Report errors

CONTROLLABILITY CONTROLLABILITY

• Product margin (Revenue – Support/bug fix
costs)

• Number of solved defects

• Total project cost

• Test coverage

• Test depth

• Number of defects founds

ACCOUNTABILITY ACCOUNTABILITY

• Product margin (Revenue – Support/bug fix
costs)

• Defect Detection Percentage

Software builders are responsible for building sound products. Their products should match
what they have broadcasted via their marketing departments and should also match the “de
facto” norms of stability (everyone agrees that a pc that crashes every day is not acceptable).

The builders have the authority to decide what they will make, to chose the specs to which
their system will comply. If they are clever, they will of course make sure that their specs matches
a market need. The builders also have the authority to decide which errors, found by the testers,
they will repair and which not. Since the builders are held accountable for the success of the
product, they must have the freedom in deciding which defects are important and which are not.

Software builders can control the impact of their decisions by first of all looking at the
success of their product in the market. The generated sales, the costs of the after sales support, all
these elements can serve as metrics. The number of the defects that get solved during
development is even an interesting metric. Assuming that there are errors to be found, it is wise
to measure how many defects that are really solved upon releasing the software. If little solved
defects are in the release, it might be correct to assume that the testing or repairing was poor. It is
not very likely that there were no errors to solve at all…

Finally, software builders should be held accountable for their contribution to the bottom
line. More important then the revenue generated by the product (this is more of a sales matter)

COPYRIGHT © 2000, ALL RIGHTS RESERVED BY I2B 10/10

but the costs associated to support and bug-fixing activities should be used as a key to define the
variable pay of the programmers and analysts.

Testers are responsible for finding bugs. This is it. Their performance is expressed in the
amount of errors they find. It is of course equally important to measure their effectiveness and
efficiency by comparing the testing effort (cost) to the contribution (number of defects found)
they realised. As such they are also responsible for developing sound and mature testware. Test
maintenance costs are partly their responsibility. Partly because the way the development is done
also influences the maintenance of the testware.

If there is one clear authority that the testers have it is right to report freely the defects
found. Although this sounds trivial, some companies still are very hesitant to formally report and
register in a database the bugs found. Analysing consolidated defect data is sometimes not
allowed. The right to report defects is essential. This right must also be enriched with escalation
rules that allow the opinion of the tester to reach management level when their advice is not
followed.

The real effect of the testing activities on the organisation must be measured by monitoring
the real quality of the product once it has been released. For tester, the cost of support is not the
metric to be used to calculate their variable pay. The Defect Detection Percentage (DDP), as
developed by Dorothy Graham, serves the purpose well. DDP is the ratio of comparing the
defects found by testing with the total amount of defects found (testing AND defects found in
production). The fewer defects that are found in production (the higher the nominator) the more
effective the testing was. DDP, at first, has little value to influence the quality of the product, but
it has a high significance when it comes to analyse and thus improve the testing process. Other
metrics that must steer the testing process are the test coverage: how much of the product is
covered by the testing and the test depth: how much different conditions or test cases have been
applied to validate a certain functionality. Much more can be said about both test coverage and
test depth. This is not the intention of this paper though.

A pitfall with DDP though is that testers might argue a lot about releasing software in their
eyes “too early”.

To conclude this paper, it is worth to stress that setting up an outsourced model for testing is
a corporate strategical decision. One might trigger the need for outsourced testing from within a
project and even implement the model on a pilot project base, but the objective must be long
term and on a partner or corporate level (rather then a pure supplier relationship).

Is testing doomed to fail if one does not outsource? No, of course not, but the return of the
investment in testing will be much less. A continuous effort will be required to stimulate testing
in the organisation and to make sure that the testing reveals errors rather than proofs how good
our products are. Personnel turnover in the test department will be huge and no learning curve
effects will be experienced. Testing will never give a competitive advantage, but will become a
part of the overhead cost and as such remain a necessary evil.

COPYRIGHT © 2000, ALL RIGHTS RESERVED BY I2B 11/11

SPEAKER’S CURRICULUM: JENS PAS (MANAGING PARTNER)

Jens Pas is founding Partner of I2B and Managing Director - CEO. Jens Pas
is an authority in the business of Software Testing. He developed a unique
method for structured software testing. His method was introduced in and
adopted by major Belgian and Dutch companies. He has also development Test
Assessment programs and has conducted them at directors and top-management
level at various sites in larger IT environments. He published various articles
regarding the methodology of Software Testing and is the author of the textbook
that accompanies the course “Introduction to Structured Software Testing”. He
is a (keynote) speaker and track chairman on many Software Engineering and Quality
Conferences (Eurostar 98 Munich, 99 Barcelona & 2000 Copenhagen, Quality Week Europe,
Fesma Brussels, Software Automation, Novi Amsterdam, Technological Institute of the Royal
Society of Belgian Civil Engineers, SQE Europe Test Congress 2000). He is member of the
International Advisory Board of Quality Week. Currently he is specialising in Innovation
Management services.

Jens Pas was co-founder and General Manager of a Belgian consultancy company specialised
in testing. Previously he was responsible for the re-engineering of the pan-European IT-support
department of Quaker Oats Europe and for setting up the Application Support department of
the ETS division of Barco Graphics.

Jens Pas is an engineer and holds an Executive International Master in Business
Administration degree from the Vlerick Leuven Gent Management School.

1

Copyright © 2000, All rights reserved by I2B Test Outsourcing – Jens Pas – 2

IDEA TO BUSINESS

Idea to Business (I2B)

I2B cvba
Kwaadstraat 25
B-9750 Zingem
Belgium
Tel.: +32 (9) 384.86.27
Fax: +32 (9) 384.30.46
E-mail: info@i2b.be
http://www.i2b.be

Innovation Management Services

R
eaction

O
utsourcing

A
ction

Test Outsourcing: From necessary
evil to a competitive advantage

OutsourcingReaction I2B

Goto Start

Back

Goto End Copyright © 2000, All rights reserved by I2B

Action

Test Outsourcing – Jens Pas – 3

Culture

What is a competitive advantage ?

Technology

Process

People

The distinctive corporate capability that cannot be
reproduced by the competition

2

Copyright © 2000, All rights reserved by I2B Test Outsourcing – Jens Pas – 4

Action – We make errors

l Communication

l Software Engineering maturity

l We’re only human

R
eaction

O
utsourcing

A
ction

OutsourcingReaction I2B

Goto Start

Back

Goto End Copyright © 2000, All rights reserved by I2B

Action

Test Outsourcing – Jens Pas – 5

Communication

What the client wanted What the contract said What the analyst designed

What the developer wrote What was delivered What was really needed

3

OutsourcingReaction I2B

Goto Start

Back

Goto End Copyright © 2000, All rights reserved by I2B

Action

Test Outsourcing – Jens Pas – 6

Software Engineering maturity

Initial

Repeatable

Defined

Managed

Optimised

1

2

3

4

5

Risk

Quality

http://www.sei.cmu.edu/cmm/cmm.sum.html

OutsourcingReaction I2B

Goto Start

Back

Goto End Copyright © 2000, All rights reserved by I2B

Action

Test Outsourcing – Jens Pas – 7

We ‘re only human

l Memorize this:

l Limitations – Distraction

l Optimism & Subconsciousness

l Creativity

13655212283031

“You're having a hard time and lately you don't feel so good
You're getting a bad reputation in your neighborhood
It's alright, it's alright
Sometimes that's what it takes
You're only human, you're allowed to make your share of mistakes“

Billy Joel

4

OutsourcingReaction I2B

Goto Start

Back

Goto End Copyright © 2000, All rights reserved by I2B

Action

Test Outsourcing – Jens Pas – 8

Subconsciousness

The cyclist approaches and sees the
the dog

The dog in the street notices the
the cyclist

Copyright © 2000, All rights reserved by I2B Test Outsourcing – Jens Pas – 9

Reaction
l Preventative actions

– Software Engineering (reduction of human intervention)

l Remedial actions
– Testing

l The Medea tragedy

l The salmon problem

R
eaction

O
utsourcing

A
ction

5

Copyright © 2000, All rights reserved by I2B Test Outsourcing – Jens Pas – 10

Outsourcing
l Understanding Management Control

l Turning a hassle into a expertise

l Independant integration

l RACA

R
eaction

O
utsourcing

A
ction

OutsourcingReaction I2B

Goto Start

Back

Goto End Copyright © 2000, All rights reserved by I2B

Action

Test Outsourcing – Jens Pas – 11

Understanding Management Control

Management Control Systems
R.N. Anthony & V. Govindarajan

Irwin Mc Graw Hill, ninth edition 1998

Strategy Review

Programming &
Action planning

Budgetting

Execute

Measure

Reward

6

OutsourcingReaction I2B

Goto Start

Back

Goto End Copyright © 2000, All rights reserved by I2B

Action

Test Outsourcing – Jens Pas – 12

Independant integration

Project Leader

Building team
• Analysts
• Designers
• Programmers
• ...

Testing team
• Test Analysts
• Test Designers
• Test Programmers
• ...

OutsourcingReaction I2B

Goto Start

Back

Goto End Copyright © 2000, All rights reserved by I2B

Action

Test Outsourcing – Jens Pas – 13

RACA

Responsibility

Authority

Controllability

Accountability

Builder (Client) Tester (Supplier)

• write software
• repair found defects
• software quality

• find defects
• test quality
•quality of test advice

• define specs
• repair defects
• release software

• Report defects

• Product margin
• Nr. of solved defects
• Total project cost

• Test coverage
• Test depth
• Nr. of defects found

• Product margin • Defect Det. Perc.

7

OutsourcingReaction I2B

Goto Start

Back

Goto End Copyright © 2000, All rights reserved by I2B

Action

Test Outsourcing – Jens Pas – 14

Thank you

Jens Pas
Managing Director – CEO

jens.pas@i2b.be
Tel.: +32 (9) 384.86.27
Fax: +32 (9) 384.30.46

GSM: +32 (475) 77.51.60

OutsourcingReaction I2B

Goto Start

Back

Goto End Copyright © 2000, All rights reserved by I2B

Action

Test Outsourcing – Jens Pas – 15

Our Company

I2B (Idea to Business) is a new Belgian consultancy company founded in 2000 by six people of
which five are experienced consultants. Their consolidated know-how and skills have resulted in a
complete portfolio of competences required to run projects concerning ICT, E-Commerce or
Innovation (new business development).

Together they result in Innovation Management Services, offered to two types of clients: Large
Enterprises and Small & Medium Sized Enterprises (SME’s). For the latter, I2B developed a
special delivery model allowing SME’s to receive expert knowledge to which normally only big
organisations have access to.

The Mission of I2B is:

“To assure that companies can innovate and realise sustainable business
from their ideas”

8

OutsourcingReaction I2B

Goto Start

Back

Goto End Copyright © 2000, All rights reserved by I2B

Action

Test Outsourcing – Jens Pas – 16

Our Credo

CREDO

We believe that our first responsibility lies with the clients who use our services. In meeting their
needs our services must be of high quality and must be a reference for our clients. We cannot
indulge in pressure, quantity or quick profit. We must do what we promise. We may only promise
what we can do.

We are responsible towards our co-workers, the men and women who work with us. Every co-
worker must be respected as an individual and must be rewarded adequatly and fairly. We must
support our co-workers through a competent management, an adequate working environment and
proper working conditions. Our co-workers must have the means to provide and receive feedback
that allows them to learn continuously. We must support our co-workers in their family
responsibilities. Our actions must be just and ethical.

We are responsible to the community in which we live. We must be good citizens, support good
works and bear our fair share of taxes. We must encourage civic improvements and use our
expertise to create these improvements. We must respect and protect the environment and the
natural sources.

Our final responsibility is towards our stockholders. Our business must make a sound profit. We
must innovate and continuously improve our methods and techniques. We must develop new
services and implement them effectively and efficiently. We must create reserves to provide for
adverse times. When we work according to these principles, our stockholders should realise a fair
return.

OutsourcingReaction I2B

Goto Start

Back

Goto End Copyright © 2000, All rights reserved by I2B

Action

Test Outsourcing – Jens Pas – 17

Copyright & Liability

Copyright
The materials in this presentation are Copyright © 2000 I2B. All rights reserved . You are hereby authorized
to view, copy, print and distribute these materials or parts of it subject to the following conditions:

• The materials may be used for internal informational purposes only.
• Any copy of these materials or any portion thereof must include the above copyright notice.
• I2B may revoke or modify any of the foregoing rights at any time.

Please note that any product, process or technology described in these materials may be the subject of other
intellectual property rights reserved by I2B and are not licensed hereunder.

Liabilities
The information contained in this presentation is for general guidance on matters of interest only. The
application and impact of laws can vary widely based on the specific facts involved. Given the changing nature of
laws, rules and regulations, and the inherent hazards of electronic communication, there may be delays, omissions
or inaccuracies in information contained in this presentation. Accordingly, The information in this presentation
is provided with the understanding that the authors and publishers are not herein engaged in professional advice
and services. As such, it should not be used as a substitute for consultation with professional advisers. Before
making any decision or taking any action, you should consult a I2B professional.

9

2I B

Idea to Business

Consultancy for those who change the world

http://www.i2b.be

QWE2000 Session 1T

Ms. Miriam Bromnick [UK]
(Ovum ltd)

"Automated Software Testing: A New Breed of Tools"

Key Points

Automated test planning and management●

Automated requirement management●

Test case generation●

Presentation Abstract

Test managers are faced with increasing problems to meet the rush to market,
project timescales are getting shorter and shorter. Applications are being developed
to take opportunity of new and innovative business models. More and more complex
applications are being developed, using complex mixes of technology. However
these opportunities bring a number of risks. Testing process needs to adapt and
testers need to innovate, and to work smarter, to counter the risks.

Functional test tools are well accepted and offer good support of capture/replay
testing. Scalability issues, especially for e-commerce, have meant the increasing
acceptance of load and performance test tools. Even automated code checking tools
have become more commonplace. However these automated test tools do not help
the testing processes and they do not help test managers solve some of their biggest
concerns.

New automated test tools and new techniques are required to ensure quality
applications are delivered and that the rush to market does not ignore the risks of
software failures.

This presentation looks at a new breed of tools that is emerging to support some of
the processes around quality assurance and testing. These tools can be used
standalone, or as "plug-ins" to the capture/replay tools. Some of the mainstream
tools have also been enhanced to give more support in these areas, for example
Mercury Interactive's TestDirector. This new breed of tools help to automate some
processes that may already be used (for example as "best practice") and support
application developers introducing and automating new repeatable processes.
Implementing these tools will bring short term saving in delivering higher quality
application and will allow long term benefits as the tools support sophisticate
processes, such as requirements traceability, allowing quality across the whole life of

QWE2000 -- Conference Presentation Summary

http://www.soft.com/QualWeek/QWE2K/Papers/1T.html (1 of 2) [9/28/2000 10:49:57 AM]

an application. These tools will be examined in 3 categories:
test planning and management❍

requirements management and test case generation❍

inspections and reviews.❍

Throughout this presentation experiences of a test manager are referred to,
indicating typical practical testing problems. The new breed of automated test tools is
discussed in detail to understand which problems that they aim to solve. The
research method used to evaluate these tools is presented, indicating the benefits of
rigorous software evaluation. This presentation concludes by discussing long term
investment in testing tools and ideas to influence budget holders that investment in
these tools would be worthwhile.

About the Speaker

Miriam Bromnick is the editor of Ovum Evaluates: Software Testing Tools.
http:\www.ovum.com\

In this role she makes in-depth evaluations of the leading software testing tool sets.
She also researches into the background issues underlying testing and is currently
interested in the testing of e-commerce applications. Her previous software
experience spans 20 years. She followed a traditional IT career path in the
commercial sector from programmer to analyst and then to project manager. She
has managed testing teams in blue chip commercial organisations. As a testing and
quality expert she has developed and supported software testing procedures and
methods. She believes in continuous improvement and has herself recently gained a
first class honours degree in Information Management.

QWE2000 -- Conference Presentation Summary

http://www.soft.com/QualWeek/QWE2K/Papers/1T.html (2 of 2) [9/28/2000 10:49:57 AM]

http://www.ovum.com/

1

1

Automated
software testing:
a new breed of

tools

QWE2000

 Miriam Bromnick

November 22nd 2000

2

The cost of quality

Ap
pl

ic
at

io
n

C
om

pl
et

io
n

1x 10x 100x
0%

Live

50%

100%

Cost of repair

2

3

“Security fears shuts online bank”
TheGuardian, front page headline

“… the bank said it followed an
upgrade to its online services
carried out over the weekend...”

August 1 2000

The cost of quality - 2

4

Help is at hand

• Risks and opportunities

• Outline of some new and innovative
tools

• Selecting automated testing tools

3

5

About Ovum…

• independent research and consulting
company

• expert advice on IT, e-commerce and
telecoms

• “helping you to make successful
decisions”

• established in 1985,
• offices in London, Boston and Melbourne
• 100 consultants provide consultancy to

over 10,000 senior executives worldwide.

6

Software development in ‘internet
time’

• Opportunities
– including the e-commerce ‘gold-

rush’

• Complexity and change,
– applications and technologies

• Demand for accuracy and
reliability

• Risk of bad publicity

4

7

Perennial problems for testing
managers

• Planning people and time needed
• What to test ?
• Runaway scope
• Can we stop testing yet?

8

More than functional testing

• Automated test planning and
management

• Automated requirements
management
– test case generation

• Inspections and reviews

• Controlling capture/replay testing
tools

5

9

Help is at hand

• Risks and opportunities

• Outline of some new and
innovative tools

• Selecting automated testing tools

10

Automated test management and
planning

• What the tools can do,
– T-Plan

– Mercury Interactive’s TD7i

– Compuware’s QADirector

• What else could they support?
– Test strategy definition

– acceptance criteria

6

11

Automated requirements
management

• What the tools can do,
– Caliber RM from TBI

– Mercury Interactive’s TD7i

– Rational’s RequisitPro

– Compuware’s Reconcile

• What else could they support?
– Risk management

12

Test case generation

• Generating test cases from
requirements
– Validator/req from Aonix

– Caliber RBT from TBI

• Test cases from code
– TestFactory from Rational Software

– JTest from ParaSoft

– Attol’s Testware

7

13

Inspections and Reviews

• Supporting the review and
inspection process
– ReviewPro, Caliber Tools

• Code static analysis
– McCabe toolset (and others)

14

Controlling capture/replay tools

• What is the problem ?
• Capture/replay “test wrappers”

• What tools are out there
– TestFrame from CMG

– Certify from WorkSoft

– ActiveTest from Graphtec

• The future ?

8

15

Help is at hand

• Risks and opportunities

• Outline of some new and innovative
tools

• Selecting automated testing tools

16

A model of automated test tools

Test planning and management

Requirements analysis and test case generation

Inspection and reviews

Code quality

Functional testing

Load and performance testing

Web application testing

1 2 3 4 5 6 7 8 9 10

9

17

Checklists

• Use of selection criteria
• Fit for purpose

• Risks of selecting the wrong tools

18

Risks and opportunities

• Working smarter
• Testing earlier in the life cycle

• Automating testing earlier in the life
cycle

• Quote from David Gelperin

“Lets stop those bugs from being
born”

10

19

E-mail – mbk@ovum.com
Web – http://www.ovum.com

Tel: +44 (0) 20 7551 9169
Fax: +44 (0) 20 7551 9090

Miriam Bromnick
Lead Author, Ovum

Evaluates: Software Testing
Tools

 1

© Ovum Ltd 2000. Unauthorised reproduction prohibited

Automated software testing: a new breed of tools

Miriam Bromnick
Ovum Ltd

Cardinal Tower
12 Farringdon Road

London
EC1M 3HS, UK

Phone: +44 (0) 20 7551 9000
Fax: +44 (0) 20 7551 9090/1

Direct line: +44 (0) 20 7551 9169

Email: mbk@ovum.com
http://www.ovum.com

 2

© Ovum Ltd 2000. Unauthorised reproduction prohibited

The challenges of testing

The costs of not achieving quality
Everyone working in software quality and testing acknowledges the statistics
that the cost of fixing a problems rises exponentially the later it is found.
However there has been little automated help to achieve solving problems early
on. Now a new breed of automated testing tools is emerging to help find and fix
problems earlier in the life cycle.
The aim of software testing and quality assurance is to find and fix errors in
the software at the point where they are cheapest to fix. Therefore it is
important to:
• stop problems being built into applications
• fix problems before they get expensive to fix, for example a problem fixed

during design costs a fraction to fix compared with the cost to fix during
testing, let alone the expense once an application is live in the real world

• invest time earlier in the development of an application to save time over
the whole life of that application.

Why now: risk and opportunities
E-commerce applications amplify the need for testing to defend enterprises
against business damage resulting from software errors. The Internet has
opened up a number of opportunities. New business models and new ideas to
explore the full potential of the web are constantly emerging. However these
new opportunities bring risks and increase the complexity of applications and
the demands for rapid delivery of applications. Customers want accurate and
reliable services, it doesn’t matter to them what is going on below the surface.
Testing is the opportunity to make sure applications meet the needs of the
customer. Testing can prevent badly performing web sites, lost business, bad
publicity and even legal action resulting from software failure. Lack of testing
becomes immediately visible, and so testing is changing, it is no longer:
• badly understood
• badly done
• demoted to something done at the end of development
• often delegated to end users
• denied investment in automated tools.
Along with testing becoming more sophisticated, recent research has revealed
some automated testing tools that will help in the early discovery of problems.
Some of these tools have been around for a few years, but now they have
matured enough to be considered a new breed of tools.

Ovum’s research
Ovum is an independent research and consulting company, offering expert
advice on IT, e-commerce and telecoms. Our mission is to help you make
successful decisions, and our analysis of key developments is highly respected
worldwide for its authority, quality and clarity.
Ovum’s research is provided both as consultancy and as reports. The reports
are available both from the web and in paper copies. The research for Ovum
Evaluates: Software testing tools is the basis of this paper.

 3

© Ovum Ltd 2000. Unauthorised reproduction prohibited

Perennial problems of a testing manager
E-commerce applications are usually developed with the same constraints as
other applications, however some of those constraints are amplified, including:
• demanding deadlines
• the need for extensive testing, and testing is a large-scale activity with

many parts, therefore good management of the testing process is essential
• increasing complexity, therefore it is unlikely that a project will have the

resources to conduct all conceivable tests
• the need for ordering the testing of the components, requiring careful

planning and management.
Consequently software testing and quality assurance activities need to be well
planned to get maximum assurance from the tests that are carried out.

Testing strategy
To meet the challenges of quality assurance and testing you need a testing
strategy. You need to determine what, where and when you will test. The
questions you need to ask include:
• What strategy will you use to prioritise the tests?
• What are the high risk areas of the application?
• What is the application supposed to do and are there any specifications?
• Where are the problems likely to be found?
• How are test results to be used?
• How many people will we need?
• How do we know when to stop testing?
All of these questions will have specific answers for specific applications. But
without answers, testing will not provide an efficient way to deliver quality
software.

 4

© Ovum Ltd 2000. Unauthorised reproduction prohibited

New and innovative testing tools

How does the new breed of tools help
Software testing is about demonstrating that a piece of software is fit for its
intended purpose. It can be split into two main categories; functional testing
and non-functional testing. Functional testing tools are well accepted for
repetitive tasks, such as regression testing. They work on the basis of capturing
tests, scripting tests and replaying those tests. Load and performance testing
tools are also frequently used to check scalability and to plan capacity.
However some more advanced automated tools are emerging to support testing
and quality assurance processes, including:
• test management and planning
• requirements analysis and test case generation
• inspections and reviews
• test wrappers.

Test Management and planning tools

Current support for test management and planning
Testing needs to be built into the development cycle of any piece of software.
To be productive testing need to be ordered, structured and visible. The
requirements of the testing activity need to be determined, because testing
without an objective wastes time and resources. The requirement has to be
translated into a set of specific objectives listing exactly what you need to see
from the test results. These will be refined from general, high-level objectives
into test cases. Each test case needs to have a scenario that describes what will
be put into it, and what the result should be. These scenarios should be re-used
from the analysis and design processes. All this requires the support of
planning, managing and monitoring in the same way as any other development
activity.
Over the last 3 years the need for tools to support test management has been
recognised by the mainstream testing tool vendors. Some test management
functions are included in most of the major tool sets (for example Mercury
Interactive’s TestDirector and Compuware’s QA Director). These support the
test management process in an integrated way. However there are other
automated tools in this area, that can be used alone, in conjunction with other
testing tools. For example tools such as T-Plan Professional support:
• planning tests, defining criteria and cross references
• constructing of test specifications and scripts
• documenting the sequence of results
• managing the execution of tests and capturing results.

Future ideas for tools to support test planing and management
Testing of e-commerce applications increases the need to manage inter-
dependent activities with tasks that may be conducted by staff in different
locations and even within different enterprises. This increases the need for
good planning and management. Automation is required to support identifying
and monitoring the critical path through the testing activities. In
circumstances with demanding deadlines it is vital that time spent on testing is

 5

© Ovum Ltd 2000. Unauthorised reproduction prohibited

directed towards the important tasks and not squandered (for example by
duplicate testing or testing interesting, but unimportant, parts of the
application). Testing of e-commerce applications requires automated workflow,
with all partners involved in the process sharing information about status of
their activities.
In addition automated tools would be useful to support definition and
documentation of test strategy. This task is often repeated from application to
application and therefore the repetitive parts of this activity are ideal for
automated support.
Acceptance criteria are often over-looked at the start on an application.
Deadlines usually determine when testing stops rather than the achievement
of specified levels of quality. Automated support for defining and documenting
acceptance criteria, early in the lifecycle, would be a useful way to assist test
managers in focussing the testing efforts.
Test management is still mainly conducted in an unsophisticated way and
therefore it is unlikely that the vendors will see the improvement of these
facilities as a high priority. We expect incremental improvements in this area.
It is likely to be 3 to 4 years before the tools reach the necessary level of
sophistication to provide fully automated test management support.

Requirements analysis and test case generation

Current support
Analysis and design level tools are available including case tools and visual
modelling tools, such as Rational Rose, or Aonix’s Software through Pictures, or
DOORS from QSS. If you are using automated support of your analysis and
design process then you may not need testing tools to support your
requirements management process.
However the testing tools that help with requirements management will be of
interest if you are struggling to keep control of the requirements. For example
a basic advance would be to use spreadsheets to manually capture
requirements, including those:
• agreed in meetings
• scribbled on whiteboards
• assumed by everyone on the project
• revealed informally by expert users.
The need for more formal support of requirements management has been
recognised by the mainstream testing tools vendors, for example, Rational
Software’s RequisitePro, Mercury Interactive’s TestDirector and Compuware’s
Reconcile.
These toolsets provide a storage mechanism for requirements and allow you to
cross reference requirements to tests. More sophisticated tools are available
that will:
• manage requirements
• validate requirements
• generate test cases.
These toolsets include the Caliber tools (which are based on cause-effect
diagrams) and Aonix’s Validator/Req (based on UML scenarios and use-case
diagrams)

 6

© Ovum Ltd 2000. Unauthorised reproduction prohibited

In addition some tools are emerging that can generate test scripts directly from
the code. These include Rational Software’s TestFactory, ParaSoft’s JTest (for
Java) and Attol’s Testware.

Future support
We would like to see these tools assist in risk management and offer further
help in prioritising test cases
We look forward to closer integration of test case generation with the main
testing tool suites and see the need to integrate testing and quality assurance
with design.

Inspections and reviews

Current support
Inspections and reviews are much neglected processes. They are techniques
that can bring benefits early on in the lifecycle. Possibly one of the reasons they
are neglected is due to the overheads in organising them. Therefore ReviewPro
from SDT is a useful tool as it automates the organisation and reduces the
bureaucracy in setting up and completing reviews. It supports a simple and
effective way of implementing the review process. It can support distributed
reviews across the web and TBI’s requirements management tool can also
support review of requirements across the web.
Several tools support static analysis of code. This gives you the ability to
automate your code reviews. The McCabe toolset is the leader in this area. The
static analysis tools all provide measures of the quality of the code and these
metrics can be used to predict troublesome areas of applications.

Test wrappers and capture/replay tools

Current support
A few smaller vendors, from their practical experience, have perceived a need
to make capture/replay tools easier to use.
WorkSoft has developed Certify, to drive the capture replay tools through
business processes. CMG has developed TestFrame to drive the capture replay
tools from action words. Graphtec has developed ActiveTest to help in the
strategy for scripting tests from Rational Robot tests

Future support
These tools are just being developed as commercial tools for general use. We
will be monitoring the market closely to see if they are indicating the future of
automated test tools.

 7

© Ovum Ltd 2000. Unauthorised reproduction prohibited

Selecting automated testing tools

What should you do?

Develop a test strategy for process automation
To be efficient testing needs to be directed to meet the critical risks of your
applications. Each enterprise needs to consider automation on a case-by-case
basis. You need to develop a strategy to adopt automated quality assurance and
testing tools as part of your overall management strategy. Managing the
testing process provides a key to successful applications.

Automated testing
The mainstream testing tools will help you complete tasks quickly and
efficiently, specifically in testing the presentation layer, regression testing and
load and performance testing. Testing tools come in different shapes and sizes.
You may decide to make a strategic decision to invest in tools to support your
entire build processes. Or you may decide to make a tactical investment in a
value for money testing tool to assist you meet your immediate deadlines.
Investing in automated testing tools provides some insurance against the risks,
however just selecting a testing tool is not the solution to the problem. It is left
to you to determine which risks you need to focus your testing on and whether
the testing tool is taking you where you want to go in building your
applications.
You need to ensure that you select tools that will fit into your culture and to
plan time for training and implementation of those tools. Selection of the wrong
tools can be expensive, not just the initial costs of the tool but the costs in
training, implementing and supporting the tool.

Scoping your testing tool requirements

Ovum model and checklists
Ovum has a model of testing tools in 7 dimensions:
• test planning and management
• requirements analysis and test case generation
• inspections and reviews
• code quality
• functional testing
• load and performance testing
• web application testing
For each of these dimensions checklists are used to evaluate the tools. Each
checklist has many criteria. From the checklists, overall scores are obtained to
allow comparison between the different toolsets.

Planning for quality

You need to make sure that you plan enough time for testing and quality
assurance activities. This is particularly important if you are using new tools

 8

© Ovum Ltd 2000. Unauthorised reproduction prohibited

for the first time. Although the tools are likely to save you time in the long run
you will need to plan for their implementation.

Follow best practice
Existing best practices need to be adapted to meet the demands of e-commerce
and the fast rate of change in the current application development climate.
Quality assurance managers and test managers now require flexibility in their
approach. New tools and techniques need to be explored and piloted.
Continuous improvement of testing processes is required. It is an exciting time
as a new body of knowledge and test products emerges.

 ‘Lets stop those bugs being born!’
Is the main message of this paper and is a quote from David Geleprin of SQE.

Miriam Bromnick

Biography
Miriam Bromnick is the editor of Ovum Evaluates: Software Testing Tools. In
this role she makes in-depth evaluations of the leading software testing tool
sets. She also researches into the background issues underlying testing and is
currently interested in the testing of e-commerce applications. Her previous
software experience spans 20 years. She followed a traditional IT career path in
the commercial sector from programmer to analyst and then to project
manager. She has managed testing teams in blue chip commercial
organisations. As a testing and quality expert she has developed and supported
software testing procedures and methods. She believes in continuous
improvement and has herself recently gained a first class honours degree in
Information Management.

QWE2000 Session 1A

Speaker
(Organization)

Mr. Jean Hartmann, Mr. Claudio Imoberdorf [USA]
(Siemens Corporate Research)

"Functional Testing Of Distributed Component-Based
Software"

Key Points

Structured test design based on UML state charts.●

Tool support for test generation and test execution.●

Methods suitable for testing individual components or sets of integrated components.●

Presentation Abstract

Increasing numbers of software developers are using the Unified Modeling
Language (UML) and associated visual modeling tools as a basis for the design and
implementation of their distributed, component-based applications. Once developed,
however, test cases must be designed, generated and executed to validate the
components. This is especially important for unit and integration testing.

At Siemens Corporate Research, we are addressing this issue by integrating our test
generation and test execution technology with commercial UML modeling tools such
as Rational Rose; the goal being a design-based testing environment.

In order to generate test cases automatically, developers first define the dynamic
behavior of their components via UML Statechart Diagrams. These views then need
to be annotated with additional, test-specific information such as coverage criteria,
data variations and interconnected, in the case of multiple components.

With the help of our test generation technology, test cases are then systematically
derived from the annotated UML StateChart Diagrams and executed using our test
execution environment, which was developed specifically for interfacing to
components based on COM/DCOM and CORBA/IDL middleware.

Providing such a design-based testing environment ensures major benefits for
developers:

With minimal additional effort, developers can reuse their component designs
as test specifications. In the case of code changes, these test specifications
can be updated and used as a basis for automatically generating a new set of
regression tests.

QWE2000 -- Conference Presentation Summary

http://www.soft.com/QualWeek/QWE2K/Papers/1A.html (1 of 2) [9/28/2000 10:57:02 AM]

Developers no longer need to manually implement custom test drivers for
components, which can be especially tedious and error-prone in the case of
distributed components. Executable test drivers are automatically generated
directly from the test specifications.

The environment can be applied to individual as well as a collection of
components, making it suitable for use during unit and integration testing.

In future, we see the delivery of software components being accompanied with a
standardized test specification, possibly based on UML StateChart Diagrams. This
will be necessary to ensure compliance of the component as it is integrated into a
larger software system.

About the Speaker

Jean Hartmann is a project manager at Siemens Corporate Research responsible for
software testing technology. His research interests focus on new techniques and
tools for testing components, graphical user interfaces, and internet-based systems.
He received the Ph.D. degree in computer science from the University of Durham,
UK, in 1993 where is thesis topic emphasized improved regression testing
techniques.

Claudio Imoberdorf is a Member of the Technical Staff at Siemens Corporate
Research. He has seven years experience in the area of software design, software
developmemnt, and component technologies. Prior to joining Siements he was a
lead designer on a component-based building automation system at Siemens
Building Technology, Switzerland.

QWE2000 -- Conference Presentation Summary

http://www.soft.com/QualWeek/QWE2K/Papers/1A.html (2 of 2) [9/28/2000 10:57:02 AM]

1

Seite 1

Functional Testing of Distributed, Component-Based Systems
Quality Week Europe 2000

Slide 1

Software Engineering

Jean Hartmann and Claudio Imoberdorf

Siemens Corporate Research

Princeton NJ 08540

Tel: ++1 609 734 3361

Fax: ++1 609 734 6565

Email: jhartmann@scr.siemens.com

Functional Testing of Distributed,
Component-Based Systems

Functional Testing of Distributed, Component-Based Systems
Quality Week Europe 2000

Slide 2

Software Engineering

Motivation

Siemens products tend to focus on the embedded market
Development of domain-specific frameworks within Siemens is growing,
e.g. telecomms, industrial automation, energy distribution
Most Siemens frameworks make use of COM/DCOM and are event-
based rather than data-driven
The components used in these frameworks are being developed in-house
and/or purchased from third-parties
Emphasis is on unit and integration testing of these components
We must use standardized techniques and tools to model these
components and their runtime behavior...
…so that we can use the models to:

� define test designs/specifications
� derive test cases and execute them!

2

Seite 2

Functional Testing of Distributed, Component-Based Systems
Quality Week Europe 2000

Slide 3

Software Engineering

 Rational Rose Test Generation Test Execution
 Modeling Tool Tool (TDE/UML) Environment (TECS)

 (Step 1) (Step 2) (Step 3)

COM Interface &
TSL Test Design

Interface Test
Language (ITL)

TnT : UML-based Test Generation and Execution
Environment

Functional Testing of Distributed, Component-Based Systems
Quality Week Europe 2000

Slide 4

Software Engineering

Step 1 : Modeling Component Behavior - Goals

Component models are based on a standardized design notation =>
UML
Component behavior could be modeled using either of these UML
dynamic views:

� Sequence or Interaction Diagrams (Message Sequence Charts)
� Statecharts (our approach)

This modeling approach:
� focuses on black-box testing
� supports unit and integration testing (individual/collections of

components)
� addresses COM-specific testing issues
� aims at automating the test generation and execution steps

3

Seite 3

Functional Testing of Distributed, Component-Based Systems
Quality Week Europe 2000

Slide 5

Software Engineering

Step 1: Modeling Component Behavior - Definition

A Statechart should express the typical and erroneous runtime
behavior of a component
For test generation, data variations of the event parameters need to
be defined and specified
To enable integration testing, a new transition labeling scheme is
provided to describe the component interaction (via events)
For integration testing, users define the collection of components to
be tested (subsystem definition)

Significant assumptions are being made:
� Point-to-point communication semantics between components rather than

a shared (global) event model
� Communications are synchronous (blocking) rather than asynchronous

Functional Testing of Distributed, Component-Based Systems
Quality Week Europe 2000

Slide 6

Software Engineering

A
Timer

Receiver

rxport

Comch

txport

timing

Transmitter

timer

tuse r

cherror

ruser

Example: A Communications Protocol

Focusing on integration testing
We want to generate test cases to
validate component interaction
within subsystem A -
Transmitter_Timer
This subsystem has:

� External interfaces:
tuser
timer
txport

� Internal Interfaces:
timing

4

Seite 4

Functional Testing of Distributed, Component-Based Systems
Quality Week Europe 2000

Slide 7

Software Engineering

Tim
er

Transmitt
er

timin
g

Sen
d_us
er

Tim
eout
_con
trol

Com_
chann
el

Example: Describing Component Behavior and Interaction

Functional Testing of Distributed, Component-Based Systems
Quality Week Europe 2000

Slide 8

Software Engineering

Step 2 : Generating Test Cases from Models

The following TnT-internal processes are now executed:
� extraction of the relevant data from the Rose repository (not the .mdl

file!)
� resolution of the multiple send/receive events on Statechart transitions -

these are held in an intermediate model
� computation of a global behavioral model based on matching send and

receive events
• using incremental composition and reduction algorithm of linear complexity

� making use of any subsystem definitions defined by the user to improve
scalability

Generating test cases from the global behavioral model
� coverage criterion: all transitions (within/between components)

5

Seite 5

Functional Testing of Distributed, Component-Based Systems
Quality Week Europe 2000

Slide 9

Software Engineering

Timer
(expande

d)

Transmit
ter

(expande
d)

Example: Composing a Global Behavioral Model

Transmitter_Timer
(composed)

compos
e

user

chann
el

timer

timin
g

Functional Testing of Distributed, Component-Based Systems
Quality Week Europe 2000

Slide 10

Software Engineering

Example: Test Case Generation for Subsystem A

Transmitter_Timer
(composed)

Test Cases for
Transmitter_Timer

TEST CASE #1
* IN user.message();
* OUT channel.send
* IN channel.ack();
* IN user.message();
* OUT channel.send
* IN channel.ack();

TEST CASE #2
* IN user.message();
* OUT channel.send
* IN timer.interrupt();
* OUT channel.send
* IN channel.ack();
* IN user.message();
* OUT channel.send
* IN channel.ack();

6

Seite 6

Functional Testing of Distributed, Component-Based Systems
Quality Week Europe 2000

Slide 11

Software Engineering

Step 3: Executing the Generated Test Cases

Test execution requires the
component under test to be
stimulated and its response
verified

Verification in this context
means : which events are being
received and when?

These events can be either
synchronous or asynchronous

We developed an event pattern
matching language (ITL) to help
with verification

IA

IU

IV

O bjec t1 : A

IX O bjec t2 : B

IB

1 . doX Y ()

2 . onO K ()

3. done()

4. m sg()

IY
O bjec t3 : C

Sam ple C om ponent

Test D river
O bjec t

Test D river
Sink O b ject

Test D river
IU

IV

IX

IY

Test Driver
Object

Test Driver
Sink Object

Test Driver

Subsystem A

Component1
Component2

Component3
Component4

Functional Testing of Distributed, Component-Based Systems
Quality Week Europe 2000

Slide 12

Software Engineering

Step 3 : TECS - Test Exeution Tool for COMponents

TECS provides:
� test harness library
� sink generator
� test execution monitor

(TCC)
It can be run as a
standalone tool or as
part of TnT
It is integrated into Visual
C++ 5.0/6.0
Supports automated
regression testing during
unit and integration
testing

7

Seite 7

Functional Testing of Distributed, Component-Based Systems
Quality Week Europe 2000

Slide 13

Software Engineering

Summary

We are developing a UML-based test generation and
execution environment for COMponents
It is a unique toolset - no other commercial testing tools
provide these features
Targeted at event-based systems developed in C++/COM
under Windows NT
We have started to apply it within Siemens, e.g. SIPLACE
Pro product framework - the component modeling is being
completed
We are continuing to refine and improve TnT…

A paper is available - it was presented at the International
Symposium on Software Testing and Analysis (ISSTA
2000)

QWE2000 Session 1I

Dr. Lingzi Jin [UK]
(FamilyGenetix Ltd.)

"Introducing Quality Assurance Into Website
Development: A Case Study For Website Quality

Control In A Small Company Environment"

Key Points

Website testing process●

Test planning and design●

Automated web testing●

Presentation Abstract

The rapid development of internet technology and e-commerce gives opportunities to
many small companies who are developing various websites. Most of them do not
have quality control in place. This paper is divided mainly into two parts. Firstly, it
describes real world experience of setting up quality assurance and introducing best
practice of website testing into such companies. The second part shows how formal
testing techniques are applied in test case design and automated testing tools are
used for the development of a website GeneAlert for genetic risk analysis.
Familygenetix was previously a software publishing company specializing in software
for genetics, chemistry and mathematical modeling. It now converted business focus
to provide service for health care and software development for genetics research.
All software development is in house. It started with somewhere between "initial" and
"phase definition" levels of software testing [1]. Though software testing is defined as
a phase that follows coding and testing is separated from debugging, test planning
and test data preparation is done without proper requirements specification and
post-code, execution-based testing is considered the primary testing activity.

About the Speaker

Dr. Lingzi Jin graduated from Department of Computer Science, Nanjing University,
China, in 1982. She had her PhD degree in Software Engineering from Department
of Computer Science, Nanjing University, China, in 1987. Lingzi Jin is a software test
manager of FamilyGentix Ltd. Before she joined FamilyGenetix in Feb. 1999, she
worked in academic for about 10 years teaching and doing research in software
engineering. She is the co-author of about 30 papers and books. She is currently
interested in applying formal testing techniques to industrial scale software, software
process improvement and measurement of software quality.

QWE2000 -- Conference Presentation Summary

http://www.soft.com/QualWeek/QWE2K/Papers/1I.html [9/28/2000 10:57:16 AM]

1

Copyright © 1999-2002 FamilyGenetix ®. All rights reserved

Quality Assurance and
Testing Web-based Applications

— A case study in a small company
environment

Lingzi Jin

FamilyGenetix Ltd,
The Magdalen Centre, Oxford Science Park,

Oxford OX4 4GA, UK
Email: lingzi@familyGenetix.com

Copyright © 1999-2002 FamilyGenetix ®. All rights reserved

Outline
• Introduction

• Setting up quality assurance system

• Testing FamilyGenetix risk assessment service

• Conclusion

2

Copyright © 1999-2002 FamilyGenetix ®. All rights reserved

Problems of software development in
small companies

• Lack of rigorous and stable development process

• Lack of documentation

• Lack of control on change requests

Copyright © 1999-2002 FamilyGenetix ®. All rights reserved

Setting up a quality assurance system

• Background of the company

• The quality improvement process

– Introduction of a configuration management system

– Introduction of a pre-defined development process

– Introduction of automated software testing tools

– Definition of testing process

3

Copyright © 1999-2002 FamilyGenetix ®. All rights reserved

The development process

High level process flowchart

Software Concept

Business Analysis

System Analysis

Architecture Design

High Level Design

Initial Estimation

Schedule & Risk Analysis

Stage 1

Stage 2

Stage 3

Stage N Production

Copyright © 1999-2002 FamilyGenetix ®. All rights reserved

Stage flowchart

Detailed Design

Detailed Estimate

Code & Unit Test Documentation

Testing

Delivery

Analysis of Stage

Update Estimates

4

Copyright © 1999-2002 FamilyGenetix ®. All rights reserved

12-step testing process (1)

Step 1. Requirements phase testing by document
review or walkthrough

Step 2. Design phase testing by document review or
walkthrough

Step 3. Perform risk analysis

Step 4. Establish test objectives

Step 5. Construct test plan

Step 6. Programming phase testing by unit and
integration testing and code walkthrough

Copyright © 1999-2002 FamilyGenetix ®. All rights reserved

12-step testing process (2)

Step 7. Build system test data and execute tests
manually or automatically and report results

Step 8. Regression testing and defect tracking

Step 9. Acceptance testing

Step 10. Installation testing

Step 11. Software change (maintenance) testing

Step 12. Measurement and evaluation of QA
effectiveness

5

Copyright © 1999-2002 FamilyGenetix ®. All rights reserved

Testing Web-Based Applications:
FamilyGenetix risk assessment service

• Background: the application
• The testing process

– Test Plan
– Test case design

•GUI testing using formal state transition rules
•Functional testing using task analysis to generate

scenarios
– Usability test

Copyright © 1999-2002 FamilyGenetix ®. All rights reserved

GUI testing

[pre-condition] {events} [post-condition]

Specifies the window
before operations, e.g.

Specifies the window
after operations, e.g.

Specifies interface
operations, e.g.

State transition rules:

[name =Timo, sex =male, age =35-39, ethnicity
= White (Northern European), sons =0,
daughters =0, brothers =0, sisters =0,
cancers =checked, breast cancer = unchecked,
bowel cancer = unchecked,
benign cancer = unchecked,
childhood cancer = unchecked]

{breast cancer = checked,
age-for-breast-cancer = 40-44,
press (Next)}

[new msgbox (“Manifestation
age is greater than current age”]

6

Copyright © 1999-2002 FamilyGenetix ®. All rights reserved

The window before operation

Copyright © 1999-2002 FamilyGenetix ®. All rights reserved

Functional testing

Step 1. The selection or generation of a set of
task scenarios

Step 2. The analysis of the system’s behavior on
each task scenario to get an activity list

Step 3. Executing the test

7

Copyright © 1999-2002 FamilyGenetix ®. All rights reserved

Scenarios and task analysis

Tasks for FamilyGenetix risk assessment services:

– Risk assessment for breast cancer

– Risk assessment for ovarian cancer

– Risk assessment for bowel cancer

– Risk assessment for hypercholesterolemia

– Edit family pedigree information

Copyright © 1999-2002 FamilyGenetix ®. All rights reserved

Scenario generation -- an example

“The individual has an increased risk of developing
breast cancer if he/she has 3 or more affected first or
second degree relatives on the same side of the family,
regardless of age at diagnosis.”

• 3 affected first degree relatives on the paternal side
• 3 affected first degree relatives on the maternal side
• 3 affected second degree relatives on the paternal side
• 3 affected second degree relatives on the maternal side
• 1 affected first degree relative and 2 affected second degree

relatives on maternal side
• 1 affected first degree relative and 2 affected second degree

relatives on paternal side ...

8

Copyright © 1999-2002 FamilyGenetix ®. All rights reserved

Test case and activity list generation

Activity list:
Step-by-step interface operation events

Scenario:
e.g. “3 affected first degree relatives on the maternal side”

Detail scenario:
e.g. (mother, daughter, sister), (mother, brother, son), ...

Test cases:
e.g. Family pedigree diagrams

Copyright © 1999-2002 FamilyGenetix ®. All rights reserved

Usability testing

9

Copyright © 1999-2002 FamilyGenetix ®. All rights reserved

Usability testing

• The protocol
– video started recording
– the user sat at computer and put on microphone
– the user was asked about how familiar with

computer, Internet and healthcare
– some exercises were given to enter a specific family

pedigree to assess risk
– the user was asked to answer some questions of the

exercise

• The main result
– nearly every user used the system successfully
– users said it was easy to use the system

Copyright © 1999-2002 FamilyGenetix ®. All rights reserved

Conclusion

• Set up quality assurance system in a small
company

• 12 step testing process

• Formal functional/GUI testing of web
application

• Usability testing

 1

Quality Assurance and Testing Web-based Applications

— A case study in a small company environment
Lingzi Jin

FamilyGenetix Ltd, The Magdalen Centre, Oxford Science Park,

Oxford OX4 4GA, UK, Email: lingzi@familygenetix.com,

Abstract

Quality assurance in software development has been studied in the context of large IT enterprises,
but less well understood in the context of small software companies. Existing theories and
techniques such as the Capability Maturity Model have been proposed for large -scale companies.
Such techniques may not be suitable for the majority of small software companies. However, their
survival in the intensive competition in the IT industry heavily depends on their ability to deliver
quality products and services on time. This paper describes a real world experience in setting up a
cost effective quality assurance system and introducing best practice of website testing into a small -
scale software company. It also shows how formal test ing techniques are applied in test case design
and how automated testing tools are used for the development of a website for genetic risk analysis.

Keywords: quality assurance, website testing process, test planning and design

1. Introduction

The rapid development of Internet technology and e -commerce gives opportunities to many small
companies who are developing various types of websites. However, as competition in the brutal IT
industry gets more and more intensive, quality assurance is becoming a crucial i ssue for these
companies to survive. Unfortunately, most of them do not have any quality assurance system in
place. It is observed that small software companies often suffer from the following problems in the
development of software.

• Lack of rigorous and stable development process

There is no pre -defined software development process for the development teams to follow.
Development activities happen randomly without well -established plan. A common practice in such
an environment is to start the development p rocess with some sort of interface design, then jumping
into coding, without requirements analysis and specification, without any software architectural
design and evaluation, nor usability analysis. Once an architectural or design problem is found in
later stage of development, it is very difficult to change the system. The success of a project solely
depends on the key member(s) of the project.

• Lack of documentation

The intensive pressure on a development team to deliver a software system within a very l imited
period of time often results in cutting off documentation. It is often the case that the only thing a

 2

tester gets is a piece of software code without any documentation about what it is supposed to do. A
tester may have to rely on intuition and softw are development and testing experience and to get
some explanation from the developers when he doubts the correctness of the software. However,
explanations are often vague and incomplete. Because functionality is not precisely defined in
documents, there is no clear distinction between “feature” and “bug”. Whether the software crashes
is often used as the hard evidence of bugs and the judgment for fixing them. Moreover, the tester
may be given no time for test planning because he has no chance to understan d the software before
he really sees the software running. Once he gets an executable software system, the delivery
deadline is already approaching, which leaves little time for careful planning and test case design.

• Lack of control on change requests

Changes of code, and even design, may be dealt with in an ad hoc way without proper control and
careful consideration of what should be a better solution. Developers may pick up whatever bugs
they think they can fix and make changes to the code. Such changes neither take risk profiles into
account, nor properly notify other people involved in the development. In particular, technical
writers and testers can be unaware of what has been changed.

Potential consequences of such problems are the late delivery, inc reased cost and unstable quality.
Late delivery results in loss of market share and less productivity. Cost will be increased if the
development is behind schedule. A product full of bugs may seriously damage the company's
reputation and the market share of all of its products. With the increasing competition in the IT
market, quality assurance is becoming a crucial issue related to the survival of small software
companies. Therefore, a quality assurance improvement process is essential for the survival an d
growth of small software companies. Unfortunately, there is no such well -established theory and
technique ready to use for those companies. Existing methods in the literature such as the
Capability Maturity Model are more suitable for large -scale enterprises.

This paper describes a real world experience in setting up quality assurance system and introducing
best practice of website testing into such a company. It also shows how formal testing techniques
are applied in test case design and how automated t esting tools are used for the development of a
website for genetic risk analysis.

2. Setting up quality assurance system

2.1. The Company

The company in our case study is FamilyGenetix. It was set up in 1990 as Cherwell Scientific, a
software publishing company specializing in developing and marketing scientific software for
genetics, chemistry and mathematical modeling. Within 10 years, it successfully developed and
marketed several products for pharmaceutical and health care markets. It has now changed business
focus to provide services for health care through the Internet while continuing to develop software
for genetics research. All software development is in house. As with most small software
companies, the number of technical staff fluctuates. The process of setting up a quality assurance
systems with the company started about one and half years ago. At that time, its level of quality
management was somewhere between “initial” and “phase definition” [1]. Though software
testing was defined as a phase that follows coding and separated from debugging, test planning and

 3

test data preparation was done without proper requirements specification and design documentation.
Post-code execution -based testing was considered as the primary testing activity.

Having realized the importance of quality assurance and learnt from past experiences and lessons,
the move to set up development process and quality assurance process started.

2.2. The process of improvement

The first step of introduction of a quality assurance system is t he introduction of a configuration
management system. In the selection of a tool from a large number of systems available on the
market, a long-term quality improvement plan was in mind. In particular, the following
requirements were considered. Firstly, i t must be easy to use by the software developers to reduce
the resistance to introducing quality management mechanism. It must let software developers see
the benefit of using such a tool. Secondly, it should tightly integrate version control and change
request so that the tool can deal with quality problems due to uncontrolled modifications. Thirdly, it
should support defect tracking because it is a key issue in software quality management. After
evaluation of several similar candidates, StarTeam was chose n because of its easiness of use and
tight integration between version control and change request. The introduction of the tool was an
immediate success. It was welcomed by the developers, tester and managers. It significantly
reduced the confusion caused by using different versions, reduced the work on reporting errors
found in testing and tracking the work on fixing bugs. However, the use of configuration tool does
not solve the problem of documentation and modification control.

The second step was the introduction of a pre-defined development process. A modified staged -
delivery development process was adapted from RAD development process [2]. It was approved by
the company's management and agreed by development teams. High -level process flowchart and
stage flowchart are illustrated in Figure 1 and Figure 2, respectively. This process was believed
suitable for the company because of its following advantages.

• Progress is easier to track.

• Estimates can be successively refined.

• Critical functionality is available earlier.

• Problems become evident and can be assessed earlier.

• Risks are reduced early in the development cycle.

• Provides a balance between flexibility and efficiency.

The modifications of the process model were also made to suit to scale of the company. They are
(a) the addition of an estimation step after high level design and an estimation step in each stage,
and (b) addition of a major decision point after risk review. They are intended to address the
weakness of small companies, as they are financially weak and unable to sustain high risks and loss.

 4

Figure 1. High-level process flowchart

Process flow matrix and documentation standards were also defined as part of the process model.

The implementation of the process model was much more difficult than the first step. Its success
was less obvious and self-evidence. When it was started, some developers still considered
documentation as a burden and secondary to coding. Sometimes documents still came after coding.
However, the production of requirements specifications at earlier stage enabled the testing team to
plan the testing work properly and to perform testing more efficiently and effectively. As a
consequence, products tend to become stable in less time with less major revisi ons.

In parallel with the definition of development process model, automated software testing tools were
introduced and used in the development. In the selection of a tool from a number of similar
candidates available on the market, the long -term view of quality improvement was in mind again.
The following requirements were particularly considered. Firstly, the tool must be able to support
both the current testing tasks, such as automated GUI testing. Secondly, it should also support
testing tasks in the near future requirements, such as web load testing, which was not required at the
time of evaluation of the tool but soon became a daily testing activity afterwards. Finally, it should
have the potential of supporting the relatively long -term future testing requirements, such as
supporting testing in the whole software development life cycle like testing at requirements and
design phases. In view of the full implementation of development process model, testing at
requirements and design phases will become an important part of quality assurance activities. The
use of automated testing tool successfully reduced workload on GUI testing and improved the
testing efficiency. However, the strength of the tool was unable to be fully realized due to the

Software Concept

Business Analysis

System Analysis

Architecture Design

High Level Design

Initial Estimation

Schedule &
Risk Review

Stage 1

Stage 2

Stage 3

Stage N Production

Major Decision Point

 5

frequent change of interface design. Every time changes to the interface were made, many scripts
have to be re-written/re-record, though some techniques can be used to mitigate this problem. This
has become a large part of testing task.

Figure 2. Stage flowchart

The third step in the process of setting up a quality assurance system was the definition of a detailed
testing process. Based on existing software testing processes proposed in the literature such as [3,4],
a testing process was also defined, whic h consists of 12 steps to be explained in the next section.
The implementation of this testing process has not completed, yet. It will be synchronized with the
implementation of the development process model.

2.3. Defining testing process

Testing in small -scale software companies must be suitable to the following characteristics of such
companies. In particular, a small company has very limited resource available for spending in
testing. Therefore, testing cannot be done thoroughly on as many aspects and/or co mponents as it
could be in a large enterprise. It requires more careful planning and trade -off between quality and
time-to-market. Secondly, the development process may not be as rigorous as it might be in a
matured large enterprise. As a result, the docum ents and information that a formal testing method
depends on may not be always available. Hence, the testing process must be flexible to be able to
handle such situations. On the other hand, small companies also have advantages. For example,
testers often work closely with the developers in a friendly environment. Communications between

Detailed Design

Detailed Estimate

Code & Unit Test Documentation

Testing

Delivery

Analysis of Stage

Update Estimates

 6

the testers and developers can happen anytime in many different forms informally or formally. Such
communications are of vital importance for mutual understanding of the rol es in quality
management and the ease of exchange of knowledge about the application domain, the system's
designs and their rationales that are difficult to document in written formats. Based on these
features, we defined a testing process that consists of 12 steps. Each step is explained as follows.

(1) Requirements phase testing by document review or walkthrough

Experience has shown that the requirements phase is the most cost -effective phase in which to
detect a system flaw. It should be made sure that the defect at this point will not be incorporated
into the design and coded into a program. The primary objectives of testing requirements are to:

§ Determine that the requirements fairly represent what the user needs.

§ Determine that the needs have been defi ned and documented.

§ Determine that the business problems have been solved

§ Verify that the control requirements have been specified.

§ Verify that a reasonable alternative was selected among the most probable alternative solutions.

(2) Design phase testing by document review or walkthrough

The user and IT personnel normally carry out this type of walkthrough. The design deliverables are
inspected. The review team looks for three types of defects: (a) errors, meaning something has not
been put correctly, (b) missing, meaning something that should have been put in, but was not; and
(c) extra, meaning something not intended was changed or added.

For both requirements and design phase testing, guidelines and checklists should be developed to
ensure all the delive rables reach high standard.

(3) Perform risk analysis

The main tasks of risk analysis are: (a) to identify the most important business functions as high -
risk components that must be tested thoroughly; and (b) to identify certain error -prone components
specific to the application that also must be tested rigorously. This analysis can be based on
documentation about requirements, business model/functions and business risk assess and past
development experience. Risk analysis will enable a test manager to all ocate test resources in
priority of risk profiles, i.e., the high risk parts get the most test effort, medium -risk parts get less,
and minimal resources for low -risk testing areas.

(4) Establish test objectives

A test objective is a statement of what the tester wants to accomplish when implementing a specific
testing activity. Each testing activity may have several objectives and there are two levels of
objective specification. A test plan should contain high -level general objectives in the overview
section and specific low-level “provable” objectives for each particular type of testing being

 7

implemented. Test objective priorities and completion criteria should also be given in this step.
Staffing and resource allocation can be decided at this stage, though , as a small company, only one
or two testers are available. Split of tasks is actually not so hard.

(5) Construct test plan

The purpose of the test plan is to specify the test design, test construction, test execution, and test
analysis process. The test plan also describes the test environment and required test resources. It
should provide measurable goals by which management can gauge testing success and facilitate
communications within the test team, the test team and the development team, and between the test
team and management.

(6) Programming phase testing by unit and integration testing and code walkthrough

Sufficient self-testing work should be done by the developers and among the development team
before the software is passed to testers. The cod e walkthrough should cover things such as: program
complies with methodology, program conforms to design, program is maintainable, and more
detailed things such as data integrity controls implemented, authorization rules implemented,
security procedures implemented, and operating procedures developed.

(7) Build system test data and execute tests manually or automatically and report results

Testers prepare data in files or generate some database using an automated testing tool, decide what
the output would be, run the software under test, analyze processing results and enter bug reports
into a bug database. In the case of automated testing, scripts should be planned and recorded. They
can then be maintained and run repeatedly.

(8) Regression testing and defe ct tracking

When change requests are raised and fixing has been done, regression testing will be run to verify
that the software works correctly. At the end of regression testing, make sure all major and
important bugs have been fixed before it is signed o ff for release to the user.

(9) Acceptance testing

Theoretically speaking, this is the final check by the users to confirm that the software functions as
they require. Many users may not have the skill sets needed to perform a proper acceptance testing.
They need IT professional’s help to develop acceptance criteria, test cases and reports, and finally
reach an acceptance decision.

(10) Installation testing

Installation places a system under development into an operational status. Concerns needed for
testing are things such as: installation complies with methodology, integrity of production files is
verified, accuracy and completeness of installation are verified, and documentation is complete.

(11) Software change (maintenance) testing

 8

This type of testing occurs after the software has been placed into production. The work involves
update of the test plan/data, running regression testing, and in particular, checking documents
changed accordingly. Automated testing scripts are particularly useful to make su re the changes did
not break the other parts of the software, if they are maintained properly.

Change control should be carried out before any change occurs. A change control board meeting
should be held to decide what kind of changes should be made and t o estimate risks.

(12) Measurement and evaluation of effectiveness of QA

This activity consists of two parts: first, it evaluates the performance of individuals conducting the
test; and second, the results of the evaluation can be used to modify the test p rocess. The objective
of assessment is to identify problems so that corrective action can be taken.

3. Testing web-based applications

In this section, we take an example of testing a web -based application to illustrate the testing
planning and techniques.

3.1. The application

The real example discussed in this section is FamilyGenetix risk assessment service. It provides
Internet-based online services to healthcare professionals and the public through insurance and
healthcare organizations, enabling them to assess their risk of being affected by different inherited
medical conditions. We currently support risk assessment for breast cancer, ovarian cancer, bowel
cancer and family hypercholesterolemia . The development of the system has followed the process
model presented above.

3.2. Test planning

During the planning phase in testing the system, the following issues are considered:

§ Compatibility testing

Since the system may be accessed through the Internet, the users may use the system via various
different WWW browsers . These browsers are not as compatible as they should be. Therefore, to
ensure the system can be used with by most users, the compatibility for different versions of
browsers are tested.

§ GUI testing

GUI testing checks that window objects and characteristi cs, such as menus, size, position, state, and
focus, conform to standards. Navigation checks also belong to GUI test.

§ Functional testing

Functional testing verifies the application by interacting via the GUI and analyzing the result. The
goal of this testing is to focus on the requirements that can be traced directly to the functional

 9

requirements and verify proper data acceptance, processing, and retrieval, and the appropriate
implementation of the functions.

§ Performance and load testing

Performance testing and load testing verifies the performance behaviors of the system under both
normal anticipated workload and anticipated worse case workload. In particular, it verifies that the
system can sustained the maximum number of clients connected to the system when a large
database size has been reached to perform the same functions for an expected period. This is an
important issue for a system that provides the service to the public via Internet.

§ Usability testing

Usability testing evaluates the ease of use by experienced and inexperienced computer users.

§ Data and database integrity testing

Data integrity testing ensures that database access methods and data processes function properly
without data corruption.

§ Security and access control

Personal health information is private information, hence highly confidential. However, Internet -
based applications are vulnerable to hackers' attacks. So security and access control are very
important.

§ Failure/Recovery testing

Failure and recovery testing evaluates system' s ability to deal with failures. It verifies that the
designed recovery processes properly restore the database and system to a desired, known state.

3.3. Test case design

Having identified test requirements, test cases are designed to meet each test requirem ent. This part
describes the techniques to develop test cases for testing GUI intensive applications.

3.3.1. GUI testing using formal state transition rules

In a website, functionalities are triggered by operations like mouse clicking and keyboard entering.
A state transition representation of the system was derived from its design. It uses the pre/post -
condition-like formula in the following form to formally describe state changes before and after
these operations.

[pre-condition] { events } [post -condition]

For example, a user can enter information in a window shown in Figure 3. The state of the system
as shown in the window can be described as follows, where each item in the form of X = Y means
the attribute X is of value Y and each attribute indicates a con trol in the window with which user
can input information.

 10

[name =blank, sex =female, age =select age range, ethnicity = please select, sons =0,
daughters =0, brothers =0, sisters =0, cancers =unchecked]

The user may enter information in controls to change the value of the attributes. For example, the
following specifies events where the user enters 'Timo' to the control indicated by 'name', enters
'male' to the control 'sex', '35-39' to 'age', and so on.

{name = Timo, sex= male, age = 35 -39, ethnicity = White (Northern European),
sons=3, brothers = 2, sisters =1, cancers =checked}

Figure 3. Window before the event of entering information

After these actions, the states of controls in the window can be described as:

[name = Timo, sex= male, age = 35-39, ethnicity = White (Northern European),
sons=3, daughters=0, brothers = 2, sisters =1, cancers =checked, breast cancer =
unchecked, bowel cancer = unchecked, benign cancer = unchecked, childhood cancer
= unchecked]

Assuming that the information entered by the user does not change after the event, those attribute -
value associations defined by user's action need not to be repeated in the post -condition. Therefore,

 11

we simplify the representation of the post condition by only including those attribute -value
associations that are not just defined by the user. For example, the above post -condition can be
equivalently expressed as follows.

[breast cancer = unchecked, bowel cancer = unchecked, benign cancer = unchecked,
childhood cancer = unchecked]

A system's behavior can be formally specified by a set of such state transition rules. They are
formal and easy to understand. Moreover, each state transition rule in this form directly corresponds
to one test case.

Figure 4. Window displayed after checking the 'cancer' box

In many cases, the actual value of an attribute does not affect the result of an event. For example, in
this system, the only thing that triggers the display of the lower part of the window shown in Figure
4 is to check the “cancers” box. To specify s uch situations, we use the symbol '*' to indicate that an
attribute can take any valid input. The following is such an example.

[name =blank, sex =female, age =select age range, ethnicity = please select, sons =0,
daughters =0, brothers =0, sisters =0, c ancers =unchecked]

 12

{name = *, sex= *, age = *, ethnicity = *, sons= *, daughters= *, brothers = *, sisters
= *, cancers =checked}

[breast cancer = unchecked, bowel cancer = unchecked, benign cancer = unchecked,
childhood cancer = unchecked]

From a state transition rule which contains '*' value, a set of test cases can be derived by
instantiating values entered to the control to make sure other controls will not interfere with the
check box. For example, the above rule can be instantiated to obtain the foll owing rule, which
directly corresponds to a test case.

[name =blank, sex =female, age =select age range, ethnicity = please select, sons =0,
daughters =0, brothers =0, sisters =0, cancers =unchecked]

{name = Timo, cancers =checked}

[breast cancer = unchecked, bowel cancer = unchecked, benign cancer = unchecked,
childhood cancer = unchecked]

Figure 5. Window containing invalid input

 13

The following is an example of a transition rule that displays an error message when an invalid
input is entered, i.e. the number of sons is -3.

[name =blank, sex =female, age =select age range, ethnicity = please select, sons =0,
daughters =0, brothers =0, sisters =0, cancers =unchecked]

{name = *, sex= *, age = *, sons=-3, brothers = *, sisters =*, press (Next)}

[msgbox (“Negative sons?”)]

Another example of test case that involves the testing of input validity and error message display is
give below. It specifies the situation that, if the age of a disease diagnosed is greater than his/her
current age, an error message should be shown. See Figure 5.

[name =Timo, sex =male, age =35-39, ethnicity = White (Northern European), sons
=0, daughters =0, brothers =0, sisters =0, cancers =checked, breast cancer =
unchecked, bowel cancer = unchecked, benign cancer = unchecked, childh ood cancer
= unchecked]

{breast cancer = checked, age-for-breast-cancer = 40-44, press (Next)}

[msgbox (“Manifestation age is greater than current age”]

This representation of human computer interactions enables testers to work on an abstract
description of system's behaviors and functions in the form of GUI state changes rather than on
natural-language GUI definition documents. The pre -condition of a rule that defines the state
before an operation corresponds to the initial state where the tester should s tart. The part of the rule
that specifies the event to be performed corresponds to what information the tester should enter, and
what interface operation he should make such as which check boxes and/or buttons he should click
and what data he should enter through the keyboard. The post -condition of a rule specifies what the
tester should expect the system to respond, so it specifies the kind of verification points to be done
for the interface. Another benefit of using this representation is that test cases actually form test
scripts, which can be executed manually and corresponds very well to automated scripts. It can be
used in practice as a readable description of what record -playback scripts do.

3.3.2. Functional testing using task analysis to generate scenarios

The technique described in section 3.3.1 serves the purpose of testing system's state transitions
triggered by a human computer interaction event. For the purpose of functional testing, a systematic
way is needed to analyze system’s behavior to verify whe ther the system can perform required
business functions.

There are several ways to formally derive functional test cases, e.g., from activity diagrams in UML
[5]. In a real world, a tester may not have such diagrams from development team and he may not be
trained to use UML. The method used here is inspired by task analysis techniques [6] in Human -
Computer Interaction (HCI) research. Tasks are about behaviors. The basic idea of this method is to
analyze the behavior of the specified system on a set of task scenarios. Each task scenario
represents a set of situations that may occur in the use of the software system. The result of such

 14

behavior analysis is an activity list, a notion from HCI task analysis techniques but extended to
describe system's behavior. An activity list is a linear sequence of the events that happen inside the
system in temporal order. Such events include: computations performed by the software;
information exchanges between software components as well as between the system and its
environment; changes of the system's internal states; and system's reactions to stimuli from its
environment. Each action list can be used as a scenario for functional testing and can also be used
as the basis for record-playback scripts.

The process of generati ng test cases using this technique consists of the following activities:

1) The selection or generation of a set of task scenarios

2) The analysis of the system’s behavior on each task scenario to get an activity list

3) Executing the test

The identification of task scenarios starts with the functional requirements of the system. For
example, the following are among the list of task scenarios. Each scenario corresponds to one
general function of the system.

§ Risk assessment for breast cancer

§ Risk assessment for ovarian cancer

§ Risk assessment for bowel cancer

§ Risk assessment for hypercholesterolemia

§ Edit family pedigree information

Each scenario is then further decomposed into a number of scenarios according to the design of the
system. For our system, to assess the risk of each type of disease, the system is designed and
implemented based on the sets of guidelines developed in medical professional community. For
example, one of the US guidelines for breast cancer considers that the family history of a person
suggests that he/she has an increased risk of developing breast cancer if he/she has 3 or more
affected first or second degree relatives on the same side of the family, regardless of age at
diagnosis. A scenario can be identified for the situations when th e guideline applies to a person.

However, such a scenario is still not detailed enough to test the correctness of implementing the
guideline. Therefore, further decomposition is done by identifying the parameters in the guideline.
In this case, the parameters include the number of affected relatives, the degree of the relatives, and
the side of the family. Having identified the parameters, classic domain partition and boundary
analysis techniques or decision condition testing techniques can be applied to test whether the
guideline has been properly implemented. Each abstract test case represented in the form of the
values of the parameters becomes a task scenario. The following are among the scenarios that used
for testing this guideline.

§ 3 affected first degree relatives on the paternal side

§ 3 affected first degree relatives on the maternal side

§ 3 affected second degree relatives on the paternal side

 15

§ 3 affected second degree relatives on the maternal side

§ 1 affected first degree relative and 2 affected second degree relatives on maternal side

§ 1 affected first degree relative and 2 affected second degree relatives on paternal side

§ 2 affected first degree relatives and 1 affected second degree relative on maternal side

§ 2 affected first degree relatives and 1 affected second degree relative on paternal side

§ 4 affected first degree relatives on paternal side

§ 4 affected first degree relatives on maternal side

§ 2 affected first degree relatives and 2 affected second degree relatives on paternal side

§ 2 affected first degree relatives and 2 affected second degree relatives on maternal side

§ only 2 affected first degree relatives on maternal side … …

Such task scenarios may not be the final scenarios that can be directly used to derive activity list.
However, they often form the core of test scenarios. For each of the above scenarios, a set of test
cases in the form of family pedigree can be worked out. For example, for the scenario of “3
affected first degree relatives on the maternal side”, we can have (mother, daugh ter, sister), (mother,
brother, son), etc. Then, according to the process of interaction, a step -by-step activity list can be
obtained, which contains a sequence of interface operation events for constructing a family pedigree
and assessment. Executing of all these test cases in the form of sequences of events and comparing
the results with expected outcomes, i.e., guidelines, will ensure an adequate testing of the system.

Test scenarios also come from real cases. For example, a number of real cases are co llected from
the uses of our previously developed intelligent pedigree management system Cyrillic. Cyrillic
software can use the risk factors of family history to calculate risks of breast and ovarian cancers
and also enable you to enter your own data set for inherited disorders. A large catalogue of
pedigrees has been accumulated and has been used for internal testing inside the company.

3.4. Usability testing

Since our service is aimed at providing web -based tools for use by the general public, ease of use is
essential. The method selected here is to record, on video, typical end -users using the software –
without advice or interference [7]. This approach has been selected for the following reasons:

§ It is a pragmatic measure of whether people use the software s uccessfully.

§ It requires little expertise on the part of the person conducting the test (either to help the end -
user verbalize his thoughts or to aid the end -user without invalidating the test results).

§ It provides an objective and complete record of each end-user’s experience.

2 cameras, a scan converted, a “quad” and a video recorder were setup as shown in Figure 6, with a

 16

partition between the computer used by the participant and the equipment used by the test
conductor. A further digital camera (not shown) was used to provide a fourth image showing the
whole room. There are four images on the video monitor:

§ One looking at user’s hands on the keyboard and mouse,

§ One looking at user’s face, to get your reaction,

§ One showing what is on the screen and

§ One showing the whole room.

Figure 6. Setup of usability testing

Ten people took part in the usability evaluation, ranging from inexperienced computer user/ not an
Internet user, to experienced computer user/not an Internet user and expert computer user and
Internet developer. The participant was asked to sit at computer and to put on microphone and was
told that the video had started recording. Then he/she would be asked about how familiar he/she is
with computer, Internet and healthcare. After that, some exer cises were given to enter a specific
family pedigree to assess risk. The participant can stop the test at any time. Verbal comments can

 17

be made at any time during the test and recorded by the tape recorder. The participants were
encouraged to work on the exercises without help or comment from the test conductor as far as
possible. However, the conductor would answer questions when a participant really needs help.
There is no time limit for each exercise. After each exercise, the following questions were a sked to
the user:

§ Please tell me the risk level the person was judged to be at.

§ What should that person do next?

§ Overall how easy did you find the software to use?

§ Were the instructions clear?

§ What did you think of the on-line help?

§ Are there any points you would particularly like to make to us about the software or about this
test?

§ The participant would be asked whether he/she would like to try a further exercise, if
appropriate.

Nearly everyone used the tool successfully and said it was easy to use. Takin g roughly 10 to 15
minutes to enter a family of 8 people, on first use of the tool (without any help). Several participants
found some parts of the GUI (family tree review, tabs for the pedigree editor, the search facility for
selecting a previously used family history) confusing. It didn’t stop them using the tool
successfully. It was not obvious to some users that the risk report had several pages and that they
saw only the summary page. Several participants commented that it would be better to have yes/n o
options rather than a check box and that they would prefer to say explicitly when information was
not available.

Reviewing sessions afterwards is easy to do and works quite well. Audio monitoring is extremely
useful for reviewing. The results of usabili ty testing have been incorporated into user interface
design document for next release and such testing will be used at several stages in future projects.

4. Conclusion

In this paper, the experience of introducing a quality assurance system into a small comp any is
reported. In the process of developing and testing web -based applications, a set of testing methods
was developed.

In [8], three levels of requirements for testing hypertext applications have been identified. They are:

• the validation of the information contained in each node of the hypertext;

• the verification of the correctness of the implementation of the links between the nodes;

• the evaluation of the system structure for testing usability.

 18

Three sets of adequacy criteria have been proposed to adequately test hypertext applications. These
principles can be easily extended to web testing if each window is treated as a node and buttons
caused window switch as links. However, such links in web -based applications are more
complicated. Existing automatic testing tool can only partially support the testing at the lower
levels. For example, a tool like Rational SiteCheck can be used to find broken links in your help.
However, this cannot ensure that a link will bring you to the right place. Manually ch ecking this for
each build is labor-intensive and error-prone. It is better to be done by automated scripts guided by
adequacy criteria listed above. Some verification points can be set to check things like the title of
each help window. In this paper, the technology of formal representation of GUI intensive
applications is developed. State transitions formally specified by pre/post conditions of interface
events can be directly used to generate test cases for testing at the first level and second level. Su ch
test cases can be easily translated into test scripts used by automated testing tools.

Due to the complexity of web -based applications, a new level of testing must be added on top of the
second level for testing the correctness of the implementation of the functions. We further
developed the task analysis method proposed in [6] for this testing purpose. The method has proven
to be effective and efficient for practical applications.

The usability testing is of course at the highest level. However, it is essential for web sites that
provide public access. The testing process can be regarded as testing whether the design of human
computer interface can naturally lead the user from a given scenario to complete a sequence of
interface operation activities.

It is the effort of everybody in the company to make the change happen. We have seen the benefits
of the introduction of the development process and quality assurance system suitable for the scale of
the company. We will further improve them to raise the qu ality standard of our software products
and also increase productivity of the company.

References

[1] E. Dustin, et al, Automated Software Testing, Addison -Wesley, 1999.

[2] S. McConnell, Rapid Development, Microsoft Press, 1996.

[3] W. Perry, Effective Methods for Software Testing, Wiley, 1999.

[4] D. Mosley, Client-Server Software Testing on the Desktop and the WEB, Prentice Hall PTR,
2000.

[5] R. Binder, Testing Object -Oriented Systems, Addison-Wesley, 2000

[6] H. Zhu, L. Jin, & D. Diaper, Application of task analysis to testing software requirements,
Proc. of SEKE'99, June 17~19, 1999, Kaisersluatern, Germany.

[7] P. Sweetenham, Usability Testing Report for GA2, FamilyGenetix internal report, Sept.2000.

[8] L. Jin, H. Zhu & P. Hall, Adequate Testing of Hypertext Applications, Journal of Information
and Software Technology, UK, V39, No.4, 1997.4.

QWE2000 Session 1M

Mr. Ton Dekkers [Netherlands]
(IQUIP Informatica B.V.)

"Quality Tailor-Made (QTM)"

Key Points

Achieve "design to benefit" by optimising the product●

Functional requirements and quality aspects●

Controlling risk on product and process●

Presentation Abstract

A project runs a lot of risks related to the product to be delivered and related to the
process to realise the product. Based on this you can split up risks in two groups of
risks: product and process. Each group can be divided into two areas.

When you analyse the mechanism the projectmanager uses to handle the risks, five
steps can be recognised. These steps are valid for both product and process.

In the presentation (and paper) the accent will be on the product. The Functional
requirements are an image of the business needs and priorities. Quality is strong
related to the human factor of an information system. Expectations related to the way
the information system should work are difficult to manage. Both issues are very
important if you want an information system "Fit for Purpose".

The other reason to address the product: on the areas planning & control and
environmental factors there is a lot of literature and a lot of experience.

To handle the quality aspects in a project is one of the services of Software Control
Kwaliteitszorg (Software Control Quality Assurance). SCK is looking for a practical
solution to control especially the risks on the quality aspects. With Quality
Tailor-Made (in Dutch: Kwaliteit op Maat) SCK succeeded in finding a solution. In the
approach of QTM the match of the four risk areas with the five steps models the
structure of the RADAR Method. RADAR (Dutch: Resultaatgericht Automatiseren
Door Anticiperen op RisicoËs) translated in English: Result-driven Automation by
Anticipating on Risks.

To identify the possible goals the quality aspects definitions in ISO 9126 are used.
By using a questionnaire with a subset of questions for each roles participants can
act in the project, the quality aspects identified are valued. The results of this
exercise will be presented in a RADAR diagram. The plot helps in discussions and
supports the specification of the requirements.

QWE2000 -- Conference Presentation Summary

http://www.soft.com/QualWeek/QWE2K/Papers/1M.html (1 of 2) [9/28/2000 10:57:45 AM]

To determine the risks and to find the right measures to eliminate the risks the
requirements (column) will be matched with the products (row) in the Product Risk
Matrix.

This will help to identify the spots where the requirements have impact on the
products and where products should be checked related to the requirements. In
addition to prioritising the needs it helps you also finding the moments to check
whether you match the expectations. The earlier the check is, the better the product
will fit to purpose: "design to benefit".

RADAR guides you through the five steps to handle the quality aspects in a way that
it fits the project: Quality Tailor-Made.

About the Speaker

Ton Dekkers has been working as a practitioner and manager within the area of
software quality for a great number of years. Within this area he specialises in
estimating, risk analysis and QA in projects (QTM in practise). He is a regular
speaker both at national and international conferences and a trainer in software
estimating, risk management and QTM.

Ton Dekkers is quality consultant in the division Software Control Kwaliteitszorg of
IQUIP Informatica B.V. IQUIP is a Dutch information service organisation (1450
employees) that is mainly active in building, maintaining and implementing
information systems. The process is supported by services from the Software Control
divisions Kwaliteitszorg (Quality Assurance) and Testen (Testing). He is member of
the NESMA workgroups FPA in Maintenance and FPA and New Technology.

QWE2000 -- Conference Presentation Summary

http://www.soft.com/QualWeek/QWE2K/Papers/1M.html (2 of 2) [9/28/2000 10:57:45 AM]

1

Quality Tailor-Made

Ton Dekkers

Abstract
"We boldly go where no man has gone before". We want to announce new products and

services and use matching supporting information systems. All this more rapidly than before
and with higher quality. Rapidity and quality seem to be conflicting but that is not necessary.
If we want to identify and trace fast moving objects we use radar. In this paper we introduce
a new RADAR. A method that makes it possible to manage rapid developments adequately by
identifying and eliminating the unwanted elements in time. By this we achieve Quality Tailor-
Made (QTM).

Introduction
To lead a project to the ultimate goal, all threats to achieving this object must be identified

and eliminated in time. Who does not have experiences like:
• under pressure of time, towards the end of the project, functionality will be "stripped";
• in a project with a fixed end date, control is focused on the deadline;
• in a project with a limited budget, control is focused on costs;
• changes or reorganisations have a direct impact on the project organisation.

 Software Control (QA) has looked for an approach for managing all the above mentioned

aspects, both prior to and during the project. In this paper no new development method is
presented: the existing methods provide solutions for all conceivable problems when building
an information system. The message of QTM is: do not consider automation projects from a
point of view of time or money, but choose an approach that takes the risks into account.
What threatens the project? What can go wrong? Virtually everything in terms of achieving
the goals of the project within the constraints of time and money.

Risk areas
 The risks a project runs can be split into risks related to the deliverable product and risks
related to the process to get to the product.

PROJECT

Product Process

Functional
Requirements

Planning &
Control

Outside
Factors

Quality
Aspects

 Regarding the product, two kinds of risks: risks can be identified: risks pertaining to

functionality and risks related to quality aspects. The first group concerns risks regarding the
functions that the information system offers the user. Under quality aspects we have to think

2

of all "other attributes" of an information system, like the processing speed and security of the
system.

 On the process side two types of risks can be distinguished: risks in relation to the internal
planning and control of the project and those in relation to the outside factors.

 Briefly, the risk in respect of the product is the right system is not built and the risk in
respect of the process is: the system is not built right.

 The task of the project leader is to cover all four risk areas; all possible risks must be

recognised and monitored continuously. The project leader must constantly pay attention to
all that comes within his focus area. In aviation and shipping it is also necessary to know
what takes place in the controlled area. For this for they make use of radar. The radar has a
number of functions:
• The radar identifies moving objects. With the radar every moving object that enters the

controlled area is detected.
• Next the radar investigates what kind of object it really is: a known or an unknown

object? And what is the course of the object: is it dangerous?
• In defence applications the radar data can be passed on to the defence system, which

eliminates hostile objects. In public applications data can be passed on to a warning
system.

 In principal the project leader does the same as this radar, but in relation to the risks: look
what is coming towards you, identify the risks and take the appropriate measures timely.
These measures must “be available”, they should be defined beforehand. When we
consider the "radar" of the project leader in detail, five steps can be recognised. These
steps are aimed at eliminating the risks regarding the product and pertaining to the product
development. These five steps will be considered for all four risk areas: Functional
Requirements, Quality Aspects, Planning & Control and Outside factors.

 The first step is to identify: what do we really want? In this step we will try to identify all

possible aspects within the four risk areas respectively. When we value the objectives, a
selection will be made from all aspects that are relevant for this specific project. There is
always a hierarchy in the properties. A "short list" is made based on value. From properties
which are considered to be important, the requirements must be specified in detail. For
instance, if response time of the system is important, then criteria for response time must be
specified and quantitative aspects like the percentage tolerance must be defined.

identify object

value object

specificy object

determine risks

eliminate risks

Product Process

PROJECT

3

 There are still two more steps to go. Once the requirements have been made explicit, we
have to determine which risks there are. And finally the risks must be eliminated: measures
should be taken.

 Summary: in five steps the needs will be defined, valued and worked out in demands and
wishes, after which the risks will be mapped and measures taken to cover these risks.

QTM matrix

 The QTM matrix is created when the four risk areas (Functional Requirements, Quality
Aspects, Planning & Control and Outside factors) are combined with the five steps (Identify,
Value, Specify, Determine and Eliminate):

STAPPEN 1
Identifiy

2
Value

3
Specifiy

4
Determine

5
Eliminate

Functional
Requirements

Quality
Aspects

Planning &
Control

Outside
Factors

 For a project that is using this method, each cell of the matrix contains specified actions.

However it is possible that a cell remains empty; in that case there is a well thought out
reason: you consciously choose not to take action and you are aware that you take a risk.

 Traditional development methods are mainly based on time and money: they are all

focused on controlling the process in terms of time and budget. Of course, in these methods
Functional Requirements and Quality Aspects are also important, but the main goal is still:
finish the project within time and budget. The quality of the deliverables comes last. In
practice the system delivered (on time) often does not offer what the user expects. The system
does not meet the expected quality.

 RADAR is a practical method based on quality. The user must accept the information

system that will be built and the user must be able to work well with the system. In this
approach time and money are “deliverables”. If these outcomes do not meet the requirements
imposed by constraints of time and money set by the principal, one need to consider the
relevance of and balance between functionality and quality. At the end all should be in
balance. The result is an optimal mix of functionality and quality serving the business within
the constraints of time and money.

 RADAR stands for "Resultaatgericht Automatiseren Door Anticiperen op
Risico's"(translation: Result driven Automation By Anticipating on Risks). This is the crux of
the method. Assure that the demands and wishes are well mapped, determine the risks and the
consequences of those risks. When you know the consequences, you can decide how much
time and money you want to spend to eliminate or control the effects of the risks.

4

 RADAR is a preventative approach and can be used within existing system development
methods like SDM, RAD/JAD, etc. Risks always occur no matter which development method
is used. The RADAR-method helps by assessing the risks and the consequences. RADAR not
only considers the process of the project, but also pays attention to the product and the risks
related to the deliverables. In this paper we look specifically at the product side, i.e. the
Functional Requirements and the Quality Aspects whereas the process side is only dealt with
briefly.

 Functional Requirements

 The Functional Requirements comprise all that the information system should offer in
order to support the business process. How can we prevent these problems? How do we get
from the thoughts (needs) of the user to requirements of the information system?

 First we must translate all that is in the minds of the users into concrete instructions for the
developers. What does the user want? The conversion of the functional needs into demands
takes place in three stages:
• Identify functionality: we make a list with functions together (all participants).
• Value functionality: which functions are more important and which are less important?
• Specify functionality: the user himself puts on paper what he expects from a function.

 Then these demands are converted into the system functions of the information system.

How does the developer realise the requirements that the user has specified? To control this
translation on needs to:
• Determine risks: what risks does the developer run when building the system?
• Eliminate risks: take measures to avoid the risks or to limit damage as much as possible.

 QTM supports these steps with a characteristic approach.

• step 1: Identify functionality
The needs of the various users will be identified in group sessions. The result of these
sessions is a total vision that represents the view of all of the users.

• step 2: Value functionality
The importance of the functions will be valued from the point of view of:
- the business: how important is the function for the business process?
- the user: which functions are important for operational tasks?
- the administrator: which functions are necessary to manage and maintain the system?

Needs

 1 - Identify
 2 - Value
 3 - Specify

Functional
Needs

Functional
Requirements

System
Functions

Risks

 4 - Determine
 5 - Eliminate

5

• step 3: Specify functionality
The user(s) specifies the main functional aspects so the developer can form a good picture
of the system that should be built. In group sessions the requirements are drafted and
checked on feasibility (technical and budget).

• step 4/5: Determine risks and Eliminate risks
After the specifications are drafted, the (standard) risks are considered: the consistency of
the requirements (several translations depending on the development method) and quality
of the data (reliability, actuality and conversion).

Identify Functionality
Within QTM the requirements will be established in group sessions, rather than only using

interviews with the individual parties concerned. This has a number of advantages:
• Parties concerned see and hear about each other’s problems and interests. They

understand the relation between and consequences of decisions made.
• The participants do not need to read large documents to find the results of the interviews.
• All stakeholders participate in the group sessions. It is less time consuming because the

tuning of the requirements is done in the same sessions.
• The participants identify the needs. They do not need to agree upon requirements

identified by a “designer” based on interviews. And the needs are written in a manner that
is comprehensible for participants.

It is important to start with clearly defining the scope of the information system. Although
it is considered “not done” to inquire about the constraints of time and money, this
information is crucial. If size of the budget cannot be defined, then it is not possible to make a
statement about the permitted size of the requested information system. Functional size
metrics, like function points [7][8], help to set the correct boundaries and to limit the
identification of the needs. Based on these figures we set up requirements tailor-made. The
development process should provide the appropriate metrics. More about metrics later in this
paper.

The stakeholders (business, user and administrator) create in the group sessions a list of
the functions they need to do their job. The business requirements needs to be full filled by
these functions. Other participants, like operations and control, add the functions needed from
their perspective to complete the system. In a special session (the consolidation session), all
participants agree upon the list: “This is the system that we need”.

Value Functionality
Before we start to value the functions that have been identified, we need to have an idea of

the functional size of the information system. The discussion will be influenced by the fit of
the set of requirements within the budget. In practice there are usually more requirements than
we can handle given the stakeholders’ time and budget constraints. By using functional sizing
metrics we can estimate the size of the functionality. Based on benchmarks (internal or
external) the effort for the development of the information system can be calculated. This will
help the discussion about necessity, importance, priority and value for money.

Valuing the list of functions that is composed in step 1, is done in the same way as
identifying the functions. In group sessions with the relevant stakeholders the functions will
be discussed. Necessity and importance are the aspects to weigh the functions. Based on this
discussion stakeholders prioritise the requirements and decide which requirements will

6

actually be developed within this project. The other functions can be scheduled in further
releases.

A technique that can be used to investigate candidate requirements is the Analytic
Hierarchy Process [3]. AHP compares requirements pairwise according to their relative value
and impact. This approach includes redundancy and is thus less sensitive to judgmental
mistakes.

The functions to be developed can be classified on priority. When we also classify on order
to develop, the stakeholder will first get the functions that he needs the most. At the same
time we minimise the risk to develop an incomplete, not working system when the budget is
reduced.

 Specify Functionality
The requirements should be specified by the user. Tasks and activities of the user are

leading. The activity brings on a certain result. To get to that result the user needs input. In
principle the requirements should reflect the tasks and activities of the user getting from input
to result. That’s why the user must be actively involved. We use again group sessions to
achieve optimal participation. It is recommended that an information analyst should be
present in the sessions to check the feasibility of the specifications. He or she could advice
alternative solutions when applicable. The alternative could be a cheaper or more effective
way of performing the tasks.

After this step the needs are specified in the requirements. In the development process the
requirements will be transformed to the functional design.

 Determine Risks and Eliminate Risks
When the specifications are ready, the risks are considered. Standard risks are the

consistency of the requirements and the quality of the data.
In the process of transforming the business requirements into an information system several
translations are made. How can we guarantee the build system does reflect the requirements?
• Using a system development method;
• By performing consistency checks e.g. (Fagan) Inspection, review, …

The quality of the data is perhaps the most important. Even with a correct information
system when data is poor, the output (result) is poor: garbage in = garbage out. Measures to
take care of the reliability:
• Implement a continuous check on the accurateness of the data;
• Remove redundancy of data;
• Limit the update points and the persons that can make updates;
• Define a conversion strategy, make a conversion plan;

Project
Although the requirements are valued and clearly specified, there still are risks in

developing the system. Risks like the order of development of the functions, did we miss
essential functions or did we choose expensive solutions while we have a limited budget.

QTM includes the Product Risk Matrix to determine an eliminate risks. This Product Risk
Matrix is also used for risks related to quality aspects and will be explained later.

7

Quality Aspects
When talking about Quality Aspects all "other" properties of the information system are

included. Aspects that can be seen as the Human factors of the system.

When developing an information system a number of problems arise. The project team has
to deal with users who have their own picture about what the information system should do.

The first challenge for the project team is to get the correct picture, matching all views. We
used group sessions to define functional requirements that are accepted by all. For quality
aspect we need another approach. Quality aspects are related to the way the system will
perform and will decide the outlook of the system.

Once it is clear what the system should do, the system must still be built (second
challenge). During development there are many reasons why the system developed may
deviate from the specified system.

A third challenge is the changing expectations of the user. While the project team is
developing the system, the user creates new ideas and requirements, so he adjusts his
expectations. In this case the project team delivers exactly what was wanted originally but
still does not fit with the (new) expectation of the user. When it turns out that expectations
change during the project:
• The project will be adjusted, to meet the new expectations. Undoubted with consequences

for time and money.
• The expectations will be adjusted and set back to the original expectations. In this case no

additional budget is required.

 Changes in the project organisation can also cause variations of the expectations. In

particular when people in the project will be replaced. New people means new ideas about
functionality and quality aspects.

1
2

3

4

= ?

 The RADAR method supports the solving of these problems, related to functionality as

well as to quality aspects. Quality aspects is the collective noun for all nonfunctional
properties that make up the success of a system. Properties like performance and security are
typical issues that belong to the group of quality aspects.

 For quality aspects the five steps of RADAR also apply: identify, value, specify, determine
and eliminate.

8

 Step 1: Identify
 An international standard (ISO-9126 [4]) is available to identify the quality attributes of an

information system. This standard is used as starting point. In the project Quint II [5], the ISO
attributes are expanded and some attributes are added, resulting in the Extended ISO model.
Under an "umbrella" structure the attributes are clustered in six main areas.

Functionality

Reliability

Useability Portability Maintainability

Efficiency

 Step 2: Value

 When valuing, all attributes from the list (Extended ISO) that are relevant for the required
information system will be investigated. We use the same point of view that is used when
checking Functional Requirements: Business Importance, User Importance and Administrator
Importance. Each party has a different view of the system and has different (sometimes
conflicting) interests. Sometimes, there are even more parties that have specific requirements
e.g. Accountancy and Security. The number of "customers" of the system extends, and each
"customer" expects to get what he wants and what he needs to do his job.

 The biggest problem is communication. It is difficult for the user to indicate on a list of
quality attributes what the important ones are: everything is important and choosing is
impossible. In short, choices about properties and valuing are not so easy.

 QTM uses the Quality Radar to value the properties. The user always gets two propositions
from which he must choose. Each proposition is linked to a quality attribute. By making a
choice with the required information system in mind, the user indicates the importance of the
"other" properties of the system. The result is a Quality Radar:

0

1

2

3

4

5

6

7

8

9

10

Suitability
Accuracy

Interoperability
Compliance

Security

Tracebility

Maturity

Fault tolerance

Recoverability

Availability

Degradability

Understandability
Learnability

Operability
Customisability

Attractivity
Time behaviour

Resource behaviour

Analysability

Changeability

Stability

Testability

Manageability

Reuseability

Adaptability

Installability
Conformance

Replaceability

9

 On the circle you find the quality attributes and the plot indicates the importance of the

properties for the user who completed the Quality Radar. This tool enables simple
comparison of the opinions of various users. The graph does not tell what the system should
look like or do, but:
• The users have to think about the properties.
• By talking about the system: the quality of the system will be discussed, as well as the

reason(s) why some of the quality attributes are more important than other quality
attributes.

• The Quality Radar is a powerful communication tool: it gives a good basis to discuss the
system and leads to greater involvement of users and other stakeholders.

• Communicating with the help of the Quality Radar leads to agreement between the users
about the (most) important properties of the information system.

 A participant chooses a point of view (business, user or administrator). Each fills up

results in a Quality Radar. On the basis of various Quality Radar's, all participants identify the
most important properties of the information system.

 In QTM we use QUINT II as reference model but the same method can be used for ISO –

9126 [4], the quality attributes of Tmap [6] or a company defined list.

 Step 3: Specify
 The (most) important properties must by specified. If "Availability" is considered to be

important, the user must define concrete requirements, e.g.: "the information system must be
operational five days per week, eight hours a day". The properties must be defined in such a
manner that during the project the system can be checked against these requirements. By
"Operability" we mean the users want an easy to handle information system. This requires for
example uniform screen layouts, not only within the system, but also across other existing
systems.

 Step 4 and 5: Determine and Eliminate

 When the properties are known in detail, the developer has a good understanding of what
should be built. Further, he has to think about: what kind of risks do we run in developing the
system? If considering "processing speed" (time behaviour), a concrete requirement is for
example that a certain transaction should be completed within two seconds. Is it easy to
accomplish, or is it a problem - due to the way the transaction is defined, the performance of
the network, etc.? If it is a problem, measures must be taken to meet the specified
requirements.

 When we have determined the risks, the question remains: what are we going to do about
it? How do we eliminate the risks? Various types of measures are possible:
• preventive, the occurrence of risks can be prevented;
• detective, the occurrence of risks will be located;
• corrective, possible causes will be removed and
• repressive, the consequences will be suppressed.

 A possible fifth type is registrative measures, collect metrics to initiate future process

improvements.

10

Product Risk Matrix
 An essential part of QTM is the direct linking of measures to products. In this way the

measures can easily and concretely be defined and the results can be made visible. The
RADAR method includes the Product Risk Matrix. In a matrix the columns reflect the
possible product risk areas (Functional Requirements and Quality Aspects) and the rows,
chronologically represent the deliverables of the project.

Functionality Quality Aspects

Product Risk
Matrix co

ns
is

te
nt

de
fin

iti
on

s

qu
al

ity
 o

f d
at

a

in
ef

fic
ie

nc
y

in
th

e
pr

oj
ec

t
ex

ce
ed

in
g

of

th
e

bu
dg

et
st

an
da

rd
sc

re
en

 la
y-

ou
ts

co
nt

ex
t r

el
at

ed
he

lp
 s

ce
en

s

at
 le

as
t 5

0
us

er
s

in
 o

ne
 s

es
si

on

au
th

or
is

at
io

n
of

tra

ns
ac

tio
ns

 >
 5

0k

sc
re

en
 c

ha
ng

es
<

0.
5

se
co

nd
s

co
up

le
 to

fin

an
ci

al
 a

dm
in

.

da
ta

 d
ef

in
iti

on
s

as

in
 b

us
in

es
s

m
od

el

Organization Model

AO procedures

System Architecture

Overview functions

Overview data

Function / Data Matrix

Man Machine Interface

…………. ……….. ……

 The list of deliverables (products and intermediate products) is directly related to the

development method used. The traditional waterfall approach gives another list than the RAD
method or a package selection project. It is always possible to draw up a list of deliverables
not only documents or coding; for instance a "prototype" is also a kind of intermediate
product. Products like "Functional System Design" are too generic; the matrix works better
when products comprise smaller logical units, such as function structure, data model, user
interface and a description of the administrative organisation. Only those products that
describe the information system will be included in the matrix (system documentation), not
the project documentation (like plans, phase reports, etc.).

 A project passes through the steps: Identify, Value, Specify and Determine. This results in

a limited number remaining risk areas on the horizontal axis of the Product Risk matrix.
Related to these concrete requirements the project runs risks in regard to the total quality of
the product: Functional Requirements and Quality Aspects.

 For these risk areas the concrete requirements are known. Next we mark (√) in the Product

Risk Matrix in which (intermediate) product at the earliest point where we can test that the
requirement for the (intermediate) product is met. By these marks the requirements are linked
to the deliverables of the project. When filling in the matrix a problem may occur: suppose
there is no single deliverable which will test the fulfilment of the specified requirement (this
must be possible in the final product, at the end in the program, otherwise the requirement is
not very significant for the project). A classic example is "time behaviour". Perhaps the
infrastructure used gives some information, but in the end it is often not possible to
demonstrate through (intermediate) results that the final performance requirements will be
met.

11

 The project leader has two options at that time:
• He accepts the risk and establishes at the end of the project whether he has achieved his

goal or not;
• He does not accept the risk and takes additional measures to find out earlier in the project.

The project leader adapts the list of deliverables according to the risks he has determined.

 The opposite situation could also appear: if there are no marks after filling in the matrix

for certain deliverables, the legitimate question is: "Should we produce that product?" The
essentials are not proven? In practice it is possible the product represents a useful
intermediate step towards the next product. In that case the specific product will be produced,
but not maintained and will not be seen as a system deliverable. The result is a list of
(intermediate) products, from which it is really clear why these products are produced.

 A checklist which belongs behind the marks in the matrix where you can see " how to meet

a specified requirement". The checklist is the basis for the check and test activities. The
Product Risk Matrix is the basis for the specification of product related measures. In the
matrix concrete measurable requirements are linked directly to physical system products. The
project leader can take appropriate measures based on a risk analysis. The big advantage of
the matrix is that all the measures are directly related to system products. The (intermediate)
products will be used early in the project to ensure specified properties of the end product.

 Project strategy

 Ultimately QTM leads to a project quality strategy. Based on the Product Risk Matrix the
project approach should be adjusted: add and/or remove deliverables. Briefly, the definitive
list of deliverables will be defined, then the strategy must be defined, while the measures
must be specified in a quality plan and/or a risk plan:
• Lay down product standards: requirements will be seen in at least one deliverable.
• Schedule reviews, checks and test activities;
• Decide on the techniques to be used, depending upon the products to be reviewed, the

way those products will be reviewed and which techniques fit best.

 Choices should be made based on the Product Risk Matrix which shows the total overview

of the risks and the relation to (intermediate) products: at which moment and by whom will
the checks be executed, on which (intermediate) product, and what will it cost? Decisions can
be made, together with all participants on the basis of a cost / benefit analysis: do we take this
measure or not? It is the responsibility of the project leader to decide if it is more efficient to
combine test activities, to add additional products and so on.

Now we are sure all things are clear related to the product, we have to consider the

development process. The system defined should be built.

12

Process Risks
To make a project successful it is also necessary to look at the quality of the process. The

risk areas related to the process are: planning & control (inside factors) and outside factors.

There’s a complete library available with books, reports and other documents about the
development process, so what can we add to it? We said earlier QTM / RADAR is a
preventative approach that can be used within existing system development methods. The
chosen method influences the Product Risk Matrix. In the PRM the products (deliverables)
depend on the method. Here we see a direct link between process and the ultimate product:
the information system.

A process usually starts with a projectplan. In this plan the goals for the project are set.
Making this plan the RADAR method is also very useful. The projectleader identifies the
issues that are important for the project, e.g. development platform, organisation, schedule,
resources, securityplan, qualityplan, etc. With the stakeholders the issues are valued and
specified. After that the projectleader should perform a risk analysis (determine) and define
the appropriate measures to attend to the risks (eliminate). At the end all of this should be
reflected in the projectplan.

The most important items for stakeholders are Time and Money: when is it finished and
what will it cost? We used the budget to limit the product (functional size). We could do this
on account of the correlation between functional size and effort. Effort can be expressed in
time or in money. Both are related to the available resources, e.g. experienced developers are
more expensive than inexperienced developers but experienced developers are more
effective; they do their job faster. Another main variable of effort is the development platform
and the available tools. The collective noun for all effort related variables is productivity
attributes.

Metrics
The planning in the projectplan is the basis for controlling the project. The planning is

mostly based on experiences of the projectleader and projectteam members. Better is it to
combine these experiences with objective methods like function point analysis [7][8]. By
using an internal or external benchmark we can calculate the effort needed. To adjust the
result we have to know the impact of this specific project on the standard values of the
productivity attributes. A benchmark is based on experiences in the past. This means that
projects should produces metrics to fill the benchmark. Fortunately QTM requires a limited
number of metrics and productivity attributes. QTM just needs productivity figures, e.g. hours
per function point / price per function point. These figures should be related to the
development platform and the activities of the development method. If that is the case, then
we can use these figures to determine the size of the functionality that fits within constraints
of time and money.

Depending on other needs we can enhance the metrics. A method that will help to set up a
tailor-made metrics program is the method Goal-Question- Metric (GQM) [9].

13

Customer Satisfaction
The main goal of QTM is to achieve customer satisfaction. A customer reference model is

used to understand from which customer satisfaction can be assessed. The model expresses
the customer satisfaction using four key related components. As shown in the figure, the
model components are:
• Business requirements (need for new business strategy and change).
• Functional design (transformation of the requirements including quality levels and

process criteria and constraints).
• Development process (process capability and people competence).
• Quality aspects (fit for purpose).

This model represents optimal result if all its components maximise their contribution to
customer satisfaction. For example, customer satisfaction is achieved when the product
(information system) matches the need that is also accurately transformed and expressed in
the design. The design also influences the development processes, the project organisation
and competence of team members involved. The process execution will deliver trustworthy
product quality.

The left triangle reflects the product area and the right triangle the process area. In both
QTM components support the aim of getting customer satisfaction. For each key related
component there is at least one QTM component. For example, the Requirements are drafted
in group sessions. But metrics and AHP also supports that process.

The transition from product area to process area is made visible in the Product Risk
Matrix.

Requirements

Quality
aspects

Design

Development
process

supports

Customer
satisfaction

business criteria
for success

technical criteria
for success

contributes to

depends on

influencing
the process

Product
Risk
Matrix

Quality
Radar

Project Management

Business Need Understanding

transformed to

depends on

Expectations

Group
sessions

Metrics

14

 RADAR
 The RADAR method offers a structured way to go through the five steps; Identify, Value,

Specify, Determine and Eliminate and offers the following advantages:
• Projects can be managed by focusing on Product as well as on Functional Requirements

and on Quality Aspects. The traditional “controls” of Time and Money will be
deliverables.

• The product quality will be discussible and measurable, concrete requirements are defined
for all relevant properties and the meeting of requirements is tested during the project.

• It is an important tool to improve the communication. By talking about the results of the
Quality Radar more is revealed than when just going through a list of attributes. At the
same time the participants are confronted with others points of view.

• The project approach that is chosen and the decisions that are made can be made clear.
• Measures will be taken only when a risk is identified and the measures will be linked to

deliverables with the help of the Product Risk Matrix.
• Based on the total overview from the Product Risk Matrix it is easier to make choices.

You can not do everything that is important, choices have to be made.
• Using the “list” of (intermediate) products it is possible to perform an impact analysis

when the circumstances of the project change. Does it cause new risks? Should there be
additional test points? Should we produce an additional deliverable? With the help of the
Product Risk Matrix it is easier to communicate with the owner about additional
activities.

• The experiences acquired in the project lead to learning effects and improvements in the
checklists, for example.

Conclusion
The approach is to define in a structured way a set of measures to manage the quality in the

project. Using the Quality Radar it is easier to communicate about quality with the
participants. The consequences of choices are clear and relevant.

We offer: Quality Tailor-Made.

References
[1] KoM, A. Boeters, B. Noorman, “Kwaliteit op Maat”, Kluwer Bedrijfswetenschappen, Deventer,

ISBN 90-267-2579-5.
[2] QTM, Ton Dekkers, “Project Control: The Human Factor - Quality Tailor-Made”, Proceedings

ESCOM-SCOPE 2000, Shaker Publishing, ISBN 90-423-0102-3.
[3] AHP, J. Karlsson, K. Ryan, “A Cost-Value Approach for Prioritizing Requirements”, IEEE

Software, september/october 1997.
[4] ISO 9126, Information Technology, Software quality characteristics and metrics, ISO/IEC.
[5] Quint II, B.van Zeist, P.Hendriks, R.Paulussen en J.Trienekens, “Kwaliteit van

softwareproducten”, Kluwer Bedrijfswetenschappen, Deventer, ISBN 90-267-2430-6.
[6] TMap, M.Pol, R. Teunissen, E.van Veenendaal,”Testen volgens TMap”, Tutein Nothenius,

ISBN 90-72194-58-6.
[7] FPA, IFPUG (International Function Point User Group), “Function Point Counting Practices,

release 4.0”, IFPUG, January 1994
[8] FPA, Ton Dekkers, “Van Functiepuntanalyse naar Integrale Functiepuntanalyse”, IQUIP

Informatica B.V.
[9] GQM, R.Solingen, E. Berghout, “The Goal/Question/Metric method: a practical handguide,

McGraw-Hill Book Company, ISBN 0-07-709453-7

1

IQUIP / SCK
QWE 2000 - 1

Quality Tailor-Made
A practical approach

to control project risks in IT-projects

PROJECT

product process

IQUIP / SCK
QWE 2000 - 2

IQUIP Informatica B.V.

• Founded in 1972
• Full-time staff 1,500
• Cap Gemini N.V. , 100% shareholder
• Business units

– E-Business (5 regional units)
– Application Service Management (ASM)
– Integration (Int)
– Software Control (SC)

» Quality Assurance
» Testing

• Services
– implementation of projects
– posting of specialists

2

IQUIP / SCK
QWE 2000 - 3

O.K., you
can't get on
well with the
system.

Do I have
something to
do with that?

IQUIP / SCK
QWE 2000 - 4

Object of the approach

Quality

MoneyTime €

3

IQUIP / SCK
QWE 2000 - 5

Quality Assurance in Projects

• Review, check, test everything
• Standards to have standards
• QA sets a standard

• QA activities on ‘critical path’
• High costs (time / money)

• Many (exciting?) findings
• Coverage uncertain

• Delay
• Irritated developers
• Unclear return

RADAR method

• Measures only where
necessary

• Related to risks
• A clear sight for the user
• Maximising result

IQUIP / SCK
QWE 2000 - 6

Four Risk Areas

PROJECT

Product Process

Functional
Requirements

Planning
& Control

Outside
Factors

Quality
Aspects

4

IQUIP / SCK
QWE 2000 - 7

Five steps to control

Map expectations:
• What are the project deliverables /

what are the conditions?
• In which order (priority)?
• Make expectations concrete (the

project team and the user)

Take appropriate measures:
• Which risks are seen by the project

team?
• Which measures are necessary?

identify

value

specify requirements

determine risks

eliminate risks

Product Process

PROJECT

IQUIP / SCK
QWE 2000 - 8

QTM Matrix

STAPPEN 1
Identify

2
Value

3
Specify

4
Determine

5
Eliminate

Functional
Requirements

Quality
Aspects

Planning
& Control

Outside
Factors

5

IQUIP / SCK
QWE 2000 - 9

Functionality

NEEDS

 1 - Identify
 2 - Value
 3 - Specify

Functional
Needs

Functional
Requirements

System
Functions

RISKS

 4 - Determine
 5 - Eliminate

IQUIP / SCK
QWE 2000 - 10

Functional Requirements

RISKS
• Fancy extra’s included
• Wrong understanding
• We know what they need
• Uncontrolled requests
• ‘Forgotten’
• Bugs
• ...

specification

design

construction

implementation requirement

6

IQUIP / SCK
QWE 2000 - 11

Ah, you mean a knife!Ah, you mean a knife!

IQUIP / SCK
QWE 2000 - 12

Group sessions (identify - value - specify)

IT facilitates the sessions,
IT does not participate !!!

ADVANTAGES
• Direct communication;
• All parties participate;
• Understanding needs

various stakeholders:
- business
- user
- administrator

• Participants agree upon
needs.

7

IQUIP / SCK
QWE 2000 - 13

Functionality (Tailor-Made)

Money Constraint
• Budget:

1.500.000 Euro
• Experience base:

- 1.500 Euro / fp
- IA => 80% functionality
- 40 fp / entity

• Scope:
 20 entities

((1.500.000 / 1.500) * 0,8) / 40

Time Constraint
• Budget:

6 months / 10 people
• Experience base:

- 2 days / fp
- IA => 80% functionality
- 40 fp / entity

• Scope:
 12 entities

(((6 * 20) * 10) / 2) * 0,8) / 40

IQUIP / SCK
QWE 2000 - 14

Functionality (determine - eliminate)

R SKS

• Consistency in deliverables
in development

• Quality of the data

MEASURES

System development
method
Standard for deliverables
Inspections (Fagan, …)

Continuos data check
Remove redundancy
Control update

8

IQUIP / SCK
QWE 2000 - 15

Project challenge

1
2

3

4

= ?

IQUIP / SCK
QWE 2000 - 16

Which properties?

Maturity

Time behaviour

Accuracy

T
e

s
t

a
b

i
l

i
t

y
d

Traceability

Reu
se

ab
ility

Reu
se

ab
ility

Ch
an
ge
ab
ilit
y

Help
fuln

ess

Customisability

Suitability
Suitability

SecuritySecurity

FaultFault tolerance
tolerance

Portability
Attractivity

Attractivity

Installability
Installability

Ad a pta b
ility

Userfriendlyness

Learnability

Resource behaviourAdaptability

9

IQUIP / SCK
QWE 2000 - 17

Extended ISO-model

Functionality
• Suitability
• Accuracy
• Interoperability
• Compliance
• Security
• Traceability

Reliability
• Maturity
• Fault tolerance
• Recoverability
• Availability
• Degradability

Useability
• Understandability
• Learnability
• Operability
• Explicitness
• Customisability
• Attractivity
• Clarity
• Helpfulness
• Userfriendlyness

Portability
• Adaptability
• Installability
• Conformance
• Replaceability

Maintainability
• Analysability
• Changeability
• Stability
• Testability
• Manageability
• Reuseability

Efficiency
• Time behaviour
• Resource behaviour

Quint II

IQUIP / SCK
QWE 2000 - 18

Make choices

ProductRadarProductRadarProductRadar

Question 7 of 30

O Changes to the Information System must be
made easily and fast when demands or
circumstances change

O The user must be able to execute certain
essential tasks even when the Information
System or a part of it is down

J. Janssen
(user)

10

IQUIP / SCK
QWE 2000 - 19

Quality Radar

0

1

2

3

4

5

6

7

8

9

10
SuitabilityAccuracy

Interoperability
Compliance

Security

Tracebility

Maturity

Fault tolerance

Recoverability

Availability

Degradability

Understandability
Learnability

Operability
Customisability

Attractivity
Time behaviour

Resource behaviour
Analysability

Changeability

Stability

Testability

Manageability

Reuseability

Adaptability

Installability
Conformance

Replaceability

IQUIP / SCK
QWE 2000 - 20

Product Risk Matrix

Functionality Quality Aspects

Product Risk
Matrix co

ns
is

te
nt

de
fin

iti
on

s

qu
al

ity
 o

f d
at

a

in
ef

fic
ie

nc
y

in
th

e
pr

oj
ec

t
ex

ce
ed

in
g

of

th
e

bu
dg

et
st

an
da

rd
sc

re
en

 la
y-

ou
ts

co
nt

ex
t r

el
at

ed
he

lp
 s

ce
en

s

at
 le

as
t 5

0
us

er
s

in
 o

ne
 s

es
si

on

au
th

or
is

at
io

n
of

tra

ns
ac

tio
ns

 >
 5

0k

sc
re

en
 c

ha
ng

es
<

0.
5

se
co

nd
s

co
up

le
 to

fin

an
ci

al
 a

dm
in

.

da
ta

 d
ef

in
iti

on
s

as

in
 b

us
in

es
s

m
od

el

Organisation Model

AO procedures

System Architecture

Overview functions

Overview data

Function / Data Matrix

Man Machine Interface

…………. ……….. ……

11

IQUIP / SCK
QWE 2000 - 21

Project strategy

DEFINE MEASURES
• Adjust project approach
• Preventive / detective
• Project leader makes an

‘all-in package’

• Quality plan:
– standards
– check & test activities
– techniques
– settlement findings

TUNE MEASURES
• Discuss risks
• Available budget
• Wanted “coverage”
• Determine impact of

changes

IQUIP / SCK
QWE 2000 - 22

RADAR

AD ANTAGES

• Product quality discussible
and measurable

• Improved communication
• Structured project

approach
• Risks ‘deliverables’
• Clear choices
• “Maintainable” strategy

R SKS

• Practise mechanically
• “Overkill” supposed risks
• Difficult project start up
• Each project starts again

12

IQUIP / SCK
QWE 2000 - 23

Process (Risks)
IDENTIFY

VALUE
SPECIFY

• Scope;
• Development platform;
• Project organisation;
• Schedule;
• Resources;
• Quality plan;
• Security plan;
• ...

DETERMINE
ELIMINATE

• Risk analysis;
• Budget (time / money);
• Measures;
• Metrics;
• ...

PROJECTPLAN

IQUIP / SCK
QWE 2000 - 24

Metrics

Functional Size
• Function Points (IFPUG, NESMA, …)
• # Components
• # User Tasks
Productivity
• Hours / Activities
• Changes
• Management overhead

Productivity Attributes
• Development Platform
• Tools, Methods, Standards, ...
• Resources, Skills
• Project constraints

More Metrics (Tailor-Made): GQM method

Quality
• Defects
• Inspection, review

13

IQUIP / SCK
QWE 2000 - 25

Customer Satisfaction

Requirements

Quality
aspects

Design

Development
process

supports

Customer
satisfaction

business criteria
for success

technical criteria
for success

contributes to

depends on

influencing
the process

Product
Risk
Matrix

Quality
Radar

Project Management

Business Need Understanding

transformed to

depends on

Expectations

Group
sessions

Metrics

IQUIP / SCK
QWE 2000 - 26

… the 5 steps …

0

1

2

3

4

5

6

7

8

9

10

Geschiktheid

Juistheid

Kopppelbaarheid

Inschikkelijkheid

Beveiligbaarheid

Traceerbaarheid

Bedrijfszekerheid

Foutbestendigheid

Herstelbaarheid

Beschikbaarheid

Degradeerbaarheid

Begrijpbaarheid

Leerbaarheid

Bedienbaarheid

Instelbaarheid

Uitrustingsniveau

Tijdbeslag

Middelenbeslag

Analyseerbaarheid

Wijzigbaarheid

Stabiliteit

Testbaarheid

Beheerbaarheid

Herbruikbaarheid

Aanpasbaarheid

Installeerbaarheid

Volgzaamheid

Vervangbaarheid

14

IQUIP / SCK
QWE 2000 - 27

Quality Tailor-Made

• From expectations by way of risks
to (additional) measures

• Measures directly related to
‘project deliverables’

• Wittingly adjust ‘deliverables’ /
project approach

• Supports communication
(with all participants)

• Learning effect

… don’t schoot
at everything that moves ...

IQUIP / SCK
QWE 2000 - 28

QA

QUESTIONS !
&

ANSWERS ?
Ton Dekkers

a.j.e.dekkers@iquip.nl
qtm@interdependent.nl

Thank you for
your attention

QWE2000 Vendor Technical
Presentation VT1

Mr. Robin Bortz
(Radview)

"WebLoad Integrity Testing for
e-applications"

Key Points

Point 1...●

Point 2...●

Point 3...●

Presentation Abstract

WebLoad is the only testing tool that unifies load, performance and functional testing
into a single process for shortened development cycles and unmatched verification
of scalability and integrity prior to deployment. WebLoad verifies Web application
scalability by generating a load composed of Virtual Clients that simulate real-world
traffic. Users create JavaScript-based test scripts that define the behavior of the
Virtual Clients. WebLoad executes these test scripts and monitors the Web
application’s performance providing real-time graphical and statistical results and
comprehensive reports

1. Cruise Control: A goal seeking performance-testing scenario The WebLoad Cruise
Control module enables you to test your Web server by specifying the performance
goals that you want to achieve, and viewing the way your system meets those goals.

2. Functionality under load: Integrity testing for e-applications WebLoad delivers full
Document Object Model (DOM) access. By creating and analyzing the DOM for
every Virtual Client during a test Session, WebLoad is able to verify each success
and failure and present detailed information to you about each transaction.

3. XML Testing: B2B verification WebLoad provides full support for work with the
XML Document Object Model. Using XML DOM objects, WebLoad Agendas are able
to both access XML site information, and generate new XML data to send back to
the server for processing.

4. Beyond HTTP and SSL: FTP and SMTP WebLoad JavaScript provides direct
object access to any component that has a COM wrapping and an Idispatch
interface. WebLoad supports full Java access from your JavaScript Agendas. Full
Java support means that your WebLoad Agendas not only test access time to an

QWE2000 -- Conference Presentation Summary

http://www.soft.com/QualWeek/QWE2K/Papers/VT1.html (1 of 2) [9/28/2000 10:58:12 AM]

HTML page, but also invoke and run Java classes used by the Java applications
embedded within an HTML page.

About the Speaker

Speaker Bio

QWE2000 -- Conference Presentation Summary

http://www.soft.com/QualWeek/QWE2K/Papers/VT1.html (2 of 2) [9/28/2000 10:58:12 AM]

1
www.radview.com

Webload Integrity Testing for e-applications

Webload Integrity Testing for e-applications

Robin Bortz
International Technical Manager

2
www.radview.com

Webload Integrity Testing for e-applications

Agenda

• Radview
• Testing
• Webload
• Demo’s
• Resource Manager
• Summary

RadView Software
• Founded by Internet and Testing

Developers in 1996
• WebLoad launched March, 1997.
• Headquarters : Boston, MA USA
• Main shareholders: Computer Associates,

Formula group, RAD group
• IPO Completed 8th August 2000, raised

$40m
• UK & German offices now running

RadView: facts……

3
www.radview.com

Webload Integrity Testing for e-applications

RadView News

Selected to test Windows 2000

Crossroads 2000 A-List Award

Java Developers Editor’s Award

Selected by Microsoft BackOffice to test
Windows DNA performance

Selected to test NetAid

Industry Accolades
“The RadView tools have incredibly easy-to-use interfaces,

and I found them to be very easy to insert during the
early stages of the development cycle.”

“RadView’s WebLoad product line enables organizations to
meet e-Business quality challenges, not only by offering
highly effective scalability testing solutions, but also by
extending the reach of such solutions throughout the
development lifecycle and the virtual enterprise.”

"With WebLoad Resource Manager 4.0, RadView offers
support for the next generation of Web application
development technologies and processes, building on the
company's vision of offering solutions that can be shared
by all actively involved in the development lifecycle."

4
www.radview.com

Webload Integrity Testing for e-applications

Bad news travels...

Complex and distributed involving many components
and connecting interfaces

Composed of “emerging” technologies

Developed under enormous competitive pressures

Exposed to unpredictable loads and stresses

Continuously updated and evolved

Expected to be Business-critical in reliability

Web Application are:

5
www.radview.com

Webload Integrity Testing for e-applications

Webload is…

The premier tool for
performance, scalability
and functional testing

under load of Web
applications

WebLoad is the premier Web application
scalability testing solution

WebLoad integrates load, performance, functional
and stress testing

WebLoad is designed specifically for testing Web
applications

WebLoad automates Web application testing

WebLoad is a distributed application

What is WebLoad ?

6
www.radview.com

Webload Integrity Testing for e-applications

WebLoad 4.0

Offers an easy to use, wizard driven method to
load testing: short learning curve.
Offers the long term power: through JavaScript.
Offers the tester the ability to develop an enhanced
skill set in true internet language: JavaScript.
Enhances co-operation between development team
components.

Webload: Powerful and Cost effective
Internet Testing Solutions

1. Cruise Control
– A goal seeking performance-testing scenario

2. Functionality under load
– Integrity testing for e-applications

3. XML Testing
– B2B verification

4. Beyond HTTP and SSL
– FTP and SMTP

7
www.radview.com

Webload Integrity Testing for e-applications

WebLoad 4.0

Industry standards

JavaScript

Performance

Memory Usage

Innovation

Ease-of-use

Value

NT, NT,
Win 2k, Win 2k,
SolarisSolaris

Any Any
Web Web

ServerServer

Webload Architecture

8
www.radview.com

Webload Integrity Testing for e-applications

Full HTTP 1.0 and 1.1 Support

Persistent Connections (keep-alive)

Cookies

Proxies

Redirections

SSL (All Major Cipher Suites)

Client Certificates

Dynamic HTML (DHTML) Support

Full HTTP Support:

AATAAT
Channel Channel

Web BrowserWeb Browser

Web Server Internet/
Intranet

JavaScriptJavaScript

HTTP
Request

HTTP
Response

Agenda Authoring Tool

9
www.radview.com

Webload Integrity Testing for e-applications

• Load generator & probing client : default 80 parameters
– Load Size
– Throughput
– Rounds per second
– Transactions per second
– Connection trials
– Succeeded connections
– Failed connections
– Response time

• User-Defined: Isolate bottlenecks
• Server under test measurements

– Memory usage
– CPU usage

Performance Measurements

Platforms

�Console
�Windows NT 4.0
� Windows NT 5.0
� Windows NT 3.51
� Windows 95
� Windows 98
� Windows 2000

�Load Generators
� Windows NT x.x, Windows 2000
�Solaris, Q4 2000 - IBM RS6000, Linux

10
www.radview.com

Webload Integrity Testing for e-applications

Demonstration

Recording load and functional tests
Executing load tests and reporting on results using
cruise control
WebLoad with data drilling functional testing
under load
Scheduling tests with the scheduler

Cruise Control

Automated performance threshold testing

Tester defines performance goals

Cruise Control increases Virtual Clients until

performance criteria are met

Intelligent Load Generation

11
www.radview.com

Webload Integrity Testing for e-applications

Demo’s

12
www.radview.com

Webload Integrity Testing for e-applications

Highlights

Cruise Control -Goal seeking performance testing:
Throttle Control
Simulate different user connection speeds & browsers
Real Time Reports
JavaScript as the scripting language.
DOM support: functional testing under load
Synchronization points: for distributed testing/stampede testing
Automatic recognition and test creation Wizards for DataDriven,
Session ID.

Lifecycle Testing Access

13
www.radview.com

Webload Integrity Testing for e-applications

Webload ProfessionalWebload Professional

Webload Resource managerWebload Resource manager

14
www.radview.com

Webload Integrity Testing for e-applications

Resource Manager Features

Architectural evolution

Dynamic license serving

Hardware management

Administration

Allows sharing of LoadGenerator Hardware and
WebLoad licenses across multiple sites/teams

Dynamic License Serving

DEPLOYMENT

DESIGN

DEVELOPMENT

TESTING

RESOURCE MANAGER

15
www.radview.com

Webload Integrity Testing for e-applications

Hardware Management & Administration

DEPLOYMENT

DESIGN

DEVELOPMENT

LOAD GENERATORS

TESTING

RESOURCE MANAGER

Resource Manager

DEPLOYMENT

DESIGN

DEVELOPMENT

TESTING

RESOURCE MANAGER

QWE2000 Session 2T

Mr. Tom Hazdra & Lubos Kral
[Czech Republic]

(CertiCon)

"Enhancing the Integration Testing
of Component-Based Software"

Key Points

Integration testing●

Distributed software●

Testing automation●

Presentation Abstract

Integration testing is one of the basic stages in the waterfall product life cycle model.
It is widely understood as testing of combined parts of an application to determine if
they function together correctly. In this paper we identify what we see as a life cycle
of software integration testing activities and discuss its enhancements from the
perspective of testing software consisting of functionally distributed components. Our
contribution is based mainly on testing the application projects from the area of
cardiological therapy and diagnostics that we are developing for Vitatron Medical. It
also explores knowledge gathered on projects for other companies including
Medtronic and Rockwell Automation.

About the Speaker

Tom Hazdra received MSc. in Computer Science from CTU Prague in 1993. He
works as research fellow at CTU since 1996. His area of research includes
Distributed Artificial Intelligence, namely the coordination issues in multi-agent
systems, and the software diagnostics. Since 1995 he participated in various
software testing projects for Rockwell Automation, Vitatron and Medtronic.

Lubos Kral received MSc. in Control Engineering from CTU Prague in 1993. He
received PhD. in Artificial Intelligence and Biocybernetics from CTU Prague in 1999.
He works as research fellow at CTU since 1996. His area of research includes
intelligent robotics, namely the mobile robot navigation. Since 1998 he participated in
various software testing projects for Vitatron and Medtronic.

QWE2000 -- Conference Presentation Summary

http://www.soft.com/QualWeek/QWE2K/Papers/2T.html [9/28/2000 10:58:38 AM]

1

© CertiCon Corp., September 2000.
All rights reserved.

ENHANCING THE INTEGRATION
TESTING OF COMPONENT-BASED

SOFTWARE

Tom Hazdra and Lubos Kral

The Gerstner Lab, Czech Technical University

CertiCon Corp.

© CertiCon Corp., September 2000.
All rights reserved.

OUTLINE

❏ INTEGRATION TESTING LIFECYCLE
❏ FORMAL METHODS
❏ COLLABORATION TEST AUTOMATION
❏ GUI AUTOMATION TOOLS
❏ CONCLUSION

2

© CertiCon Corp., September 2000.
All rights reserved.

INTEGRATION TESTING

SOFTWARE DEVELOPMENT LIFECYCLE

❏ REQUIREMENTS

❏ SPECIFICATIONS

❏ DESIGN

❏ DEVELOPMENT

❏ UNIT TESTS

❏ INTEGRATION TESTS

❏ SYSTEM TESTS

❏ QUALIFICATION

INTEGRATION TESTING LIFECYCLE

❏ INSPECTIONS OF TESTING RESOURCES

❏ IDENTIFICATION OF REQUIREMENTS

❏ GENERATING TEST CASES

❏ TEST EXECUTION

❏ REGRESSION TESTING

© CertiCon Corp., September 2000.
All rights reserved.

PARTITIONING THE INTEGRATION
TEST DESIGN

❏ UI TESTS

❏ FUNCTIONAL TESTS

❏ COLLABORATION TESTS

3

© CertiCon Corp., September 2000.
All rights reserved.

FORMAL METHODS

❏ OFFER MEANS FOR MODELING THE SOFTWARE DESIGN
PRIOR TO IMPLEMENTATION

❏ ASSIST TO DETERMINE COMPLETENESS AND CONSISTENCE
OF DESIGN SPECIFICATIONS

❏ PROTOTYPE VERIFICATION SYSTEM (PVS):
– SOFTWARE SPECIFICATION REPRESENTED BY A THEORY,

DEFINITIONS, LEMMAS AND THEOREMS IN FIRST ORDER LOGIC

– INFERENCE ENGINE BASED ON LOGICAL RESOLUTION

© CertiCon Corp., September 2000.
All rights reserved.

DEADLOCK EXAMPLE
% definition of theory
Deadlock : THEORY
BEGIN

% definition of types
M : INTEGER
N : INTEGER
GenProcess : TYPE = {p : I NTEGER | p < N+1}
Process : TYPE = {p : GenProcess | p > 0}
GenSource : TYPE = {s : INTEGER | s < M+1}
Source : TYPE = {s : GenSource | s > 0}
SourceUsedBy : TYPE = [Source → GenProcess]
ProcessWaiting : TYPE = [Process → GenSource]
State : TYPE = [# UsedBy : SourceUsedBy, Waiting : ProcessWaiting #]

% definition of variable types
gp : VAR GenProcess
p,p1,p2: VAR Process
s,s1,s2 : VAR Source
st : VAR State

4

© CertiCon Corp., September 2000.
All rights reserved.

DEADLOCK EXAMPLE

% definition of axioms
initstate : STATE = (# UsedBy := λp:0, Waiting := λp:0)
UseSource (st,p,s) : STATE = IF ∀ s1 : ((UsedBy(st)(s1) = p) ⊃ s < s1)
 THEN IF ∃ p1 : UsedBy(st)(s) = p1

 THEN st WITH [(Waiting)(p) := s]
 ELSE st WITH [(UsedBy)(s) := p]
 ENDIF
 ELSE st
 ENDIF
BadUseSource (st,p,s) : STATE = IF ∃ p1 : UsedBy(st)(s) = p1

 THEN st WITH [(Waiting)(p) := s]
 ELSE st WITH [(UsedBy)(s) := p]
 ENDIF
DirectBlock (st,p,p1) : BOOL = ∃ s : (s = Waiting(st)(p) ∧ UsedBy(st)(s) = p1

Block (st,p,p1) : INDUCTIVE BOOL = DirectBlock(st,p,p1)∨ (∃ p2 : DirectBlock(st,p,p2) ∧
Block(st,p2,p1))
Deadlock(st) : BOOL = ∃ (p : Process) : Block(st,p,p)

© CertiCon Corp., September 2000.
All rights reserved.

DEADLOCK EXAMPLE

% definition of lemmas
Lemma1 : LEMMA ∀p,p1 : ¬(DirectBlock(initstate,p,p1))
Lemma2 : LEMMA ∀p,p1 : ¬(Block(initstate,p,p1))
Lemma3 : LEMMA ∀p1,p2,s1,s2 : p1 ≠ p2 ∧ s1 ≠ s2 ⊃

Deadlock(BadUseSource(BadUseSource(BadUseSource(initstate,p1,s1),p2,s2),p2,s1)p1,s2))
END Deadlock

5

© CertiCon Corp., September 2000.
All rights reserved.

COLLABORATION TESTS

❏ MESSAGE SEQUENCE TESTS
– BASED ON UNIFIED MODELING LANGUAGE SEQUENCE DIAGRAMS

– VERIFY HIGH-LEVEL COLLABORATION SCENARIOS

– PASSIVE MESSAGE MONITOR USED FOR AUTOMATION

❏ PRE- AND POST- CONDITION TESTS
– BASED ON SOFTWARE DESIGN SPECIFICATIONS

– VERIFY LOW-LEVEL COLLABORATION SCENARIOS

– ACTIVE MESSAGE MONITOR USED FOR AUTOMATION

© CertiCon Corp., September 2000.
All rights reserved.

ACTIVE MESSAGE MONITOR

COMMUNICATOR

LOGGER

LOGFILE

FILTER MANAGER

SENDER

MESSAGE EDITOR

VIEWER

FINDER FILTER

TEMPLATE
MANAGER

TEMPLATES

APPLICATION
COMPONENTS

6

© CertiCon Corp., September 2000.
All rights reserved.

ACTIVE MESSAGE MONITOR

1) Application is brought to a certain state via standard
interfaces available to the user.
2) Active message monitor is used to interrupt the work
of particular components.
3) Active message monitor is used to evoke the desired
pre- or post-condition state by simulating the
interrupted components via absorbing and inserting the
necessary messages from and to the system,
respectively.
4) A message log is examined by the message log
parser to verify the tested component responses.

© CertiCon Corp., September 2000.
All rights reserved.

GUI TEST AUTOMATION TOOLS

❏ TEAM TEST, WINRUNNER, ATF

❏ FUNCTIONAL TEST AUTOMATION

❏ SCRIPTING LANGUAGES,

❏ SENSITIVE TO GUI CHANGES

❏ SYNCHRONIZATION PROBLEMS

7

© CertiCon Corp., September 2000.
All rights reserved.

GUI TEST AUTOMATION
ENVIRONMENT EXAMPLE

Ethernet

Test Database ATF TLCC

Programmer
ATF Test Agent

Programmer
ATF Test Agent

Programmer
ATF Test Agent

switched
Programmer

ATF/TestLab Command Center

RPS
Master Module

RPS
Satellite Module

RPS
Satellite Module

switched
Programmer

switched
Programmer

AC Line AC Line AC Line

© CertiCon Corp., September 2000.
All rights reserved.

SYMBOLIC APPROACH TO
NAVIGATION AND IDENTIFICATION

tsID

test script

tsID osID

database

widget handle

OS service

source tsID, destination tsID

parent tsID
childList [tsID]

navigation action

navigation
path

test script

database

pathfinder engine
OBJECT IDENTIFICATION

APPLICATION NAVIGATION

8

© CertiCon Corp., September 2000.
All rights reserved.

CONCLUSION

❏ INTEGRATION TESTING IN WIDER
PERSPECTIVE

❏ FORMAL METHODS

❏ AUTOMATING THE GUI AND
COLLABORATION TESTS

© CertiCon Corp., September 2000.
All rights reserved.

CONTACT

CertiCon a.s.

Odboru 4/278

120 00 Prague 2

Czech Republic

phone: +420-2-24917207

fax: +420-2-24917209

 email: hazdra@certicon.cz

http://www.certicon.cz

1

E N H A N C I N G T H E
I N T E G R AT I O N T E S T I N G O F

C O M P O N E N T- B A S E D S O F T WA R E

TO M HA Z D R A A N D LU B O S KR A L

The Gerstner Lab, Czech Technical University, Technicka 2, CZ-166 27 Prague 6

CertiCon corporation, Odboru 4, CZ-120 00, Prague 2

e-mail: hazdra@certicon.cz
phone: +420-2-24917207-8
fax: +420-2-24917209

ABSTRACT
Integration testing is one of the basic stages in the waterfall product life cycle model. It is
widely understood as testing of combined parts of an application to determine if they
function together correctly. In this paper we identify what we see as a life cycle of
software integration testing activities and discuss its enhancements from the perspective
of testing functionally distributed, component-based software. Our contribution is mainly
based on testing the application projects from the area of cardiac therapy and diagnostics
that we are developing for Vitatron Medical but it also explores knowledge gathered on
projects for other companies including e.g. Rockwell Automation.

IN T R O D U C T I O N

Software testing is not only the process of executing programs with the intention of
finding errors. It is rather a set of activities related to each stage of a software product life
cycle that are performed by software engineers in order to enhance the product quality.
Integration testing is often defined as testing of combined parts of an application to
determine if they function together correctly. The objective of integration testing is to
find bugs related to interfaces between modules as they are integrated. According to our
statement on software testing, we see integration testing in wider perspective, e.g. as the

2

integration testing itself as defined above plus a set of integration-related activities
bound to the stages that precede the integration testing stage in a software product life
cycle. In this way, we can define a set of areas in which we partition the software
integration testing process:

q Inspections of testing resources
q Identification of testing requirements
q Generating test cases
q Test execution
q Regression testing

Software Product Life Cycle (V – model)

INSPECTIONS OF TESTING RESOURCES

Inspections are an integral part of the review process when the test engineers review
the product documentation (requirement, specification and design documents) with
special effort on the software integration. The special intention of these reviews is to
ensure the testability of the requirements with respect to the particular demands on
the integration testing (testing automation, testing coverage, etc.). Typical results of
these inspections are additional software requirements (e.g. requests for special
drivers to access embedded features via testing automation tools).

IDENTIFICATION OF TESTING REQUIREMENTS

Testing requirements are identified from the testing resources, i.e. from the system
and software requirements and from the software design documentation (UML
diagrams, specification documents). Identification of testing requirements is a process
of selecting the subset of existing system and software requirements to be verified in
the integration test and defining an additional set of requirements based on the design

Requirements

Specifications

Design

Coding Unit Tests

Integration Tests

System Tests

Qualification

3

specifications. All the testing requirements are thus traceable either from the
existing requirements or from the design specifications.

GENERATING TEST CASES

Important part of integration testing is the test design, i.e. generating a set of test
cases that sufficiently test the integration of application components. As the test
designers should find a balance between the tested code coverage and acceptable cost
of the integration testing, techniques such as boundary value testing are employed,
and either the statement, branch or path coverage is to be reached.

TEST EXECUTION

Test execution is the final test case execution. It is often provided in incremental way
– the application is tested in small chunks so that errors are easy to observe, isolate
and correct. The test cases that are often some collaboration scenarios are partitioned
and tested partially. The partial tests are then gradually put together to complete the
designed test cases. In the partial tests, the missing components are replaced with
stubs that simulate the activity behind their interface. The incremental execution not
only helps to simplify the testing but also enables to start the test execution sooner
when some components are not yet developed. The incremental execution can lead to
test automation since it is an often strategy to automate as much as possible of all
repetitive actions.

REGRESSION TESTING

After fixing the detected errors by changing the code all the related tests should be
regressed, i.e. re-executed. The usually time and manpower consuming test regression
is a great opportunity for testing automation.

TH E IN T E G R AT I O N TE S T I N G PR O C E S S

Our current work partially is aimed at integration testing of software for pacemaker
programmers. The software enables the cardiologist to maintain the pacemaker in the
patient’s body by adjusting its internal parameters or therapies such as output voltage and
pulse width or the pacing mode (e.g. single or dual chamber) and by analyzing the intra-
cardial ECG.

 Programmer and the pacemaker

 The objective of this paper is to introduce the techniques we use to enhance the
integration testing of the programmer software that is based on functionally distributed,

telemetry

4

loosely coupled components that communicate by the means of message exchange. The
software is additionally characterized by the facts that it is object-oriented and running on
a special multi-processor platform, it is real-time, and that it must be highly reusable and,
as a software for medical purposes, highly reliable. Our testing is provided in accordance
with the ISO 9001, ISO 12207, and FDA quality regulation standards for software design
and development.
Our integration testing process is organized in the following life cycle:

1. Input resources review and analysis – inspections of testing resources and
identification of testing requirements.

2. Test planning – detailed planning of test activities including decisions about
testing methodologies and test coverage and specification of the testing
environment.

3. Test design – specifying the detailed structure of the integration test,
generating the set of the application test cases.

4. Test execution – executing the test cases by the means of automated and
manual testing, invoking changes to developed software and/or
documentation.

5. Regression testing – re-testing of the functionality that may have been
degraded by modifications made to the software to fix the found errors.

6. Test evaluation – summarizing, analyzing and reporting the results.

Further in this paper, we concentrate on the design phase of the integration testing life
cycle and discuss the following issues that are helping us to make the integration testing
process faster and/or more effective:

q Using formal methods for verification of component collaboration design
q Automating the verification of component collaboration sequence diagrams
q Using existing GUI testing automation tools to support the integration testing.

PA RT I T I O N I N G T H E I N T E G R AT I O N TE S T DE S I G N

According to our experience, we organize the integration test in three general test groups,
the user interface (UI) tests, the functional tests, and the collaboration tests. The main
reason for such organization is the test group independence with respect to the testing
techniques and tools used.

UI tests verify the correct appearance of application screens and GUI objects and also the
correctness of the GUI navigation. The tests are based on the UI specification documents.
Our intention is to get most of the UI tests automated because of the relative stability of
the GUI interface and since we always expect regression tests for various hardware
platforms (with different displays). Another reason for UI test automation is that its
results such as the test scripts used to access the GUI objects and to navigate through the
application are reused for the functional tests.

Functional tests verify that the features of the integrated software behave as desired and
are generated from the system and software requirements. They are gray-box tests since
they mostly use special drivers or interfaces (prepared only for the testing purposes and
not available in the product) to access the software internals to be verified. As the

5

regression of functional testing is of high probability especially because of the frequent
software reuse, usually only small percentage of the tests is executed manually.

Collaboration tests verify that the interactions between the integrated software
components are as designed in the software design specification (SDS) documentation.
We employ the combination of a complete component set testing (to verify the high-level
UML sequence diagrams) and a limited component set testing (to verify low-level UML
sequence diagrams and component pre- and post-conditions). Whereas the UI and
functional tests can be automated using commercially available GUI automation tools, to
enable the collaboration test automation, special development efforts must be provided.

FO R M A L M E T H O D S F O R VE R I F I C AT I O N O F CO M P O N E N T CO L L A B O R AT I O N DE S I G N

To start the collaboration tests at earlier development stages when the implementation has
not yet begun we need a model of the designed software. As a modeling tool we have
chosen the Prototype Verification System – PVS. It is a software package that employs
formal methods to state problems and find their solutions. Generally, a problem in PVS is
represented in the first order logic by a theory and a set of lemmas. A theory is a set of
mathematical definitions and axioms that formally describe the problem’s domain of
discourse. Lemmas and theorems are formal descriptions of the assumptions that are to be
proven to solve the problem. PVS, having a formal representation of a problem uses an
algorithm based on logical resolution to find the proof of the lemmas and theorems within
the specified theory.
The general obstacle of using system like PVS is the ability of translating the software
specification in first order logic. An example of a problem representation is introduced
below for the deadlock problem. In this representation, the axiom BadUseSource
represents a wrong memory allocation that can be detected by proving the third lemma.

% definition of theory
Deadlock : THEORY
BEGIN

% definition of types
M : INTEGER
N : INTEGER
GenProcess : TYPE = {p : I NTEGER | p < N+1}
Process : TYPE = {p : GenProcess | p > 0}
GenSource : TYPE = {s : INTEGER | s < M+1}
Source : TYPE = {s : GenSource | s > 0}
SourceUsedBy : TYPE = [Source → GenProcess]
ProcessWaiting : TYPE = [Process → GenSource]
State : TYPE = [# UsedBy : SourceUsedBy, Waiting : ProcessWaiting #]

% definition of variable types
gp : VAR GenProcess
p,p1,p2: VAR Process
s,s1,s2 : VAR Source
st : VAR State

6

% definition of axioms

initstate : STATE = (# UsedBy := λp:0, Waiting := λp:0)
UseSource (st,p,s) : STATE = IF ∀ s1 : ((UsedBy(st)(s1) = p) ⊃ s < s1)
 THEN IF ∃ p1 : UsedBy(st)(s) = p1

 THEN st WITH [(Waiting)(p) := s]
 ELSE st WITH [(UsedBy)(s) := p]
 ENDIF
 ELSE st
 ENDIF
BadUseSource (st,p,s) : STATE = IF ∃ p1 : UsedBy(st)(s) = p1

 THEN st WITH [(Waiting)(p) := s]
 ELSE st WITH [(UsedBy)(s) := p]
 ENDIF
DirectBlock (st,p,p1) : BOOL = ∃ s : (s = Waiting(st)(p) ∧ UsedBy(st)(s) = p1

Block (st,p,p1) : INDUCTIVE BOOL = DirectBlock(st,p,p1)∨ (∃ p2 : DirectBlock(st,p,p2) ∧ Block(st,p2,p1))
Deadlock(st) : BOOL = ∃ (p : Process) : Block(st,p,p)

% definition of lemmas

Lemma1 : LEMMA ∀p,p1 : ¬(DirectBlock(initstate,p,p1))
Lemma2 : LEMMA ∀p,p1 : ¬(Block(initstate,p,p1))
Lemma3 : LEMMA ∀p1,p2,s1,s2 : p1 ≠ p2 ∧ s1 ≠ s2 ⊃
 Deadlock(BadUseSource(BadUseSource(BadUseSource(initstate,p1,s1),p2,s2),p2,s1)p1,s2))
END Deadlock

PVS formal representation of a deadlock problem

 Once we have the formal representation of the specification we can attempt to prove that
it is correct. The PVS algorithm is, however, rather used in a reverse way – to verify the
completeness of the specification. If we have only a draft specification of the theory that
contains only the core definitions and axioms, and a set of theorems that should be valid
then the PVS leads us to find the minimal theory that satisfies the goal theorem.

AU T O M AT I N G T H E C O L L A B O R AT I O N TE S T S

Collaboration tests verify the component interactions by observing the information
exchange directly on the component interfaces. The main goal is to cover all possible
scenarios that can occur in the application under test. We attempt to reach this goal in two
ways – by examining the message sequences under the desired scenarios and by
examining the specified component pre- and post-conditions.
The message sequence tests are provided to verify the rather high-level UML sequence
diagrams. A desired scenario is invoked and the inter-component information exchange is
observed to verify the correct behavior. The tests are usually provided with a complete
set of components. We use a passive message monitor device included in the application
to log the messages being exchanged together with their time stamps. The passive
monitor can insert verification tags in the log for easier locating the particular message
sequence. The produced message log is then examined whether it conforms to the
specified message sequence. A Perl-based message log parser is used to verify the
sequence either by comparing it to the pre-verified gold file or by verifying the message

7

internal data. As mentioned before these tests are used only for the high-level scenarios,
mainly because of an unfeasible numbers of scenario variances at deepest levels.
The component pre-conditions (i.e. specific component reactions on certain states of the
application) and post-conditions (states of the application after the specific actions
provided by particular components) are examined in two ways – either manually or
automatically. Manual tests are done by compiling pieces of application brought to a
desired state by hard coding the initializing message sequence. In this way, we can use
only limited set of components that are involved in the particular test case and, therefore,
these tests can be done at early development stages when not all components are

General pre- and post-condition automated test design

available. Automatic tests are supported by the active message monitor device that
allows us to bring the application in a desired state by simulating responses of selected
components. It is an extended passive message monitor that can switch the application
components on and off and that can receive, debug and send specific messages. The
general use of an active message monitor is sketched in the above figure.

US I N G GUI TE S T I N G AU T O M AT I O N TO O L S

Incremental development where new features are gradually added between the individual
increments requires large amounts of integration tests to be regressed. As our human
resources for testing are limited we tend to automate as much tests as possible. GUI
testing automation tools such as ATF (Softbridge), WinRunner (Mercury Interactive), or
SQA Team Test (Rational) are used to create programs (called test scripts) written in a
tool-specific programming language, which simulate the user behavior by generating
desired GUI events and verify the software application responses. The software
functionality is verified by detecting the GUI events created as a response to the
simulated events and comparing them to the expected values. Verification means of the

Component
n

1) Application is brought to a certain state via standard interfaces available to the user.
2) Active message monitor is used to interrupt the work of particular components.
3) Active message monitor is used to evoke the desired pre- or post-condition state by
simulating the interrupted components via absorbing and inserting the necessary messages
from and to the system, respectively.
4) A message log is examined by the message log parser to verify the tested component
responses.

Component
5

Component
4

Component
3

Component
2

Component 1

Message
Monitor

8

tools include support actions for checking window/object existence, verifying the
attributes of specific objects (size, position, label, text, etc.) or matching bitmaps.
Currently we use the ATF GUI testing automation tool of Softbridge mainly for the
functional black-box tests where software features are accessed either by standard GUI or
by special GUI drivers created only for the purpose of testing. These drivers are created
to access either the features that do not have their GUI (e.g. audible feedback, telemetry,
or internal state variables), or the features that GUI has not been yet developed in the
particular increment. Although it is possible to control the message monitor by ATF we
do not use it for the component collaboration tests because of the real time
synchronization problems.

 GUI testing automation environment setup

To reduce the total testing time, we run the tests on several programmers in parallel. The
test scripts that are located on the database server are executed on the programmers
connected via intranet to the ATF TestLab Command Center, which controlls the test
script distribution to the programmers available and manages the test reports.

 GUI object identification

While using the GUI test automation tools we experienced several problems. First of all,
these tools are quite sensitive to the changes of the GUI design during software
development such as additions of new GUI objects and windows, changes of specific

Intranet

Test Database ATF TestLab
Command Center

Programmer
ATF Test Agent

Programmer
ATF Test Agent

Programmer
ATF Test Agent

tsID

test script

tsID osID

database

widget handle

OS service

9

GUI controls, etc. In order to avoid this sensitivity we adopted a symbolic approach to
GUI object identification and to GUI navigation. Within the test scripts we use symbolic
identifiers, which we map to the operating system identifiers that are hard coded by
agreement with the developers. The operating system services can map these identifiers
to the display manager widget handles, which are then used by the automation tool to
access the particular GUI objects. Similarly, the navigation hierarchy and the navigation
actions are represented in the database and the navigation path is detected by the

 Detecting the navigation path

pathfinder engine test script. First, it detects the positions of the source and destination
objects in the navigation hierarchy, then it finds the shortest navigation path, and finally it
returns the navigation path in the form of sequence of GUI events to be generated.

Another problem is that of accessing the custom controls, i.e. the objects derived from the
standard controls available in the presentation manager of the particular operating system.
To be able to access the custom controls by the particular GUI test automation tool,
special interfaces must be developed. This is an extra effort that must be taken in account
when planning the development activities. Developing the custom controls may result in
the problem of consuming the presentation manager system messages, which is a
programming technique rarely used by developers to avoid undesired displaying
problems. The automation tools, however, need the information contained in these
messages to control the application GUI. Consuming the system messages can therefore
lead to disabling the tool functionality.

TE S T I N G EVA L U AT I O N

Generally, we evaluate the testing process by analyzing the defects and the testing costs.
We base the evaluation on the data collected in the test summary reports delivered to our
customers.

The defect analysis gives us the areas that need improvement. We categorize the defects
by feature (documentation, GUI, component functionality, integration of components)
and by severity. We follow the collected defect numbers in each testing phase and reflect
the findings in the phases that follow. One of the most informative metrics on the testing
process effectiveness is the ratio between the defects found by executing the designed
tests and by providing „random“ tests (performed also by the developers).

source tsID, destination tsID

parent tsID
childList [tsID]

navigation action

navigation
path

test script

database

pathfinder engine

10

The testing costs analysis helps us to plan the future testing process resources. We
express the costs in man/days spent on the testing activities (test design and preparation,
test execution, test regression, test design rework) again categorized per feature.

CO N C L U S I O N

In this paper, we presented our approach to enhance the integration testing of component-
based software. We identified the phases of the integration testing process and focused on
three main areas, the exploration of formal methods for verification of component
collaboration design, the automation of component collaboration verification, and the
use of GUI automation tools to support the integration tests.

RE F E R E N C E S

Beizer B.: Black-Box Testing. Wiley, 1995.

Horch J.W.: Practical Guide to Software Quality Management. Artech House, 1996.

Kit, E.: Software Testing in the Real World. Addison-Wesley, 1995.

Myers, G.J.: The Art of Software Testing. Wiley, 1976.

Owre S., Rushby J., Shankar N., and Calvert D.: PVS: An Experience Report. Springer
Verlag Lecture Notes in Computer Science Vol.1641, pp.338-345, 1998.

Owre S., Shankar N., and Rushby J.: PVS: A Prototype Verification System. Proc. of
CADE 11, Saratoga Springs, 1992.

Rakitin, S.R.: Software Verification and Validation. Artech House, 1997.

QWE2000 Session 2A

Mr. Olaf Mueller & Mr. Axel Podschwadek
[Germany]
(Siemens)

"A Step-to-Step Guide to Incremental Testing:
Managing Feature Interaction for Communication

Devices"

Key Points

The focus is laid on restructuring the test process: Define clear test exit criteria. Divide
integration into different levels. Define integration levels feature-oriented, not
archtitecture-centric. Augment project management by an integration matrix. Move system
test to the integration phase of each increment. Automate system test to enable regression.
Change configuration management to distinguish between error handling and development
of next increment. Change review techniques to deal with component additions. Change
requirements engineering and change requests.

●

Presentation Abstract

In recent years pressure on the communication industry concerning a shorter
time-to-market has been steadily growing. This demands for a significant reduction of
project-specific development times. At the same time complexity is growing
tremendously, especially for the software components. The interaction of the
continuously growing number of new features reaches a dimension which is hardly
manageable. As one solution to both problems incremental development processes
have been proposed. They allow to serve the market at hardly any time by in the
same time splitting up the system into pieces of manageable size. Furthermore, such
processes permit a validation of the system from the user's perspective already in
early stages of development. However, the effort and complexity of introducing an
incremental process should not be underestimated. In this paper we propose a
detailed roadmap for such an improvement goal by presenting well-defined and
fine-granular steps of process change. They start from later stages of development
and move then on to earlier stages. The focus is on test process improvements, but
hints for all other relevant and concerned process areas are given as well. The work
is based on experiences made with the development of communication devices
within the Siemens company.

About the Speaker

Speaker Bio

QWE2000 -- Conference Presentation Summary

http://www.soft.com/QualWeek/QWE2K/Papers/2A.html [9/28/2000 10:58:58 AM]

Page 1

© Siemens AG, 2000 All rights reserved
Podschwadek, ICM MD DP QM PSI

22/09/2000, <QWE2000-Vortrag>, Page 1

SIEMENS

< A step-to-step Guide to incremental testing >
“Quality Week Europe" November 20-24, 2000

A step-to-step Guide to incremental testing managing
feature interaction for Communication devices

A step-to-step Guide to incremental testing managing
feature interaction for Communication devices

Author Axel Podschwadek
Company Siemens Phone: +49 / 2871 / 91-2438
Org. ICM MD QM DP PSI Fax: +49 / 2871 / 91-2495
E-mail axel.podschwadek@bch.siemens.de

© Siemens AG, 2000 All rights reserved
Podschwadek, ICM MD DP QM PSI

22/09/2000, <QWE2000-Vortrag>, Page 2

SIEMENS

< A step-to-step Guide to incremental testing >
“Quality Week Europe" November 20-24, 2000

Goals:
shorter time-to-market
high quality software, (Reason: no possibility for an update)
reduce development effort

Methods:
introduce an incremental development and test process
splitting up system into smaller pieces
dividing development process into differant cycles
validate system from user´s perspective
automate testing

Introduction

Page 2

© Siemens AG, 2000 All rights reserved
Podschwadek, ICM MD DP QM PSI

22/09/2000, <QWE2000-Vortrag>, Page 3

SIEMENS

< A step-to-step Guide to incremental testing >
“Quality Week Europe" November 20-24, 2000

Steps to incremental testing

Step 1: Define clear test exit criteria
Step 2: Divide integration into different levels
Step 3: Define integration levels feature-oriented, not architecture-centric
Step 4: Improve project management by an integration matrix
Step 5: Move system test to the integration phase of each increment
Step 6: Automate system test to enable regression

Conclusion

Content

© Siemens AG, 2000 All rights reserved
Podschwadek, ICM MD DP QM PSI

22/09/2000, <QWE2000-Vortrag>, Page 4

SIEMENS

< A step-to-step Guide to incremental testing >
“Quality Week Europe" November 20-24, 2000

Step 1: Define clear test exit criteria

Measuring every phase with metrics
Rate every metric to a global scale

Ranges of the Rapps-scale:
0..79: No release to next phase
80..99: Risk-area
100..120: Release to next phase

Advantages:
Easy to communicate
Established in short time

Release

Risk

No Release

0

80

100

120

R
a
p
p
s

Page 3

© Siemens AG, 2000 All rights reserved
Podschwadek, ICM MD DP QM PSI

22/09/2000, <QWE2000-Vortrag>, Page 5

SIEMENS

< A step-to-step Guide to incremental testing >
“Quality Week Europe" November 20-24, 2000

Metrics are measured to:
tracking a project and
approve the product

Metrics could not be only formal. They need to have a technical background.

Examples for metrics for testing:
Test coverage
predicting bugs
bug fixing percentage
and a lot others

Step 1: Define clear test exit criteria

© Siemens AG, 2000 All rights reserved
Podschwadek, ICM MD DP QM PSI

22/09/2000, <QWE2000-Vortrag>, Page 6

SIEMENS

< A step-to-step Guide to incremental testing >
“Quality Week Europe" November 20-24, 2000

Specify all requirements as a list of features
Deriving the architecture
Generating a list of working packages

Step 2: Divide integration into different levels

Features

Architecture

FeaturesFeatures
Working
package
Working
package
Working
package
Working
packages

Features

Page 4

© Siemens AG, 2000 All rights reserved
Podschwadek, ICM MD DP QM PSI

22/09/2000, <QWE2000-Vortrag>, Page 7

SIEMENS

< A step-to-step Guide to incremental testing >
“Quality Week Europe" November 20-24, 2000

Organize all working packages in steps
 specify each package
 estimate effort of each package

Generate an integration-plan:

Step 2: Divide integration into different levels

Working
package
Working
package
Working
package
Working
packages

Int 1

Int 2

Int 3

Int n

OS, Cores

First call

Application

Feature oriented packages

© Siemens AG, 2000 All rights reserved
Podschwadek, ICM MD DP QM PSI

22/09/2000, <QWE2000-Vortrag>, Page 8

SIEMENS

< A step-to-step Guide to incremental testing >
“Quality Week Europe" November 20-24, 2000

basis of the integration matrix:
Input data:

A list of all features
Planned integration step for each feature (see step 2)
A list of all working packages
Estimated effort for each working package

Output data:
effort per feature
effort per integration step

Step 3: Define integration levels feature-oriented, not
 architecture-centric

Page 5

© Siemens AG, 2000 All rights reserved
Podschwadek, ICM MD DP QM PSI

22/09/2000, <QWE2000-Vortrag>, Page 9

SIEMENS

< A step-to-step Guide to incremental testing >
“Quality Week Europe" November 20-24, 2000

Step 3: Define integration levels feature-oriented, not
 architecture-centric

Working
package B

Working
package A

XFeature 2

Feature 1 X

Example:

Meaning:

Feature 1 is associated to working package A,
Feature 2 is associated to working package B

© Siemens AG, 2000 All rights reserved
Podschwadek, ICM MD DP QM PSI

22/09/2000, <QWE2000-Vortrag>, Page 10

SIEMENS

< A step-to-step Guide to incremental testing >
“Quality Week Europe" November 20-24, 2000

Step 3: Define integration levels feature-oriented, not
 architecture-centric

A B C D E F G

Features Ready at
step

(down)

Effort
(right) 60 20 20 30 10 15 40 3. 4.

Feature 1 1 X X X X 4 35
Feature 2 3 X X 2 15
Feature 3 2 X X X 3 20
Feature 4 3 X X X X 4 40
Feature 5 1 X X X X X 5 55
Feature 6 2 X X 2 30

Number
associations 1. 6 1 4 2 2 3 2

Effort per
association 2. 10 20 5 15 5 5 20

Page 6

© Siemens AG, 2000 All rights reserved
Podschwadek, ICM MD DP QM PSI

22/09/2000, <QWE2000-Vortrag>, Page 11

SIEMENS

< A step-to-step Guide to incremental testing >
“Quality Week Europe" November 20-24, 2000

Step 3: Define integration levels feature-oriented, not
 architecture-centric

Step Action Example

1. Counting all associations per column. The computed numbers are right
from 1.

2.
Computing the associated amount. For
example through dividing the estimated
effort by the number of associations (linear
approach)

The computed numbers are right
from 2.

3. Relate for every association the associated
amount

The computed numbers are below
3.

4. Add the associated amount per feature. The computed numbers are below
4.

Using the full example (previous page):

© Siemens AG, 2000 All rights reserved
Podschwadek, ICM MD DP QM PSI

22/09/2000, <QWE2000-Vortrag>, Page 12

SIEMENS

< A step-to-step Guide to incremental testing >
“Quality Week Europe" November 20-24, 2000

Generated results:
After performing all steps the „effort per feature“ is calculated

This can be summarized to effort per integration step by adding each effort of a
single feature

Step 3: Define integration levels feature-oriented, not
 architecture-centric

Integration step Features Computed
effort

1 Features 1 and 5 90
2 Features 3 and 6 50
3 Features 2 and 4 55

Page 7

© Siemens AG, 2000 All rights reserved
Podschwadek, ICM MD DP QM PSI

22/09/2000, <QWE2000-Vortrag>, Page 13

SIEMENS

< A step-to-step Guide to incremental testing >
“Quality Week Europe" November 20-24, 2000

Generating a project plan out of effort:
having constant time:

having constant resources:

Step 4: Improve project management by an integration matrix

90h 50h 55h

90h 50h 55h

Resources
Resources Resources

Resources

time

© Siemens AG, 2000 All rights reserved
Podschwadek, ICM MD DP QM PSI

22/09/2000, <QWE2000-Vortrag>, Page 14

SIEMENS

< A step-to-step Guide to incremental testing >
“Quality Week Europe" November 20-24, 2000

Performing tests on a product thats implementation is not complete is difficult:

There are bugs discovered in areas,
that are still not complete
testers need a test-specification in
which is discribed what is testable

Only effort lies in early discovered bugs

All necessary information can be derived
out of the integration matrix

Step 5: Move system test to the integration phase of each
 increment

Ready at
stepFeatures

1Feature 1
1Feature 5
2Feature 3
2Feature 6
3Feature 2
3Feature 4

Page 8

© Siemens AG, 2000 All rights reserved
Podschwadek, ICM MD DP QM PSI

22/09/2000, <QWE2000-Vortrag>, Page 15

SIEMENS

< A step-to-step Guide to incremental testing >
“Quality Week Europe" November 20-24, 2000

Performing regressiontests for each integration-step means, to repeat the same test for
several times.

Step 6: Automate system test to enable regression

Features per integration-step

Featuretest is performed:

4

Times !

1 1
1 1 2 2
1 1 2 2
1 1 2 2

3 3 3
4

1 1 2 2
3 3 3 4
3 3 3 4 4 4 5

5 5 4 4 3 3 3 2 2 2 1

© Siemens AG, 2000 All rights reserved
Podschwadek, ICM MD DP QM PSI

22/09/2000, <QWE2000-Vortrag>, Page 16

SIEMENS

< A step-to-step Guide to incremental testing >
“Quality Week Europe" November 20-24, 2000

The next step is to establish a recorder tool.

Performing the tests once,
storing all relevant data leads up to

a complete reusable set of tests

Step 6: Automate system test to enable regression

Page 9

© Siemens AG, 2000 All rights reserved
Podschwadek, ICM MD DP QM PSI

22/09/2000, <QWE2000-Vortrag>, Page 17

SIEMENS

< A step-to-step Guide to incremental testing >
“Quality Week Europe" November 20-24, 2000

Benefits from incrementell testing and using the integration matrix:
planning easier, on a more detailed level
mostly all relevant information can be calculated with a tool
very efficient guideline for blackbox-testing
additionally stability in project management data

team size can be set out of information
structure can be chosen more easily

Increasing project-process performance by a factor 4.

Conclusion

Software & Internet Brussels, Belgium 20.11.-24.11.2000

Quality Week Europe

Copyright © Siemens AG 2000, All rights reserved page 1 of 7 Podschwadek,
22/09/2000

A Step-to-step Guide to incremental testing managing feature

interaction for Communication devices

Axel Podschwadek, Siemens AG

Abstract
In recent years pressure on the communication industry concerning a shorter time-to-

market has been steadily growing. This demands for a significant reduction of project-specific
development times. At the same time complexity is growing tremendously, especially for the
software components. The interaction of the continuously growing number of new features
reaches a dimension which is hardly manageable. As one solution to both problems
incremental development processes have been proposed. They allow to serve the market at
hardly any time by in the same time splitting up the system into pieces of manageable size.
Furthermore, such processes permit a validation of the system from the user’s perspective
already in early stages of development. However, the effort and complexity of introducing an
incremental process should not be underestimated. In this paper it is proposed a detailed
roadmap for such an improvement goal by presenting well-defined and fine-granular steps of
process change. They start from later stages of development and move then on to earlier
stages. The focus is on test process improvements, but hints for all other relevant and
concerned process areas are given as well. The work is based on experiences made with the
development of communication devices within the Siemens company.

Introduction
In recent years pressure on the communication industry concerning a shorter time-to-

market has been steadily growing. Siemens develops and manufactures in Bocholt digital
cordless phones for the mass market. The code is stored in ROM on board of the processor.
So there is no possibility to make an update of the software having millions of phones at the
homes of the users.

The mass market forces development departments to bring up new products in very short
cycles with an increasing number of features. Out of this reason complexity is growing and
managing the project became almost impossible. Making routhly estimations based on our
experience is possible, but not sufficient enough. For a more detailed prediction we need for
our long running phase a better statement. This demands for a significant reduction of project-
specific development times. At the same time complexity is growing tremendously, especially
for the software components. The interaction of the continuously growing number of new
features reaches a dimension which is hardly manageable.

As one solution to this problem incremental development processes have been proposed.

They allow to serve the market by a shorter period of time by splitting up the system into
pieces of manageable size. This is reached by dividing the development process (organized as
a usual waterfall model) into several cycles, each cycle covering all development activities
and resulting in a further increment of the system.

Software & Internet Brussels, Belgium 20.11.-24.11.2000

Quality Week Europe

Copyright © Siemens AG 2000, All rights reserved page 2 of 7 Podschwadek,
22/09/2000

In addition, incremental processes permit a validation of the system from the user´s

perspective already in early stages of development. However, the effort and complexity of
introducing an incremental process should not be underestimated.

The process starts from later stages of development and move then on to earlier stages.
Our experience shows that a well-structured and planed roadmap is absolutely essential for
the success of such an improvement, as process changes have to be implemented and
accepted by the entire development team.

Step 1: Define clear test exit criteria
In order to establish clear and separate test phases, each phase has to be terminated using

definite and meaningful metrics. If this is neglected there is a great danger that all test cases
are moved backwards to late system tests. Before being able to establish different test cycles
for different increments it is essential to be used to such metrics as otherwise there is no
culture to deal with early tests. Although it is well known than early error detection is very
cost-effective, often tests are performed as late as possible.

To measure our products we use a scale to rate every metric. This scale is the Rapps-scale.

Rapps means “Rathmer points on the Podschwadek scale” and describes a modell out of
which everyone can derive, whether a software is ready to release or not.

The first range “No release” starts from 0 up to 80 Rapps. It is just the information, that
only a minimum percentage of the metric is fulfilled. Above 80 Rapps up to 99 Rapps is the
risk-area. Giving a product to a next phase would be risky. Sometimes it is necessary to take a
risk, but normally taking a risk could be more expensive than developing a product to its end
in the range of 100 up to a maximum of 120 Rapps.

Using this scale simplifies communication to the major project managers, whose
background in software engineering disciplines is limited.

Release

Risk

No
Release

0

80

100

120

R
a
p
p
s

Software & Internet Brussels, Belgium 20.11.-24.11.2000

Quality Week Europe

Copyright © Siemens AG 2000, All rights reserved page 3 of 7 Podschwadek,
22/09/2000

Beyond the Rapps-scale is a set of other metrics, that consists out of three categories:
• Test coverage
• Predicting bugs
• Removing known bugs

Test coverage is directly measured as an unweight criteria and additionally as an weight

criteria named test intensity.
Predicting bugs is easy, if you use an easy model and much more complex if you try to be

to precise. Out of the relation between number of found errors compared to testing effort
there can be made a curve. This curve is predictable, and the more bugs you found, the better
is this model working.

A second model gives out of predicted lines of code (LOC) and average bugs per LOC´s a
second prediction about the complete number of bugs.

Out of the curve of known bugs combined with a time index you get a curve, that in the
beginning is constantly growing, and after a maximum is nearly linear decreasing with an
average flatness. Out of this model it also is easy to build a prediction model with ranges.
After reaching the maximum a date for achieving a level of bugs, that could be tolerated can
be calculated automatically.

All these methods are basis for every phase, because they are unified. Reaching enough
Rapps for a phase is criteria before beginning another. This only means fulfilling the own
work to completeness is mandatory. Doing the work only the half could never be tolerated.

Step 2: Divide integration into different levels
In the last years, it was possible to establish a new method to specify a detailed plan for

integration SW-components on a low-level managing the great mass of data that is generated
through this method.

It will be described how this method has been introduced in a heterogeneous environment
of software development projects, what are the constraints for this method, how the method is
performed and how the method fits with our culture of software development and quality
management.

After a period of sporadic use, the method was recognised by the project managers as a
powerful tool for making development effort more convincing to the planned periods of time
for integration. In earlier days these integration steps have been planned as a steady period of
time. Today this space is filled with the information that is derived out of the matrix.

Every project manager is trained and coached for his individual project and mostly all
proects made use of the method. Using the integration matrix has been a standard for our
development process.

The core activities are focused in our software quality and process improvement
department, which has established, trained and coached all users.

Every project gets is requirements as a list of features that are planned to be implemented.
This list of features will be specified in more detailed requirement-specifications. Derived out
of this list an architecture will be designed (however cordless phones do not differ one from
another so much) and a list of working packages is generated from the architect.

Software & Internet Brussels, Belgium 20.11.-24.11.2000

Quality Week Europe

Copyright © Siemens AG 2000, All rights reserved page 4 of 7 Podschwadek,
22/09/2000

The list of working packages is analysed be the programmers and a meeting was held,
where everyone gives a number for the planned effort. These numbers will be assessed and
brought to one number for every single working package.

Putting all these numbers together gives an easy overview over the schedule of the project
and considering the available resources calculates a straight forward milestone for finishing
the project.

One problem that results out of this estimation process is the fact that you get numbers for
working packages, but you don’t get numbers for features.

For performing black-box-integration-tests it is necessary to have an idea, when each
single feature is complete and testable. This information depends on the completeness of the
working packages, but is not directly combined. The reason is a working package oriented
mode of operation of the developers, that is derived out of the architecture.

Putting all these information together, is the major task of the integration-matrix.

Step 3: Define integration levels feature-oriented, not architecture-
centric

The integration-matrix was invented while discussing about modultesting. Dividing each
step of development, particularly the coding phase in shorter parts, leads in the direction of
defining software-modules or software-units. Putting all units together leads to a complete
whole.

A work group was build in order to discuss these methods above the range of one single
project. After long meetings, suggesting various possible ways, the prototype of the matrix
was generated on a Microsoft Excel-base. Managing a little number of working packages and
features, this first approach was the beginning of a more comprehensive tool.

Although it was a comprehensive tool a lot of training and coaching was necessary.
An additional problem was the range of information that is stored inside this matrix. A

standard project has no less than 150 features, combined with no less than 50 working
packages makes a minimum of 7500 possible combinations that have to be analysed.

A Support for generating and handling each matrix for every project was arranged to
ensure the proper use of the matrix, to accumulate the experience while using the matrix, to
collect metric data and to help the project managers to make use the matrix.

Inputs of the matrix are:
• A list of all features
• Planned integration-step for each feature
• A list of all working packages (coding)
• Assumed effort for each working package

These information was associated in a grid through a label. The meaning of this label is,

that the specific feature is associated to a working package.

 Working
package A

Working
package B

Software & Internet Brussels, Belgium 20.11.-24.11.2000

Quality Week Europe

Copyright © Siemens AG 2000, All rights reserved page 5 of 7 Podschwadek,
22/09/2000

Feature 1 X
Feature 2 X

This table shows an example of associating feature 1 to working package A, and

associating feature 2 with working package B.

A B C D E F G

Features Ready at
step

(down)

Effort
(right) 60 20 20 30 10 15 40 3. 4.

Feature 1 1 X X X X 4 40
Feature 2 3 X X 2 15
Feature 3 2 X X X 3 20
Feature 4 3 X X X X 4 40
Feature 5 1 X X X X X 5 55
Feature 6 2 X X 2 30

Number
associations 1. 6 1 4 2 2 3 2

Effort per
association 2. 10 20 5 15 5 5 20

This next table shows a complete integration-matrix example. Any required input is given

(features 1 to 6, date of ready at (integration-)step, working packages A to G, estimated effort
for each working package).

Additionally all associations are entered.
Computing the matrix was performed in 4 steps (lighted in green big numbers):

Step Action Example

1. Counting all associations per column.

The computed numbers are right
from 1.

2.
Computing the associated amount. For
example through dividing the estimated
effort by the number of associations (linear
approach)

The computed numbers are right
from 2.

3. Relate for every association the associated
amount

The computed numbers are below
3.

4. Add the associated amount per feature. The computed numbers are below
4.

The result after this step is the effort per feature. The next step is to add up the amount per

integration step.
This is done separately from the matrix.

Software & Internet Brussels, Belgium 20.11.-24.11.2000

Quality Week Europe

Copyright © Siemens AG 2000, All rights reserved page 6 of 7 Podschwadek,
22/09/2000

Integration step Features Computed
effort

1 Features 1 and 5 95
2 Features 3 and 6 50
3 Features 2 and 4 55

The result of the example is that the effort of integration-step 1 is nearly double the effort

of step two or three. From this information there can be derived, that

1. having constant time, it is necessary to have additional resources or
2. having constant resources, it is necessary to have more time

for coding this first step of integration.

Step 4: Improve project management by an integration matrix
The feature-oriented view of integration levels and the architect view of the project plan

are orthogonal to each other. Therefore they interact to each other and are often not without
contradiction. Therefore it is essential to develop both concepts in parallel, and to detect and
eliminate such inconsistencies.

As mentioned above, Siemens Bocholt has projects in increasing levels of complexity. So
there is not one simple method planning and tracking the project. The project manager had to
work out several information specific to the different kinds of sources, development
environments and engineering methods.

When the integration-matrix is calculated, effort to each integration step is given, the next
step is to start with the project management plan. The project manager had to transform the
effort information using his resources to a time information. Without the matrix he would
have to guess this effort.

Step 5: Move system test to the integration phase of each
increment

Now – and only now - it is possible to introduce several separate development cycles by
dividing the test process into different pieces.

To improve the process of testing software it is the best way to start with testing as early as
possible. But each tester needs a guideline what he has to test, and it could be a more great
effort to write this down, then to perform the test.

Additionally it is very frustrating for a tester to start testing on features that are simply not
ready to test.

This information can also be derived out of the matrix!
Making a sort over the integration steps, all features (even then there is a great number) are

in order of there completion. Knowing the dates of the integration steps, the tester has got a
date based self increasing list of features, he had to test.

Software & Internet Brussels, Belgium 20.11.-24.11.2000

Quality Week Europe

Copyright © Siemens AG 2000, All rights reserved page 7 of 7 Podschwadek,
22/09/2000

The data of the compare between planned and achieved functionality is input information
of the status report for tracking the project. It has got the look of a milestone trend analysis
and is generated automatically through this information.

Step 6: Automate system test to enable regression
As increments are defined via features and do not follow directly the component

architecture, in each increment a new delta of code is added to each component. This has to
be re-tested, as it is almost impossible to only retest the newly added additions. Therefore an
efficient automation of regression testing is essential and easy to implement at this point.

To adopt this constraint to the process, it is important to realise, that most of the tests are
performed on a user interface level. And even the tests that are not performed on this level
could easily adopted to an interface, so they could be handled as being performed on an user
interface level.

The next step is to establish a recorder tool. Performing the tests once, and storing all
relevant data leeds you up to a complete re-usable set of tests.

This set of tests can be re-used for any iteration of regression testing.

Conclusion
The most benefits from the integration matrix are for derived out of benefits of the process.
• It is possible to plan easier, but on a more detailed level
• Mostly any relevant information can be calculated with a tool
• You got nearly for no additional effort a very efficient guideline for blackbox-testing
• Additionally stability of the project requirements
• team experience in

- software engineering is culturiced
- development environment is held stable
- tools and methods are standardized

• team productivity factors
- team size can be set out of information
- structure can be chose more easily

The usage of this kind of a process fullfills our requirements in bringing up products more
quickly than in the past. Even managing projects of the size we have today would not be
possible. With constant resources we can handle up to four parallel developed projects,
whereas in the past it was just one.

Managing feature-interaction has been a challenge of the last two years. Now we are up to
optimize our tooling, that we will get more resoluted data of our results and process metrics.
But derived out of our project scope we see an increasing of project-process-performance of
about a factor 4.

Improving our test-process and doing some fine-tuning will be the issue of the following
up activities.

QWE2000 Session 2I

Ms. Nicole Levy [France]
(Laboratore PRISM)

"Quality Characteristics to Select an Architecture for
Real-Time Internet Applications"

Key Points

software architecture●

quality attributes●

formal definition of architectural styles●

Presentation Abstract

There is a general agreement on the fact that, at an architectural design stage, the
consideration of quality issues are crucial for achieving the overall system quality
goals.

The objective of this work is to present and discuss the experience obtained in
applying the ABAS (Attribute-Based Architectural Style) technique, for the selection
of the architecture of a stock exchange monitoring system.

Non-functional requirements for this application are high availability, platforms
heterogeneity, distribution of clients, strict response time. The ABAS technique has
been extended introducing the ISO 9126 quality model, to refine the initial high-level
quality characteristic, considered relevant to the style, into measurable attributes. In
this work we have formalized the definition of architectural styles with quality
attributes. For the architecture of the data component, we considered the
architectural style for indirect communication and component decoupling, favoring
the availability attribute. Several patterns have been studied and evaluated with
respect to the availability attribute: Publisher/Subscriber, Repository, Mediator and
Broker.

The lessons learned were that the ABAS technique extended with the ISO 9126
quality model and the formal definition of the style, was useful to guide the selection
of the architectural pattern. It helped to organize the specialist knowledge and to
reason about the relevant quality characteristic of the pattern.

About the Speaker

Nicole Levy is professor at the University of Versailles, Saint Quentin en Yvelines.
She leads a group on the design of software architecture based on the formalization
of the development.

QWE2000 -- Conference Presentation Summary

http://www.soft.com/QualWeek/QWE2K/Papers/2I.html (1 of 2) [9/28/2000 10:59:14 AM]

She collaborates since several years with F. Losavio, Professor at the Central
University of Venezuela.

Previously she has been assistant professor in Nancy, France, working in the LORIA
research center. She participated to the development of Proplane, a formal
specification construction model independent of the language of expression, guiding
the specifier in its work and memorising his/her expertise.

QWE2000 -- Conference Presentation Summary

http://www.soft.com/QualWeek/QWE2K/Papers/2I.html (2 of 2) [9/28/2000 10:59:14 AM]

1

QUALITY CHARACTERISTICS TO
SELECT AN ARCHITECTURE
FOR REAL-TIME INTERNET

APPLICATIONS

Losavio F., Matteo A., Ordaz Jr . O.
Centro ISYS, Universidad Central de Venezuela

Lévy N., Marcano-Kamenoff R.
Laboratoire PRISM, Université de Versailles

N. Levy, PRISM, FRANCE QWE'2000 2

Architectural design

• Non-functional characteristics must be
taken into account:

performance, secur ity, availabili ty, ...

• Design strategies can be based on
architectural styles or patterns

• The architecture is designed by stepwise
transformations

2

N. Levy, PRISM, FRANCE QWE'2000 3

Objective:

• Select the right architecture

• Take into account quality issues

⇒ apply the ABAS technique
ABAS= Attribute-Based Architectural Style

⇒ formalize quality attributes using the B
language

➘Case Study: Cyber Stock Exchange(CSE)

N. Levy, PRISM, FRANCE QWE'2000 4

ISO 9126 quality attributes
Observable
via execution

Quality measures:
Ex : Availability

Non Observable
via execution

 MTTF

MTTF + MTTR

 Reliability (E)

 Availability (E)

 Complexity (I)

 Reusability (I)

 Instanciabil ity (I)

 Abstraction (I) Coupling (I)

3

N. Levy, PRISM, FRANCE QWE'2000 5

Architectural Styles

Description of

– the component types

– the connectors

– the topology

– global constraints

N. Levy, PRISM, FRANCE QWE'2000 6

ABAS
Attribute-Based Architectural

Style [Klein,Kazman 99]

• Problem description

• Quality attribute measures

• Architectural style

• Quality attribute parameters

• Analysis

4

N. Levy, PRISM, FRANCE QWE'2000 7

The ABAS Structure
• 1. Problem description:

Informal description of the design and analysis
problem

→ the quality attribute of interest, ←← only one

→ the context of use,

→ attribute-specific requirements.

• 2. Stimulus/Response attribute measures:
– the stimuli to which the ABAS is to respond

– the quality attribute measures of the response.

N. Levy, PRISM, FRANCE QWE'2000 8

• 3. Architectural style:
– its components,

– its connectors,

– their topology and

– constraints on the style.

• 4. Analysis:
– how the quali ty attribute models are formally related

to the architectural style,

– conclusions about “architectural behaviour” ,

– tradeoffs between the quality characteristics required
and the measured properties affecting them.

5

N. Levy, PRISM, FRANCE QWE'2000 9

Publisher-Subscriber ABAS

• Problem description:
 Allow multiple components to share data and be

automatically updated

• Stimulus/Response attributes measures:
– time of propagation of a change to the components

– fraction of time that the system is working

– number of components added, modified, deleted

– complexity of these additions/modifications/deletions

N. Levy, PRISM, FRANCE QWE'2000 10

• Architectural style
– Components:

• a publisher
– maintains a registry of currently-subscribed components

– sends changes notifications to the subscribers

push model ↔ pull model

• many subscribers
– subscribe/unsubscribe to the publisher

– Connectors:
subscribers communicate with the publisher

– Topology: STAR

Co-Pub-subm

Co-Pub-sub1

...

sub1

subm

Pub

6

N. Levy, PRISM, FRANCE QWE'2000 11

– Constraints:
• an object can be subscriber to many publishers

• the only role of the publisher is to take the
subscriptions and to send the change notifications

• Analysis
– Data persistency: Transitory

– Communication Protocol: Selective broadcasting

– Dependencies from publisher Very high

– Redundancy in data flow High

N. Levy, PRISM, FRANCE QWE'2000 12

Selection of a style

Styles studied and evaluated with respect to the
availability att r ibute:

– Data indirection

– Publisher/Subscriber

– Mediator

7

N. Levy, PRISM, FRANCE QWE'2000 13

Data indirection style

availabilit y attribute for a consumer cj

communicating with the producers:
availcj = Σ (avail(pi) * avail(co-pi-I))

pi ∈ producers

 * avail (I) * avail(co-I-cj) * avail (cj)

p1

pn

... ...

c1

cm

I

Co-p1-I

Co-I-cm

Co-I-c
1

Co-pn-I

N. Levy, PRISM, FRANCE QWE'2000 14

Mediator style

availabilit y attribute for a colleague ci

communicating with a colleague cj :
availci = avail(cj) * avail(co-cj-M) * avail(M)

 * avail (co-M-ci) * avail(cj)

c1

cn

... ...

Cn+1

cm

M

Co-c1-M

Co-M-cm

Co-M-cn+1

Co-cn-M

8

N. Levy, PRISM, FRANCE QWE'2000 15

Publisher / Subcriber style

availabilit y attribute for a subscriber si

communicating with the publisher:

availsi = avail (Pub) * avail (co-Pub-si) * avail (si)

Co-Pub-sm

Co-Pub-s1

...

s1

sm

Pub

N. Levy, PRISM, FRANCE QWE'2000 16

Case study: CSE
Stock exchange monitoring system

Real-time data provider, to monitor stock exchanges
for brokers and independent investors

• a soft real-time problem
• non-functional

requirements:

– high availabili ty
– platforms heterogeneity
– distribution of clients
– strict response time Brokers

Stock
exchanges

CSE

9

N. Levy, PRISM, FRANCE QWE'2000 17

Application of
Publisher/Subscriber style

availabilit y attribute for a broker :
avail i = avail (Pub) * avail (co-Pub-si) * avail (si)

Brokers
Stock

exchanges

CSE

Pub

S
S
S
S

...
...

N. Levy, PRISM, FRANCE QWE'2000 18

Reuse of Internet:
 avail(co-Pub-si) = 1

availabilit y attribute for a broker :
avail i = avail (Pub) * avail(Bi)

Brokers
Stock

exchanges

CSE

Pub
...

...
B
B
B
B

BrowsersTCP/IP
service

Internet

10

N. Levy, PRISM, FRANCE QWE'2000 19

Introduction of a
 redundant Publisher ⇒2*avail (Pub)

availabilit y attribute for a broker :
avail i = 2*avail(Pub) * avail(Bi)

Brokers
Stock

exchanges

CSE

Pub
...

...
B
B
B
B

Pub’

N. Levy, PRISM, FRANCE QWE'2000 20

Conclusion

• Architecture development by stepwise
transformation

• Internet is reused to define the connector
because of its availabilit y

• Introduce a redundant publisher is a
Middleware architectural pattern

QUALITY CHARACTERISTICS TO SELECT AN ARCHITECTURE
FOR REAL-TIME INTERNET APPLICATIONS1

Losavio F., Matteo A., Ordaz Jr . O.
Centro ISYS, Facultad de Ciencias,
Universidad Central de Venezuela

Apartado 47567, Los Chaguaramos 1041-A, Caracas, Venezuela
{ flosavio, amatteo, oordaz} @isys.ciens.ucv.ve

Lévy N., Marcano-Kamenoff R.

Laboratoire PRISM
Université de Versaill es St.-Quentin,

78035 Versaill es Cedex, France
{ Nicole.Levy,Rafael.Marcano} @prism.uvsq.fr

Abstract

Performance, security and availabilit y are important non-functional characteristics that must be present in
real-time systems. The selection of a convenient architecture is an important step in achieving these quality
goals. The use of an appropriate architectural style can simpli fy architectural design and subsequent
software implementation stage. The overall quality goals are influenced by the structural characteristics or
topology of the style. However, the problem on the selection of the right architectural styles according to
the desired quality attributes is an open issue. The existing approaches lack of a standard and formal
notation. They are limited to an informal description and examples of the application of a style. Quality
issues are not explicitl y considered. The main goal of this work is to propose an approach for the selection
of software architectures based on quality characteristics. We present a process integrating the ABAS
technique with the ISO 9126 quality model, taking advantage of their complementary strengths. The B
formal language is used to formally describe architectural styles and their quality attributes. We describe
and discuss an experience obtained in applying this process for the selection of the architecture of a market
stock exchange monitoring system. One of the transformations introduces Internet as a communication
medium.
Key-words: software architecture, real-time system, quality attribute, ABAS, architectural style

1. INTRODUCTION

Real-time time systems interact directly with electrical and/or mechanical devices,

handling external events usually captured by sensors from the environment. They must be
prepared to deal with safety-criti cal situations, which must be handled with strict timing
and ordering constraints. They may vary in time and scope, but performance, security and
availabilit y are important quality or non-functional characteristics that must be present in
such systems, whose failure may involve high costs, such as loss of human li fe.

An important step towards achieving the quality goals required by a real-time system

is the selection of a convenient architecture for the corresponding software system [BCK
98], [BK 99]. Architectural design identifies the key strategies for the large-scale
organization of the system under development [Kru 00], [SR 98], [Dou 99]. These
strategies include for example, the mapping of a software package to processors, bus and
protocol selection, at a quite low level of abstraction. Quality requirements are generally

1 This research is sponsored by the CEE INCO SQUAD project EP 962019 and the CDCH ARCAS project No.

03.13.4584.00 of the Universidad Central de Venezuela

2

dealt with by a rather informal process during architectural design. Conventional object-
oriented design methods [Rum et al 96], [Jac et al 92], [Kru 00] tend more on achieving
the required system functionality, paying limited attention to quality requirements.
Implicitl y, the use of the object-oriented modeling approach guarantees to some extent
the construction of reusable and flexible systems. Hence maintainabilit y and reusabilit y
requirements are incorporated to some extent. However, only these quality characteristics
are implicitl y considered [Bos 00]. It is also of general agreement that the improvement
of one quality attribute may negatively influence another one, so there must be a
negotiation or tradeoff before building the final system. Otherwise, the inclusion of
different quality requirements once the system is built , will be extremely costly. There are
very few approaches to explicitl y handle the conflicts in quality requirements during the
architectural design stage [Bøe et al 99], [KK 00], [Bos 00], [Kas et al 98]. Consequently,
the lack of a supporting method or systematization drives to design software architectures
in an ad-hoc, intuitive, experience based manner, with the consequent risk of unfulfilli ng
some of the system properties.

Few traditional software development methods deal explicitl y with quality

architectural design. New methods are arising.
A method, proposed by [Bos 00], considers the design of software architectures

taking account of the quality requirements from the early stages of development. The
architectural design process, seen as an optimization problem, is viewed as a function
taking as input the functional requirements specification and generating as output the
architectural design. In the first step, a first version of the architecture is produced, not
accounting of the quality requirements. Then, this design is evaluated with respect to the
quality requirements. Each quality attribute is given an estimated value. These values are
compared with the values of the quality requirement specification. If all the values are as
good or better than required, the architectural design process is finished. Otherwise, a
second step transforms the initial architecture, during which, quality value for some
attribute improves. This design is again evaluated and the same process is repeated, if
necessary, until all quality requirements are fulfill ed or until the software engineer
decides that there is no feasible solution. In this case the software architect needs to
renegotiate the requirements with the customer. Each transformation (quality attribute-
optimizing solution), generally improves one or some quality attributes, affecting others
negatively.

Another method, ATAM (Attribute Tradeoff Analysis Method), is similar to the one

formulated by [Bos 00]. It is proposed by [Kaz et al 98] as a technique for understanding
the tradeoffs inherent in architecture evaluation. The method provides a way to evaluate
software architecture’s fitness with respect to multiple competing quality attributes. Since
these attributes interact, the method helps to reason about architectural decisions that
affect quality attribute interactions. The ATAM is a spiral model of design, postulating
candidate architectures followed by analysis and risk mitigation, leading to refined
architectures. The technique used for helping the reasoning is based on Attribute Based
Architectural Style (ABAS). A quality model for a particular quality attribute is

3

established to help in the selection of a style. An ABAS considers only one attribute at a
time. If several attributes must be considered, the ABAS technique is reapplied.

Both methods are quite similar. However, one of the major differences between these

approaches is that [Bos 00] method includes concrete guidelines on how to transform or
refine the architecture in order to meet the quality requirements. ATAM, does not provide
guidelines for refinement, concentrating instead more on the identification of the tradeoff
points, e.g. design decisions that will affect a number of quality attributes.

For the purpose of this work, we have benefited from both approaches. We have

applied the ATAM’s ABAS technique to identify the relevant quality attributes, in order
to evaluate the fitness of the proposed architectural style. However, since ABAS
considers only one attribute at a time, we have used an extended ABAS [CLP 00],
defining a quality model involving all the interesting attributes, according to the ISO
9126 model. In this way we have a global and better picture of all the involved quality
attributes. On the other hand, we have used a formal approach based on the B language
[Abr 96], similar to the transformation approach followed by [Bos 00], to formally justify
the selection of the style and related patterns.

In what follows we will consider an architectural style [GS 96] or architectural

pattern [Bus et al 96] as a general description of the pattern of data and interaction among
the components. An informal description of the benefits and drawbacks of using the style
is also provided [Bus et al 96], [KK 99]. A component of the style may be a design
pattern, in the sense of [Gam et al 95].

The main goal of this work is to present and discuss the experience obtained in

applying the ABAS (Attribute-Based Architectural Style) technique [KK 99], for the
selection of the architecture of a market stock exchange monitoring system. This
application is considered a soft real-time problem, in the sense that some of the events
may miss their deadline, without affecting the whole system’s behavior. The
transformation process that undergoes architectural design is formally described by
means of the B language. One of the transformations introduces Internet as a
communication medium.

The structure of this paper is as follows. The first section introduces real-time

monitoring systems. First, the requirements for the stock exchanges monitoring system
are described. Then, a quality model is introduced, based on ISO 9126 model. A
categorization of architectural styles for real-time systems is subsequently presented. The
second section describes the process of selection of the architecture based on quality
attributes. The ABAS technique is introduced. The third section ill ustrates the use of the
B language to formally specify architectures with quality attributes. The whole process of
applying the presented technique to select the architecture of the stock exchanges system
is detailed in section 4. The last section discusses the acquired skill s and advantages of
the presented approach.

4

2. REAL-TIME MONITORING SYSTEMS

2.1 Requirements for a real-time stock exchanges monitor ing system

The primary goal of a real-time monitoring system is to capture, analyze and

broadcast events (data) in real-time. We are interested in soft real-time systems, where
some of the events may miss their deadline, without affecting the whole system’s
behavior. The needs of real-time distributed applications running in heterogeneous
environments interconnected by wide-area networks, have driven the requirements for an
application that will be called CSE (Cyber Stock Exchange). Non-functional
requirements for CSE are high availabilit y, platforms heterogeneity, distribution of
clients, reliable information with strict deadlines. It is known that these characteristics
are not independent, and there must be a tradeoff to determine priorities.

The CSE system, as a real-time data provider, will monitor small and medium size

Latin American stock exchanges for brokers and independent investors. An antenna (feed
server) external to the system, provides the data (feed) to the CSE data server. A feed
contains the relevant information of a stock exchange transaction. The clients (brokers),
distributed in different geographical locations, are subscribed with the data server. When
a change on the feed to which a client is subscribed occurs, the feed is broadcasted to him
by the data server, according to a strict time delay. Since one of the requirements for the
CSE platform is wide-area networks, the time delay will depend on the network structure
used to send the information to the clients. The type of service offered depends on this
delay.

Type of services offered

A commercial data provider for stock exchanges can be of different types, according

to the average delivery time (adt) offered for the delivery of the data feeds to the clients:
- end of day data provider. Data are delivered at the end of the day
- delayed data provider. Data are sent periodically and only when there is a
modification.
- real-time data provider. Data are sent each time there is a modification.

CSE will satisfy one of these services.

Non-functional requirements: quali ty characteristics

The quality characteristics required for CSE are the following: - Availability, because

the system must not interrupt the service. In case of interruption, important transactions
may be lost involving substantial financial loss. - Efficiency, because the data must be
delivered within the established average delivery time (adt) in order to fulfill t he service

5

offered. In consequence, high performance must be assured in data transmission. -
Portability, because the clients which are distributed in different locations, use different
development platforms, minimizing the need for changes and adaptations. The
programming language used is also involved in this issue.

Availabilit y and eff iciency are the most relevant characteristics for CSE.

Eff iciency is measured in terms of the number of transactions served each day. It

depends on the number of brokers and/or stock exchanges to be served and on the
platform used. If more clients are introduced, a hardware with high performance must be
considered. Reliabilit y in our case, depends directly on the network (Internet) and the
different communication protocols for data transmission; it may affect the availabilit y of
the whole system. If the system is not available, the main goal will not be accomplished,
hence the system will not conform functionality, so availabilit y is crucial for failure or
success. In order to guarantee availabilit y, redundancy of hardware and software must be
taken into account and maintenance can also be affected in terms of cost increase. In what
follows, a general model for establishing the quality characteristics of real-time
monitoring systems will be presented.

ISO 9126 [ISO 98] proposes a generic model, to specify and evaluate the quality of a

software product from different perspectives or views, acquisition, development,
maintenance. It considers internal characteristics, which are related to the software
development process and environment and external characteristics, observed by the end-
user on the final software product. The view of quality, on these bases, can be internal or
external, and it is also affected by the stakeholder view in the particular stage of
development. An external characteristic can be measured internally, however its name
and measure may be different, according to the stage of development. For example,
portability is an external characteristic according to ISO 9126: we can speak of a portable
system, from the point of view of the end-user of the final system. Moreover, the design
can be extensible from the point of view of the system engineer in the design phase, we
will t hen speak in terms of extensibility. An important issue on software product quality is
that the product internal characteristics determine or influence the external characteristics.
In order to establish this influence, internal characteristics must be linked or related in
some way to external characteristics. ISO 9126 define six characteristics that can be
subdivided into sub-characteristic, introducing a refinement notion: Functionality,
Reliability, Usability, Efficiency, Maintainability, Portability. Attributes in the ISO
context are the measurable elements of the high level quality characteristics and sub-
characteristics.

The generic ISO 9126 model must be customized according to the system’s non

functional requirements. Figure 1 shows the ISO model adapted to the quality
requirements of real-time monitoring systems, considering reliabilit y as the relevant
external characteristic. It considers two main aspects: the arrival of the data to their final
destination and the correctness of these data at the moment of displaying them on the

6

client for satisfying the service. In terms of the CSE system, availabilit y is an external
sub-characteristic of reliabilit y. If availabilit y cannot be guaranteed, the system is not
reliable. Reliabilit y is measured by the percentage of time that the system functions
without failures that represent an interruption of the service. Complexity, as its internal
sub-characteristic, can be measured registering the interruptions of the system, as the time
that the data server is not transmitting the feeds, and the number of clients requiring the
services. A great complexity could affect reliabilit y. Coupling is used to calibrate
complexity. It is measured in terms of standard OO metrics.

Figure 1. Quality Model for Real-time Monitoring Systems

On the other hand, reusabilit y is an internal sub-characteristic that may also affect

reliabilit y. At design level it can be measured using standard OO metrics considering
abstraction a sub-characteristics of instanciabilit y.

Eff iciency (performance) is an external characteristic measured in terms of the

number of transactions served each day. Portabilit y may in turn affect eff iciency. They
will not be treated here in further details. Usabilit y and Maintainabilit y are not the main
concerns for CSE, they neither will be discussed here.

From the above discussion, it can be observed that availabilit y affects directly the

functionality or functional conformity of real-time monitoring systems. If the system is
not available, the functional requirements will not be fulfill ed. In this sense, we have
given priority to this characteristic for selecting a convenient architecture for CSE.

2.2 Architectural styles for real-time systems

CSE is a distributed application, so we will be interested only in those architectural

styles favoring indirect communication and components decoupling. We will consider the
Data Indirection style [KK 99]. This style is characterized by an intermediary (data
repository or protocol) between producers and consumers of some shared data. Producers

Reliabilit y (E)

Availabilit y (E)

Complexity (I)

Reusabilit y (I)

Instanciabilit y (I)

Abstraction (I) Coupling (I)

7

and consumers do not know the data implementation details of the repository and they do
not know each other. The design patterns Publisher/Subscriber and Mediator [Bus et al
96] will be studied. The Data Indirection style describes an elemental distributed software
system in which producers and consumers communicate through an intermediary
component. However, the details on the repository or the protocol associated to the
intermediary component remains undefined.

In order to communicate producers and consumers through a specific communication

model, we could introduce variants of the intermediary component. As a result, the
Publisher/Subscriber pattern is studied. It introduces the synchronization and propagation
of changes between the publisher and the subscribers. The Mediator pattern introduces a
specialized component (i.e. Mediator) taking in charge the communication between
colleagues which differ in their communication protocols.

3. THE ABAS (Att r ibute-Based Architectural Styles)

The notion of Attribute-Based Architectural Style (ABAS) [KK 99], as we pointed

out in the Introduction, is conceived to make architectural styles the foundation for more
precise reasoning about architectural design. This is accomplished associating a
reasoning framework (quantitative or qualitative) with the description of an architectural
style. The reasoning framework is based on the establishment of a quality model specific
to a quality characteristic, called attribute in the ABAS approach. Notice that the ABAS
attribute notion corresponds to the ISO 9126 notion of quality characteristic. Only one
attribute at a time is considered when ABASs are used in design or analysis, because
ABAS is associated with only one attribute reasoning framework, called an attribute
model. For example, if an architectural style is interesting from both a performance and a
reliabilit y point of view, it would be motivation for creating the respective performance
and reliabilit y ABASs. The authors claim that using ABASs is a step in moving
architectural design closer to being an engineering discipline. Design and analysis of
software architecture is based on reusable design components: reusing known patterns of
software components with predictable properties. The information for characterizing an
ABAS quality attribute is divided into three categories: - External Stimuli that causes the
architecture to respond or change. - Responses, that are quantities measured or observed
in the requirements or attributes desirable in the architecture. - Architectural decisions
that are aspects (components and connectors) and their properties, characterizing the
style, that have a direct impact on achieving attribute responses. The main purpose of
every ABAS is to organize consistently the existing specialized body of knowledge in
each of the quality attributes communities. This knowledge can be reused in every ABAS
related to a particular quality attribute. Table 1 shows the four parts of the ABAS
structure:

This structure is similar to those proposed in the catalogues of architectural styles

[SG 95], [Bus et al 96], with respect to Part 1 and 3 of Table 1. The main difference

8

consists in adding explicitl y the information on the characteristics of the quality attribute
relevant to the particular style, expressed in Part 2 of Table 1. These are the measures of
the responses and constitute the quality model for the attribute. Moreover, Part 4 of the
structure, analysis, is used to establish the link between the quality model of the attribute,
and the measures of the attribute. The aspects discussed in Parts 2, 3 and 4 constitute the
reasoning framework for establishing the quality characteristics of the architectural style.

From the above discussion, an ABAS is seen as a reusable design component,

providing a quality model for a specific characteristic which is predictable in the context
of the application where the particular ABAS will be used. For example in our case, if the
reliabilit y attribute is required, all the ABAS using different forms of data indirection,
which seems to be suitable architecture for distributed systems, could be analyzed
according to the framework of Table 1. The complexity of the architecture, expressed by
the coupling of the components, has to be taken into account, because we are considering
explicitl y availabilit y. In this sense, we have extended the ABAS framework [CLP 00],
considering the ISO 9126 quality model for a global and better understanding of the
quality characteristics of the system. The quality model previously discussed, shows how
these characteristics affect the availabilit y of the services offered by the system.

Structure Description

1. Problem description Informal description of the design and analysis
problem that the ABAS is intended to solve, including
the quality attribute of interest or whose presence is
desirable in the architectural style, the context of use,
constraints and relevant attribute-specific requirements.

2. Stimulus/Response attribute
measures

A characterization of the stimuli to which the
ABAS is to respond and the quality attribute measures
of the response. Construction of an ISO 9126 based
quality model for the attribute.

3. Architectural style Description of the architectural style in terms of its
components, connectors, properties of those components
and connectors, and pattern of data and control
interactions (their topology) and any constraints on the
style. Description of architectural decisions.

4. Analysis Description of how the quality attribute models are
formally related to the architectural style and the
conclusions about “architectural behavior” .
Establishment of the links or tradeoff , between the
quality characteristics required and the measured
properties affecting them. A reasoning and analysis and
design heuristics are formulated.

Table 1. The ABAS Structure

9

3.1 Data Indirection

Problem description

This ABAS is characterized by keeping the producers and consumers of shared data

from having knowledge of each other’s existence and the details of their implementations
by interposing an intermediary or protocol between the producer and consumers of shared
data items.

Criteria for selecting Data Indirection

It is relevant to anticipate changes in the producers and consumers of data, including

the addition of new producers and consumers, if these changes are frequent and it is
worth the cost of the modification.

Stimuli /Response for availabili ty

Important stimuli and their measurable controllable responses are:

- Stimuli:
- add a new producer or consumer of data
- a modification to an existing producer or consumer of data
- a modification to the data repository

- Responses:
- The number of components, interfaces and connections added, deleted and

modified, along with the characterization of the complexity of these
additions/deletions/modifications

Architectural considerations

The data repository can be a location known by both producers and consumers (e.g. a

file or a global data area) or it can be a separate computational component (e.g. a
blackboard). The constraint on the repository is that it can hold data. The repository has a
data structure, and a set of data types or layout known by all producers and consumers. A
single component may be both a producer and a consumer. The producers place their data
on the repository because they know the details of the layout; the consumer has a similar
behavior for retrieving the data. The management of performance and concurrency
control are outside the scope of this style.

Analysis

Redundancy in data producers and data flow channels will i ncrease availabilit y. The

dependency on the repository is crucial for availabilit y. In case of failure, a substitute
repository must be available.

10

Architectural parameters for the availabili ty att r ibute
Topology Star
Knowledge of the data layout by client Complete
Dependency on Repository for producers/consumers Very high
Redundancy of data producers High
Redundancy of data flow High
Table 2. Architectural decisions for Data Indirection

3.2 Mediator

Problem description

Mediator is extensively described in [Gam et al 95], [LL 99]. The intent of the

Mediator design pattern is to define an object that encapsulates how a set of objects
interacts. Mediator promotes loose coupling by keeping objects from referring to each
other explicitl y (encapsulation), and let you vary their interaction independently.
Consumers and producers are called colleagues. Mediator is a distinguished colleague. It
favors the communication among colleagues that do not know each other, but only their
Mediator; therefore the number if interconnections is reduced.

Criteria for selecting Mediator

Conditions that must be satisfied to select Mediator:

- Colleagues do not know each other
- A colleague only knows its Mediator
- Mediator knows all it s colleagues
- Colleagues are not coupled
- There are no dependency cycles among colleagues
- Mediator is coupled with its colleagues

Stimuli/Responses for availabili ty

- Stimulus: add a new colleague
- Response: availabilit y of the service increases with time, the number of colleagues

(relevant to availabilit y of service)

Architectural considerations

Table 3 presents relevant considerations for Mediator with respect to the availabilit y

attribute.

11

Architectural parameters for the availabili ty att r ibute
Topology Star
Size (Number of colleagues) High
Dependency on Mediator Very high
Redundancy of data flows High
Table 3. Architectural decisions for Mediator

Analysis

Colleagues may be data producers or consumers, indistinctly. Redundancy of

colleagues implies the capacity of substituting the mediator for another colleague in case
of failure, increasing availabilit y as a function of the time that the service is available.

However, if the number of colleagues increases too much (increase in complexity)

the capacity of the Mediator for handling communications could be compromised. In
consequence, the availabilit y of the system will be negatively affected, since the direct
communication between the mediator and its colleagues could be delayed, increasing the
possibilit y of failures in the data delivery.

In case of CSE, the availabilit y characteristic affects the performance of the system,

as a function of the cost of the redundancy mechanisms necessary to provide the required
availabilit y level, in a convenient time delay.

3.3 Publisher/Subscriber with Push model

Problem description

It helps to synchronize the state of producers (publishers) and consumers

(subscribers) of data. When a producer “publishes” a new data, all the subscribers related
to the producer, which require the data, are notified and automatically receive the data. In
the case of a push model [Bus et al 96], the producer sends data with the notification only
to the interested consumers, reducing the number (complexity) of the communications to
the consumers and increasing the performance of the application.

Criteria for selecting Publisher/Subscriber with Push model

Conditions that must be satisfied to select Publisher/Subscriber with Push model:

- The number and identity of data producers and/or consumers are not known or may
vary

- The temporal ordering between producers and consumers is not known and
undergoes frequent changes

12

- There are no time constraints related to the amount of data that must be produced
and/or consumed. There are no synchronization dependencies between the
production and consummation of the data.

Stimuli/Responses for availabili ty

- Stimulus: add a new producer
- Response: increases the availabilit y of the service, measured in terms of the number

of transactions executed in a unit of time

Architectural considerations

Table 4 presents relevant considerations for Publisher/Subscriber with push model

with respect to the availabilit y attribute.

Architectural parameters for the availabili ty att r ibute
Topology Star
Data persistency Transitory
Size of the data package Small
Communication Protocol Selective broadcasting
Dependencies (from producer) Very high
Redundancy in data flow High
Table 4. Architectural decisions for Publisher/Subscriber with push model

Analysis

An adequate redundancy of producers and data flow channels decreases the

possibilit y of failures, increasing availabilit y.

The use of the push model with selective broadcasting communication protocols

organized in a star topology, favors performance and availabilit y, considering moderate
data packages, as a function of the band width of the communication channel and the
number of subscribers.

Availabilit y affects the performance of the system, as a function of the cost of the

redundancy mechanisms required. The associated computational infrastructure should
have enough capacity and support balanced.

13

4. FORMALIZING ABAS USING B

The ABAS technique has the advantage of supporting a simple and intuitive

description of software architectures. It permits to specify the general structure of a
software model at a high level of abstraction and to reason about it. It is useful to
understand and document systems, allowing a better communication between developers
and customers. However, ABAS lacks of precise semantics and remains inadequate to
proof correctness and consistency. Therefore, the resulting specifications can be subject
to misinterpretations. ABAS is not suff icient enough to develop rigorous applications that
require non-functional properties to be ensured.

The approach presented here integrates the B [Abr 96] formal method with the

ABAS technique in a complementary manner. The choice of B offers a perfect
opportunity to enhance existing semi-formal descriptions of architectural styles. We use
the B formal language in order to balance the semantic weakness of ABAS by a rigorous
and precise specification. The B formal specification is used to specify precisely the
structure, the behavior and also to measure the non-functional characteristics of an
architectural style.

The B formal language is based on the set theory. A B specification is composed of a

hierarchy of abstract machines, each one corresponding to a particular component of the
specified system. An abstract machine declares a set of state variables describing the
abstract state. The machines operations are used to modify the state variables. First order
logic is used to express the invariant of a machine, as well as the preconditions of the
operations. The post-conditions are defined as generalized substitutions. The consistency
between invariants and operations can be proven. The mistakes are consequently
removed, ensuring the correctness of the specification. This is a major advantage of the B
method. The B method is entirely supported by automated tools such as the Atelier B.

 In [MLL 00] we have presented an approach to formally specify architectural

patterns using the B language. A complete description of the B method and the B
language can be found in [Abr 96].

In the current approach, ABAS technique is used to describe the high-level structure

of a style, such as components/classes and association relationships among them. Then, a
first B abstract specification is deduced from the ABAS description and used to check
consistency. To do so, an abstract machine is associated to each structural component of
the style. Subsequently, the B notation is used to describe details of each component that
are left unspecified in ABAS, such as the composition and data types of class states, the
behavior of class operations and the global invariants. At this level a number of important
decisions concerning some unspecified properties must be elucidated by the developer.
The quality attributes are included at this point. The resulting specification is then used to
determine the quality attribute values of the architecture.

14

Consumer Producer

Protocol Consumer
Producer

Data Indirection

uses

includes

MACHINE Data_Indirection
 /* machine specifying the whole architectural style */
INCLUDES Consumer, Producer, Protocol_Consumer_Producer
 /* used machines */
VARIABLES
 message, protocol_consumer_producer, dispatched_messages
 /* state variables of this machine */
INVARIANT
 message ⊆ MESSAGE ∧
 protocol_consumer_producer ∈ consumer producer ∧
 dispatched_messages ∈ message → producer ∧
 ran(protocol_consumer_producer) ⊆ ran(dispatched_messages)
 /* the invariant on variables */
DEFINITIONS
 Availability(Cj) ==

Σ (avail(Pi) * avail(co-Pi-I)) * avail(I) * avail(co-I-Cj) * avail(Cj)
INITIALISATION
 message,protocol_consumer_producer,dispatched_messages := ∅,∅,∅
 /* the initial state of variables */
OPERATIONS
 /* … operations definitions …*/

Figure 2 shows the structure of the B specification associated to the Data Indirection
style. The left hand side of the picture shows the uses and includes links between the
different machines. On the right hand side, we present the machine Data Indirection
which specifies the architectural style. It includes the components Consumer, Producer
and Protocol Consumer Producer (the intermediary). Because of lack of space, the
complete specification of these components is omitted here. In order to measure the non-
functional requirements, the quality attributes are associated to the B machines through
the definitions clauses. Notice that a definition called availability is used to associate the
availabilit y attribute to the Data Indirection machine. The availabilit y of the whole
architecture is calculated from the consumer’s perspective. For a given consumer (Cj), the
availabilit y of the system takes into account five variables :
- the availabilit y of the consumer itself, avail(Cj)
- the availabilit y of the connector, avail(co-I-Cj), between the intermediary and the

consumer
- the availabilit y of the intermediary, avail(I)
- the availabilit y of each producer (Pi) communicating with the intermediary, avail(Pi)
- the availabilit y of the connector between each producer and the intermediary,

avail(co-Pi-I).

Figure 2. B specification of Data Indirection style

Figure 3 shows the specification of the Publisher/Subscriber architectural style.

Notice that, for given subscriber (Si), the availabilit y of the system takes into account the
following variables:
- the availabilit y of the subscriber itself, avail(Si)
- the availabilit y of the connector, avail(co-Pub-Sj), between the publisher and the

subscriber
- the availabilit y of the publisher, avail(Pub).

As for the Data Indirection specification, the availabilit y attribute of Publisher
Subscriber is declared as definition within the abstract machine.

15

Publisher Subscriber

Publisher
Subscriber

uses

includes

MACHINE Publisher_Subscriber
 /* machine specifying the whole architectural style */
INCLUDES Publisher, Subscriber
 /* used machines */
VARIABLES
 message, protocol_publisher_subscriber
 /* state variables of this machine */
INVARIANT
 message ⊆ MESSAGE ∧
 protocol_publisher_subscriber ∈ publisher subscriber
 …
 /* the link invariant between this machine and the refined */
DEFINITIONS
 Availability(Si) == avail(Pub) * avail(co-Pub-Si) * avail(Si)

 …

Figure 3. B specification of Publisher Subscriber style

5. Case study: selection of the architecture for CSE.

5.1 Selection of the Publisher/Subscriber with push model for Stock

Exchanges Monitor ing Systems.

In the previous sections, we have studied different characterizations of architectural
models for real-time distributed systems, in particular for stock exchanges monitoring
systems. The extended ABAS framework formulated for each candidate architecture has
provided useful guidelines for helping in the selection criteria.

- Mediator is not adequate because it favors encapsulation (abstraction) of components

(see Figure 1), communicating colleagues that do not know each other by means of
an intermediary (Mediator); even if it favors low coupling, it is better adapted for
achieving modifiabilit y and reusabilit y, instead of availabilit y.

- Publisher/Subscriber with push model is adequate because it offers a selective

broadcasting of the data by the publisher, maintaining at the same time a low level of
coupling. The costs of redundancy may be paid, because the structure of the
Publisher/Subscriber is not complex. Notice that since all the architectures studied
derive from the Data Indirection style, they have in common a high dependence from
the intermediary component. Then redundancy is crucial for availabilit y. But if the
involved structure of the pattern is simple, complexity will decrease and so will
decrease cost.

5.2 Evaluation of the availabili ty att r ibute

We applied the Publisher/Subscriber style with push model to design the architecture

of the CSE. The publisher receives directly the feeds from the antenna and broadcasts
them to the subscribed brokers via a connector. The brokers are provided with a
component subscriber, as shown in figure 4.

16

Figure 4. Application of Publisher/Subscriber style

The availabilit y attribute for this architecture and for the i th broker is the following:

avail i = avail (Pub) * avail (co-Pub-si) * avail (Si)
where avail (Pub) is the value of the availabilit y attribute associated to the publisher
machine, avail (Si) is the one of the subscriber machine and avail (co-Pub-si) the one of
the connector between the publisher and the i th broker.

In order to enhance this availabilit y, we choose to use Internet as a connector.
Internet can be considered as always available, i.e. its availabilit y is equal to 1. The
architecture obtained is shown in Figure 5.

Figure 5. Use of Internet as connector

The availabilit y attribute for this architecture and for the i th broker is now the

following:
avail i = avail (Pub) * avail (Bi)

where avail (Bi) is the availabilit y of the browser used by the broker to interact with the
publisher.

Brokers
Stock

exchanges

CSE

Pub

S
S
S
S

...
...

B rokers
Stock

ex changes

CSE

Pub
...

...
B
B
B
B

B row sersT C P/I P
serv i ce

I nternet

17

This availabilit y formula shows that the availabilit y of the publisher is crucial. The
introduction of a redundant publisher will double this availabilit y. The architecture
obtained is shown in Figure 6.

Figure 6. Introduction of a redundant publisher

The availabilit y attribute for this architecture and for the i th broker is now the

following:
avail i = 2 * avail (Pub) * avail (Bi)

6. CONCLUSION

In this paper we have studied different attribute-based architectural styles (ABAS).

The styles have then been formalised using the B language. Each component is specified
as an abstract machine in which quality attributes are defined. We have taken the
availabilit y attribute as an example. Then, we have applied the proposed technique in
order to design the architecture of a Stock Exchanges Monitoring System. The
architecture has been developed by stepwise transformations: first we have used the
Publisher/Subscriber style with the push model. The formula of the availabilit y attribute
showed the importance of the connector’s availabilit y. The use of Internet as connector
between the publisher and the subscribers had the advantage to offer a very high
availabilit y. Then it appears that the availabilit y depend on the availabilit y of the
publisher itself. The middleware solution consisting in introducing a redundant publisher
was then applied.

The correct selection of a system architecture enhances the subsequent software
implementation and the system as a whole. Moreover, the structural characteristics or
topology of the chosen styles influences the overall quality goals. However, the
applicabilit y of a style, that is to say the selection of the right style for a particular design
issue, is yet an open problem. It has been the object of many relevant works [Gam et al
95], [Bus et al 96], trying to describe patterns to be easily retrieved and reused. However,
these attempts lack in general of a standard and formal notation, being limited to an
informal description and examples of the application of a style. Quali ty issues are not

Brokers
Stock

exchanges

CSE

Pub
...

...
B
B
B
B

Pub’

18

explicitl y considered. Therefore, this descriptions lead to misinterpretations. This makes
them an insecure basis for criti cal software development.

Formal methods are used to specify precisely the structure and the behavior of the

entities composing a system and to prove rigorously that these satisfy the desired
structural and behavioral properties. Formal methods promise increased reliabilit y of
software systems and provide analysis and verification tools. In [MLL 00], we have
introduced a formal framework for system development using patterns. This framework
integrates the B formal language, describing the transformation from software
architecture to system design through successive transformation steps. In this paper we
have shown how formal methods can also take into account quality attributes.

REFERENCES

[Abr 96] Abrial J.R. “The B Book - Assigning Programs to Meanings” , Cambridge University
Press, 1996. ISBN 0-521-4961-5.

[BCK 98] L. Bass, P. Clements, R. Kazman “Software Architecture in Practice”, Addison
Wesley, 1998.

[BK 99] L. Bass, R. Kazman “Architecture-Based Development” , TR CMU/SEI-99-TR-007,
ESC-TR-99-007, April 1999.

[Bosh] J. Bosh “Design and Use of Software Architecture”, ACM Press, 2000.

[Bøe et al 99] Bøegh J., DePanfili s S., Kitchenham B., Pasquini A. “A Method for Software
Quality Planning, Control and Evaluation” . IEEE Software, 69-77, March/April 1999

[Bus et al 96] F. Buschman et al “Pattern-Oriented Software Architecture. A System of Patterns” ,
John Wiley & Sons Inc., 1996.

[CLP 00] Chirinos L., Losavio F., Pérez M.A. “Attribute-Based Techniques to Evaluate
Architectural Styles for Interactive Systems” , Centro ISYS, Universidad Central de
Venezuela, Caracas, May 2000, Draft.

[Dou 99] Douglass B. P. “Real-Time UML” Second Edition, Addison-Wesley, 1999.

[Gam et al 95] E. Gamma, R. Helm, R. Johnson and J.Vlissides “Design Patterns – Element of
Reusable Object-Oriented Software”. Addison Wesley, New York 1995.

[ISO 98] ISO/IEC FCD 9126-1.2: “ Information Technology - Software Product Quality.Part 1” :
Quality Model, 1998.

[KK 99] Klein M., Kazman R., “Attribute-Based Architectural Styles” , CMU/SEI-99-TR-022,
ESC-TR-99-022, October 1999.

[Kru 00] P. Krutchen “The Rational Unified Process. An Introduction” , 2nd. Edition, Addison
Wesley, Reading, Massachussets, 2000.

[Kaz et al 98] Kazman R., Klein M., Barbacci M., Longstaff T., Lipson H., Carriere J., “The
Architecture Tradeoff Analysis Method” ,CMU/SEI-98-TR-008, ESC-TR-98-008, July
1998.

19

[LC 99] Losavio F., Chirinos L. “Evaluación de la calidad en el desarrollo de sistemas
interactivos” , (92-108) Proceedings X CITS, Curitiba, Brazil , 17-21 May, 1999.

[MLL 00] Marcano R., Lévy N., Losavio F. “Spécification et Spécialisation de Patterns en UML
et B” . Proceedings LMO’2000 – Langages et Modèles à Objets, Ed. Hermès, Montréal
(Ca), janvier 2000.

[SG 96] Shaw M., Garlan D. “Software Architecture – Pperspective of an Emerging
Discipline” , Perentice Hall , 1996.

[SR 98] B. Selic, J. Rumbaugh “Using UML for Modelli ng Complex Real Time Systems” ,
RSC, OTL, March 1998.

QWE2000 Session 2M

Mr. Kie Liang Tan [Netherlands]
(CMG TestFrame Finance)

"How To Manage Outsourcing Of Test Activities"

Key Points

Advances in quality control process●

Risk management●

Improving software process●

Presentation Abstract

"Outsourcing" is a process in which a company transfers all or part of one of its
departments to an outside vendor who then handles the company's affairs for a price
that is spelled out in the outsourcing contract.

Test Managed Services (TMS) is a method to managed test activities, which is out
sourced by a company to the vendor (is called the TMS service-center).

The test activities are:
* Managing the testware (test scripts, test cases, test database and documentation),
* Managing the test environment (test infra-structure, i.e.: hardware, software, test
tools),
* Test preparation, execution and reporting
* Support in test consultancy

In this paper we describe various outsourcing projects to managed services related
to the maintenance of application software and the test activities. The test managed
services is an important part of the software development and verification process to
ensure for good quality and good time-to-market of the application software.

The author will present the method to prepare, implement and execute this Test
Managed Services.

About the Speaker

The author has studied (1971 - 1977) in the Technical University of Delft as Electrical
Engineer with field of specification Information Technology and Data Communication.
The author has more than 20 years experience in ICT (Information Communication
Technology) in different area's, i.e: Telecommunication, Medical Systems, Space

QWE2000 -- Conference Presentation Summary

http://www.soft.com/QualWeek/QWE2K/Papers/2M.html (1 of 2) [9/28/2000 10:59:26 AM]

Systems and Finance. The authors has significant experience in the area of test and
verification coordination and management. The author has joined CMG since 1998
and worked in the Division Testmanagement & consultancy as senior management
consultant.

QWE2000 -- Conference Presentation Summary

http://www.soft.com/QualWeek/QWE2K/Papers/2M.html (2 of 2) [9/28/2000 10:59:26 AM]

1

How to manage outsourcing of
test activities

 Kie Liang Tan
CMG - TestFrame Finance

kie.liang.tan@cmg.nl

Agenda
• Test managed services (TMS)
• TMS Categories
• TMS phases:
• Classical problems of a tester
• Recommendation

2

Test managed services

• Test managed services are services in the
area:

 maintenance of testware
• navigation scripts,
• clusters,
• test data and
• test documentation

 maintenance of test environment
• hardware, software and test tools

test preparation,
test execution and
test reporting

Test managed services categories
• outsourcing: transfer of all activities from a

client to a TMS test-centre
• insourcing: the services are performed at

client’s location
• smartsourcing: set-up the test organisation

in close co-operation between the client and
the test-centre, and select between
outsourcing en insourcing

3

Scoping Definition Transition Delivery Evaluation

Tuning

Qualification

Phases: Test Managed Services

Maintenance

TransferringAppointmentPreliminary
investigation

Executing Service
Level Agreement

Writing Service
Level Agreement

PREPARATION IMPLEMENTATION EXECUTION

Re-transition

Transfer & phase-out

Qualification phase
• Interviews with the client to

investigate:
client motivation to oursource
cost benefit determination
•what are the services
•what are the benefits for the client

4

Scoping phase
• Analyse and investigateAnalyse and investigateAnalyse and investigateAnalyse and investigate

the application to be testedthe application to be testedthe application to be testedthe application to be tested
the test strategy and test organisationthe test strategy and test organisationthe test strategy and test organisationthe test strategy and test organisation
the test environment and testwarethe test environment and testwarethe test environment and testwarethe test environment and testware

• Investigate the current and desiredInvestigate the current and desiredInvestigate the current and desiredInvestigate the current and desired
situationsituationsituationsituation

• Analyse the risks of the projectAnalyse the risks of the projectAnalyse the risks of the projectAnalyse the risks of the project
• Scoping reportScoping reportScoping reportScoping report

Definition phase
• Define and agree with client:Define and agree with client:Define and agree with client:Define and agree with client:

what has to be done, such as:what has to be done, such as:what has to be done, such as:what has to be done, such as:
•basic service levelbasic service levelbasic service levelbasic service level
• test preparation and executiontest preparation and executiontest preparation and executiontest preparation and execution
•maintenance testwaremaintenance testwaremaintenance testwaremaintenance testware
•test facilicities and hostingtest facilicities and hostingtest facilicities and hostingtest facilicities and hosting

where the services will take placewhere the services will take placewhere the services will take placewhere the services will take place
when the service will be performedwhen the service will be performedwhen the service will be performedwhen the service will be performed
who will do whatwho will do whatwho will do whatwho will do what

5

Transition phase

• Knowledge transfers
bussiness knowledge and application
test environment and testware

• prepare service related procedures
• setting-up service related organisation
• writing test plan
• perform acceptance test

Delivery phase
• Performing the service level request

triggered by changes in:
application to be tested (release note)
the test environment

6

Evaluation phase

• Evaluate the service:
on strategic level: contracts and cost
on tactical level: required adaptation of
the service and reporting
on operational level: workmethod,
process and test information

Tuning phase
• change the service to improve it

using the result of the evaluation :
operational level: is a continuing
process
tactical level: is a major process
change
strategic level: the scoping and
definition phases have to be
performed again.

7

The classical problems of a tester

• Testteam is not properly inform on the
function/ design changes

• Release note (documentation) is
incomplete

• Not enough time for test: software is late
and implementation date is fixed.

• The quality of the application software is
poor

• The users are unsatisfied: the application
is not properly tested.

Recommendations
• Combine the maintenance of the

application software and the test
managed services into one responsible
company

or
• Put extra attention on the qualification,

scoping and definition phase to cover
the conditions in the Service Level
Agreement.

25-09-00 Test Managed Services (TMS) 1

How to manage outsourcing of test activities

Test Managed Services (TMS)

This paper describes the reference model and the process of Test Managed Services,
which give services in the following areas:
• Maintenance of testware (navigation scripts, clusters, test database and

documentation),
• Maintenance of test environment (test infra-structure, i.e.: hardware, software, test

tools),
• Test preparation, execution and reporting.

This paper is based on our experience in various projects related to Test Managed
Services.
The target audience for this paper/presentation is:
 o Application Oriented
 o Management Oriented
 o Technical or Technology Related

TMS categories
TMS can be distinguished by three categories:
1. Outsourcing: the client transfers the maintenance of the test environment and the

testware to the TMS service-centre location. The test preparation and execution are
performed by the TMS service-centre as well. For example: a publisher in Holland is
outsourcing the test automation and execution activitities to our TMS service-centre.

2. Insourcing: the activities will be performed at the client’s location, for example: at a
Dutch government office, we set up an internal test-centre

3. Smartsourcing: the activities will be performed in close co-operation between the
client and the TMS service-centre which, depending on the situation can be a mixed
of outsourcing and insourcing. For example: for a large bank we helped them to set-
up the test environment and the test organisation, and then made the decision to
perform outsourcing or insourcing.

TMS phases
TMS life-cycle can be divided into eight phases (see figure), i.e.:
• Qualification
• Scoping
• Definition
• Transition
• Delivery
• Evaluation
• Tuning
• Retransition

25-09-00 Test Managed Services (TMS) 2

Each of the phases is described below:

Qualification
This phase is basically a cost/ benefit determination; the TMS service-centre is
discussing with the client what are the services and what are the benefits of the TMS.
Interviews will be held with the client to find out the bussiness triggers and the client’s
motivation for transferring the test maintenance activities to a professional TMS service-
centre.

Scoping
In this phase the TMS service-centre will analyse the application to be tested, the test-
strategy, the testware, the test environment and test organisation. The analysis includes
also interviews with the client and available documentation.
The findings, conclusions and recommendations will be described in the Scoping-
report, as follows:
(1) The client‘s test organisation and the role of the TMS service-centre to support

the test knowledge,
(2) Investigation of the current- and the desired-situation: manual or automatic tests,

test execution and reporting,
(3) Defining the test strategy
(4) The type of the test to be maintained: System test, Functional Acceptance Test,

User’s Acceptance Test or Production Acceptance Test,
(5) The configuration of the testware and test environment, and the maintenance-

approach,
(6) Risk analysis of the project, i.e.: the system to be tested, the test environment, the

testware and the organisation.

Scoping Definition Transition Delivery Evaluation

Tuning

Qualification

Test Managed Services phases

Maintenance

TransferringAppointmentPreliminary
Investigation

Performing
ServiceLevel Agreement

Preparing
ServiceLevel Agreement

PREPARATION IMPLEMENTATION EXECUTION

Re-transition

Transfer & phase-out

25-09-00 Test Managed Services (TMS) 3

(7) The status of the documents, handbooks, procedures, etc.
(8) The release-frequency of the application to be tested and the types of changes.

Definition
The TMS service levels are planned and discussed with the cliënt and this will result in
an Service Level Agreement (SLA).

In the SLA the following is established:
• What has to be done
• Where the services will take place
• When the services will be performed
• Who will do what

The TMS services, stated in the SLA, will be written in an quotation together with the
findings in the Scoping report. After agreement is reached about the quotation, then the
service contract will be made containing:
• The sevice level of the current maintenance organisation,
• The desired service level of TMS with a step-by-step plan for implementation,
• The required manpower in number, knowledge and experience.

Transition
In this phase the following activities will be performed:
• knowledge transfer to the TMS service-centre of all items related to test activities

depending on the agreed service levels, i.e.:
⇒ bussiness knowledge
⇒ application software to be tested knowledge
⇒ testware and test data
⇒ test environment
⇒ test strategy

• setting-up TMS related procedures such as: ITIL procedures (configuration-, change-
, problem-, service-level-management),

• writing test plan,
• setting-up TMS related cliënt organisation,
• perform acceptance tests to verify and accept the testware, test environment and the

related application software to be tested,
• After evaluation of the acceptance tests, the cliënt and the TMS service-centre can

establish that the maintainance can be taken over by the TMS service-centre in a
controlled manner.

Delivery
This is the phase to perform the service as defined in the Service Level Agreement
(SLA).
The service (i.e.: prepare test environment, testware and test data, execute test and
archive new testware) can be triggered by the following request:
• Release-note of the application to be tested containing the information about the new

25-09-00 Test Managed Services (TMS) 4

functions/ modification in the application, the planning when the application will be
ready and the relevant documentation (such as: functional design).

• Release-note of the test environment containing the information about the changes
in the test environment, the planning and the relevant documentation.

• This request must be submitted on time so that the TMS service-centre will have
enough time to prepare the test and execute the test as soon as the new application
to be tested or the test environment is ready.

Evaluation
In order to ensure that the TMS services comply to the wishes of the cliënt, a total TMS
evaluation will be performed periodically on three levels, i.e.:
• Strategic (the Service Contract): partnership, contracts, new services and cost.
• Tactical (the Service Levels): service level evaluation, does the current TMS service

comply to the agreement, are there trends detected (incidents, change request,
growth) requiring adaptation of the services, reporting and the frequency of reporting.

• Operational (Procedures): small changes in the workmethod/ process, test
information and technical tuning.

Tuning
As a result of the previous phase, the TMS service might have to be changed.
These changes can vary between small changes and new kind of services.
In the figure the different changes are indicated by arrows.
The change request for “execution” (Delivery/Evaluation/Tuning) is coming from the
operational level; this is a continuing process.
Major process changes will come from the tactical level.
Changes from the strategic level may have impact on the phases ” Scoping en
Definition” , so that these phases must be performed again.

Re-transition
At the end of the contract depending on situation and agreement with the client; the
testware, the test environment and the documentation might have to be handed over to
the client.

QWE2000 Vendor Technical
Presentation VT2

Lisa Hoven
(Rational)

"Successful Testing Through
Requirements Management"

Key Points

Function Testing●

Requirements Management●

Presentation Abstract

Abstract to be supplied.

About the Speaker

Ms. Hoven is a Technical Consultant with Rational Software BV where she
specializes in Testing methodologies and Solutions Consultation, Product
Management and product integration. She has been involved in Application Life
Cycle development for the past 16 years for companies worldwide. Rounding out her
career, Ms. Hoven also has many years of experience in International Sales Support,
Application Life Cycle Management Consultant, Business Analysis, Applications
Developer, and Systems Programmer. Originally from New Haven, Connecticut USA,
she is a permanent resident of the Netherlands where she has lived for the past 2 ½
years.

QWE2000 -- Conference Presentation Summary

http://www.soft.com/QualWeek/QWE2K/Papers/VT2.html [10/6/2000 3:41:24 PM]

1

Successful Testing Through
Requirements Management
Successful Testing Through
Requirements Management

Lisa Hoven
Rational Software
lhoven@rational.com

AgendaAgenda

Development Process
Iterative Development Life Cycle
Testing Life Cycle
Planing, Designing and Implementing Tests
Manual and Automated Testing
Evaluation
How To’s
Q&A

Development Process
Iterative Development Life Cycle
Testing Life Cycle
Planing, Designing and Implementing Tests
Manual and Automated Testing
Evaluation
How To’s
Q&A

2

“Here is my build. How do I test it?”“Here is my build. How do I test it?”

How Do I Know if
This Build Meets

the Users
Requirements?

Load Testing

Functional Testing

What Will Automated
 Testing do for me?

What Metrics do I Keep?

Regression Testing

Methodology? What Methodology?

Development ProcessDevelopment Process
Waterfall Method

Iterative Process

T
C

D
R

T I M E

Iteration 1 Iteration 2 Iteration 3

T
C

D
R

T
C

D
R

Requirements
Analysis

Design

Code & Unit
Testing

Subsystem and
System Testing

T I M E

3

Apply Best Practices Throughout the Life CycleApply Best Practices Throughout the Life Cycle

Project Management
Environment

Business Modeling

Implementation
Test

Analysis & Design

Preliminary
Iteration(s)

 Iter.
#1

Phases
Process Workflows

Iterations

Supporting Workflows

 Iter.
#2

 Iter.
#n

 Iter.
#n+1

 Iter.
#n+2

 Iter.
#m

 Iter.
#m+1

Deployment

Configuration & Change Mgmt

Requirements

Elaboration TransitionInception Construction

Development Process – Reducing RiskDevelopment Process – Reducing Risk

WaterfallIterative

R

I

S

K

T I M E
 Iteration Iteration Iteration Iteration Iteration Iteration Iteration

4

•V

The Test Life-Cycle in a Iterative ApproachThe Test Life-Cycle in a Iterative Approach

Requirements

Capture

Analysis and Design Implementation

Build Build

Exec Exec

Evaluate Test

Implement
Test

Design
Test

Plan
Test

Project

Planning

Iteration X + 1

Iteration X

Iteration X + 2
 Development activities in blue
 Testing activities in orange

Implement change request management

How Do I Implement Good Testing Practices?How Do I Implement Good Testing Practices?

Plan
Tests

Analyze
Application
Workflow

Design tests Implement
Tests

Evaluate
test results

Log and Track
 Defects

5

 Walk through use cases/business requirements
Look for patterns in navigation
Identify specific test cases with data to be used
Diagram, model, or list the sequence of events
Determine which procedures are candidates for
automation
Determine areas and functions that will need to be
baselined for regression testing.

 Walk through use cases/business requirements
Look for patterns in navigation
Identify specific test cases with data to be used
Diagram, model, or list the sequence of events
Determine which procedures are candidates for
automation
Determine areas and functions that will need to be
baselined for regression testing.

Analyze the Application Workflow

Plan TestsPlan Tests
Identify Testable units

Identify Existing Process
Define Logical and Physical flows for Process
Identify Dependencies
Identify Manual Processes

Create Test Plan

Identify Testable units
Identify Existing Process
Define Logical and Physical flows for Process
Identify Dependencies
Identify Manual Processes

Create Test Plan

6

Components of a Test PlanComponents of a Test Plan
Introduction
Test requirements hierarchy
Test strategy

Test objective
Test tools
Test techniques
Test metrics
Completion criteria
Special considerations

Schedule of resources and roles
Project schedule and milestones
Schedule of deliverables

Introduction
Test requirements hierarchy
Test strategy

Test objective
Test tools
Test techniques
Test metrics
Completion criteria
Special considerations

Schedule of resources and roles
Project schedule and milestones
Schedule of deliverables

Designing TestsDesigning Tests

Objectives
Identify/define test cases and test procedures
Generate test model

Inputs
Test plan
Use-case model, specs
Design model, tech specs

Outputs
Test model
Test cases
Test procedures
Test data requirements

Objectives
Identify/define test cases and test procedures
Generate test model

Inputs
Test plan
Use-case model, specs
Design model, tech specs

Outputs
Test model
Test cases
Test procedures
Test data requirements

7

Test CasesTest Cases
Reflect the requirements for test
Provide a means to verify the use cases and
requirements
Form the foundation of test design and test effort

Reflect the requirements for test
Provide a means to verify the use cases and
requirements
Form the foundation of test design and test effort

Test Type - Functional

TC ID # Condition PIN ResultAmountAcct #

Successful cash
withdrawal

$50.00Valid
5600184

Valid
3112

Withdraw pre-
set amount

CWI

Structure Test Procedures

Are a set of detailed instructions for:
Setup
Execution
Evaluation

Include the results for a given test case (or set of
test cases)

Are a set of detailed instructions for:
Setup
Execution
Evaluation

Include the results for a given test case (or set of
test cases)

8

Implementation of TestsImplementation of Tests
Manual Testing
Automated Testing
Manual Testing
Automated Testing

Implementation: Manual TestingImplementation: Manual Testing

QA can’t match the speed of developmentQA can’t match the speed of development
QA can’t fully test each buildQA can’t fully test each build
As time runs out, test coverage decreasesAs time runs out, test coverage decreases
and risk increasesand risk increases

TargetTarget
ReleaseRelease

AdjustedAdjusted
Release Release

ActualActual
ReleaseRelease

100% 100%

ApplicationApplication
Coverage (%)Coverage (%)

Test CyclesTest Cycles

TimeTime

9

Implementation: Automated TestingImplementation: Automated Testing

Increased coverage and decreased riskIncreased coverage and decreased risk
Automated test cycles fully test each buildAutomated test cycles fully test each build
Frequent and comprehensive tests ensure qualityFrequent and comprehensive tests ensure quality

Target Release Target Release

100% 100%

ApplicationApplication
Coverage (%)Coverage (%)

Implement Implement
TestTest

Test Test
CyclesCycles

TimeTime

Automated TestingAutomated Testing

Keep Proper Expectations for Your Testing Tools.

Test New Processes Manually and Automate the
Existing Processes.

Keep Proper Expectations for Your Testing Tools.

Test New Processes Manually and Automate the
Existing Processes.

10

Evaluation: DefectsEvaluation: Defects

Definition:
Defects are issues or items that require tracking and/or
corrective action

Examples:
Software problem
Unexpected event or condition
Design issue
Documentation issue
Script or test data issue

Definition:
Defects are issues or items that require tracking and/or
corrective action

Examples:
Software problem
Unexpected event or condition
Design issue
Documentation issue
Script or test data issue

Evaluation: Defects as MetricsEvaluation: Defects as Metrics

Use Quality Metrics.
Defects Per “X” Lines of Code
Defects Per “X” Requirements

Defect Trending
See Quality Improve Build by Build!

Communicate
Addition of new defects
Modification of existing defects

Use Quality Metrics.
Defects Per “X” Lines of Code
Defects Per “X” Requirements

Defect Trending
See Quality Improve Build by Build!

Communicate
Addition of new defects
Modification of existing defects

11

In a Less than Perfect World…..In a Less than Perfect World…..
What Can I do if Requirements are Not Available to me?

How can I Re-engineer these Requirements?
• Functional/ Technical WalkThroughs
• Sign-off

How do I manage Changing Requirements?
How can I manage Requirement Impact Analysis?

How Can I Make Steps to Improve My Process from the Start?

How Can I Get the other members of the Team to buy into our
new-and-improved process?

What Can I do if Requirements are Not Available to me?
How can I Re-engineer these Requirements?

• Functional/ Technical WalkThroughs
• Sign-off

How do I manage Changing Requirements?
How can I manage Requirement Impact Analysis?

How Can I Make Steps to Improve My Process from the Start?

How Can I Get the other members of the Team to buy into our
new-and-improved process?

What Can I do if Requirements are Not Available to me?What Can I do if Requirements are Not Available to me?

How can I Re-engineer these Requirements?
• Functional / Technical Walkthroughs

– With Users
– With Analysts
– With Developers

• Get Sign-off
• Assume no Responsibility until Signed Off.

How can I Re-engineer these Requirements?
• Functional / Technical Walkthroughs

– With Users
– With Analysts
– With Developers

• Get Sign-off
• Assume no Responsibility until Signed Off.

12

How do I manage Changing Requirements?How do I manage Changing Requirements?
How can I manage Requirement Impact Analysis?

How Do I Communicate These Changes ?
• Keep Requirements Accessible to Everyone
• Diverse Teams: Liaison Groups

How can I manage Requirement Impact Analysis?

How Do I Communicate These Changes ?
• Keep Requirements Accessible to Everyone
• Diverse Teams: Liaison Groups

How Can I Make Steps to Improve My Process from the Start?How Can I Make Steps to Improve My Process from the Start?

Reverse Engineering Function/Feature Requirements from
Testing Requirements.

Adopt a Methodology
UML / Rational Unified Process
T-MAP
TestFrame

Plan for Planning
 Creating appropriate documents
 Staffing
 Time/Project management

Reverse Engineering Function/Feature Requirements from
Testing Requirements.

Adopt a Methodology
UML / Rational Unified Process
T-MAP
TestFrame

Plan for Planning
 Creating appropriate documents
 Staffing
 Time/Project management

13

Getting Buy-In From Team MembersGetting Buy-In From Team Members

Make Small Changes Iteratively
Do Not use Force!
Be the Example
 Make your quality efforts known to other areas of your
application that are not under your control.

Make Small Changes Iteratively
Do Not use Force!
Be the Example
 Make your quality efforts known to other areas of your
application that are not under your control.

Summary: Your Lessons For TodaySummary: Your Lessons For Today

Develop Iteratively
Test From Requirements
PLAN, PLAN, PLAN
Set Realistic Expectations for Automated Testing

Develop Iteratively
Test From Requirements
PLAN, PLAN, PLAN
Set Realistic Expectations for Automated Testing

14

QWE2000 Session 3T

Dr. Antonia Bertolino, F. Basanieri [Italy]
(CNR-IEI)

"A Practical Approach to UML-based Derivation of
Integration Tests"

Key Points

Deriving tests from UML descriptions●

Integration/System testing●

Use-Interaction Test●

Presentation Abstract

In recent years, the widespread use of the object oriented (OO)
paradigm has given rise to the need of defining suitable models for
describing and analysing the characteristics of complex systems
designed according to it. OO system models come usually accompanied by
graphical notations, so that the relationships between the elements
forming the system can be easily visualized.

UML, the Unified Modeling Language, is the emerging graphical notation
to model, document and specify OO systems along all the phases of the
software process. Indeed, there exist now many studies about using UML
for design, and many tools are available. However, only a little part
of these studies so far has addressed the usage of UML for testing, and
none of the available commercial tools provide specific assistance for
test planning from the UML descriptions.

In this paper we address UML-based testing. Some authors have proposed
methods to translate an UML description into another formal
description, and then derive the tests from the latter (e.g., [1]).
This is not our goal: we aim at a test method that is entirely based on
UML, so that it can be easily adopted by industries already using UML.
Some other recent studies propose methods to automatically derive test
cases from UML statecharts (e.g., [2], [3]). These studies are
interesting, and we see them as complementary to ours, as we do not use
statechart diagrams, but higher level descriptions of the system.
Indeed, we want to address test planning for the integration test phase
starting from the very first stages of system design.

We present an approach for UML-based test planning, that is called
Use-Interaction testing, as it mainly uses the UML Use Case and
Interaction diagrams (specifically, the Message Sequence diagram).
Indeed, integration testing is aimed at verifying that the pre-tested
system components interact correctly. UML Interaction diagrams can
provide the information of how the system components should interact.

The proposed methodology is very simple, and is inspired at large by
the well-known Category Partition method [4]: we first look at the Use
Case diagram to identify the suitable steps of an incremental bottom-up

QWE2000 -- Conference Presentation Summary

http://www.soft.com/QualWeek/QWE2K/Papers/3T.html (1 of 2) [9/28/2000 10:59:48 AM]

test strategy. For each identified sub-Use Case, we then look at the
Message Sequence diagram to identify the relevant components, or "Test
Units". For each Test Unit, we derive the relevant "Settings" (could be
parameters, variables, environmental states) and the relevant
"Interactions" (essentially, messages from other Test Units), and
identify for them the significant "Choices" (with the same meaning of
the Category Partition method). To do this, we can analyse the related
Class Diagrams, as well as other design documentation. Hence, by
following the sequences of messages between the components over the
Message Sequence Diagram, we construct the Test Cases, whereby each
Test Case is characterized by a combination of all suitable choices of
the involved Settings and Interactions.

We have applied the method to a case study, Argo/UML [5]. Argo/UML is
an open source tool that provide cognitive support to system design. We
have developed quite a few Test Cases, and we have been able to
identify a few bugs in the case study. However, the method is currently
manual, and still under evaluation. Our short term plan is the
realization of a tool that support it, by smoothly expanding an
existing UML design tool.

In the paper we will describe the method in more detail, through
examples on the Argo/UML tool, and also will provide a UML definition
of the method itself by means of the UML extension mechanism of
stereotypes.

About the Speaker

Antonia Bertolino graduated (Laurea degree) cum laude in Electronic Engineering at the University of Pisa in
1985. Since 1986, she has been a researcher with the Institute for Information Processing of the Italian
National Research Council (CNR), in Pisa, where she currently heads the Research Department on "Methods
and Tools for Software Systems". Her research interests are in software engineering, especially testing, and in
software dependability. Currently she is investigating approaches for rigorous integration test strategies and
for improving the cost/effectiveness of testing techniques, as well as methods for the evaluation of software
reliability. On these topics, she also likes to stay in touch with industries.

Since 1994, she is an Associate Editor of the Journal of Systems and Software, North-Holland, and recently
has also joined the Editorial Board of the IEEE Transactions on Software Engineering. She has been the
General Chair of the Second International Conference "Achieving Quality in Software AquIS '93", held in
Venice (Italy) in October 93. She has been member of the International Programme Committees of several
conferences and symposia, including ISSTA, Joint ESEC-FSE, ICSE, SEKE, Safecomp and Quality Week.
She is currently Key Area Specialist for the Software Testing Knowledge Area of the Stone Man phase of the
ACM/IEEE project Guide to the SWEBOK (Software Engineering Body of Knowledge). She has published
over 40 papers in international journals and conferences.

QWE2000 -- Conference Presentation Summary

http://www.soft.com/QualWeek/QWE2K/Papers/3T.html (2 of 2) [9/28/2000 10:59:48 AM]

http://www.iei.pi.cnr.it/~antonia

•A. Bertolino •

•UML-based integration testing •1

A Practical Approach toA Practical Approach to
UMLUML-based -based derivation ofderivation of
integrationintegration teststests

F. Basanieri, A. Bertolino

IEI-CNR (Pisa, Italy)

Contents:Contents:

•• Integration testing and Software ArchitectureIntegration testing and Software Architecture

•• The UML standard notationThe UML standard notation

•• The Use-Interaction Test ApproachThe Use-Interaction Test Approach

•• The case studyThe case study

•• Conclusions and Future workConclusions and Future work

•A. Bertolino •

•UML-based integration testing •2

Integration Testing:Integration Testing:

Testing Testing interactionsinteractions (only) between system components (only) between system components

(processes, packages, subsystems...) at an appropriate(processes, packages, subsystems...) at an appropriate

level of level of abstractionabstraction

 (handling CBSE and COTS) (handling CBSE and COTS)

 SA SA = = StructureStructure + + BehaviorBehavior
 (statics) & (dynamics)(statics) & (dynamics)

 IntegrationIntegration TestingTesting + +

 Software Software Architecture =Architecture =

Architecture-based TestingArchitecture-based Testing

Envisaged benefits of SA-based testing:Envisaged benefits of SA-based testing:

•• Right level of abstraction (not too much, not too little)Right level of abstraction (not too much, not too little)

•• Explicit representations of early design decisions (hardest toExplicit representations of early design decisions (hardest to
change)change)

•• Enhances test reusabilityEnhances test reusability

•• Provides a context for component-based testingProvides a context for component-based testing

•• Confinement within a specificConfinement within a specific architectural style (patterns for architectural style (patterns for
testing)testing)

•• Rigorous conceptual basis for the testing of non-functionalRigorous conceptual basis for the testing of non-functional
propertiesproperties

•A. Bertolino •

•UML-based integration testing •3

Combining Structural- and Specification-Combining Structural- and Specification-
based Test Approachesbased Test Approaches

Structural TestingStructural Testing
Based on code coverage

 Modification to code -> new

tests

 Too complex for real systems

 Too syntactic oriented and not

semantic (behavioral)

 Only late, Code level testing

 Specification TestingSpecification Testing
Needs formal specifications (SDL,

CCS, LOTOS, Estelle, Z…)

 Based on FSM, LTS

 Automated Test Plans

 Only for small systems

 Specification description too

complex and error prone

➨➨Modern complex distributed systems require appropriateModern complex distributed systems require appropriate
models for analysis and designmodels for analysis and design

➨➨UML: standard graphical notation to model, document andUML: standard graphical notation to model, document and
specify OO system along all the phases of the softwarespecify OO system along all the phases of the software
processprocess

➨➨UML uses:UML uses:
- views- views
- diagrams- diagrams
- exthension mechanisms- exthension mechanisms

➨➨Not much used (so far) to guide the testing phasesNot much used (so far) to guide the testing phases

UML Unified Modeling LanguageUML Unified Modeling Language

•A. Bertolino •

•UML-based integration testing •4

UML & SA:UML & SA:

Obj 1 Obj 2 Obj 3

Method1()

Method3()

Method2()

Proc 1 Proc 2 Proc3

Com1()

Com3()

Com2()

UML Sequence Diagram ASD: Architectural Sequence Diagram

Int1()

UML (UML (StereotypedStereotyped)) Class Diagram Class Diagram

<<channell>>

AlarmUR msg

<<channell>>

Check msg

<<channell>>

AlarmRS msg

<<channell>>

NoFunc msg

<<channell>>

AckSR msg
<<channell>>

AckRU msg

<<channell>>

Clock msg

1..21..N 1..K 1

<<Component>>

User
<<Component>>

Router
<<Component>>

Server1..K

<<Component>>

Timer

a method to systematicallya method to systematically derive Integration Testderive Integration Test
suites from UML diagramssuites from UML diagrams
ENTIRELY UML-BASED (no other language required)ENTIRELY UML-BASED (no other language required)

Mainly used UML diagrams:Mainly used UML diagrams:

- - UseUse case diagrams: case diagrams: represent a specific functionality provided byrepresent a specific functionality provided by
the system.the system.

- Sequence - Sequence (Interaction(Interaction) diagrams:) diagrams: show the dynamic collaborationsshow the dynamic collaborations
between a certain set of objects via message exchanges.between a certain set of objects via message exchanges.

- Class diagrams: - Class diagrams: summarize parameters and inputs for the testssummarize parameters and inputs for the tests

Use Interaction TestUse Interaction Test methodologymethodology

•A. Bertolino •

•UML-based integration testing •5

➨➨Incremental test strategy (over the Use CaseIncremental test strategy (over the Use Case
organizational structure)organizational structure)

➨➨Inspired at large by Inspired at large by Category Partition Category Partition method:method:

it defines classes of functional equivalence selectingit defines classes of functional equivalence selecting
significant values (choices) of relevant categoriessignificant values (choices) of relevant categories
(parameters or data)(parameters or data)

➨➨ Seven steps involvedSeven steps involved

Use Interaction TestUse Interaction Test methodologymethodology

Open source tool, supporting UML OO design .Open source tool, supporting UML OO design .

Cognitive support to design (Kernel package):Cognitive support to design (Kernel package):

- User model: - User model: mantains information on designer's choicesmantains information on designer's choices
about project and its features.about project and its features.

- Design Critics: - Design Critics: critics about building design.critics about building design.

- ToDo List: - ToDo List: items helping designer about many details ofitems helping designer about many details of
his work.his work.

- Checklist: - Checklist: used at the end of design to remind designer toused at the end of design to remind designer to
cover all design details and avoid common errors.cover all design details and avoid common errors.

Case study: Argo/UMLCase study: Argo/UML

•A. Bertolino •

•UML-based integration testing •6

Step 1:Step 1:UML design analysis and search ofUML design analysis and search of
relevant Use Cases.relevant Use Cases.

•Use Case diagram of uci.argo.KERNEL

Step 2/1Step 2/1: : Analysis of Sequence and ClassAnalysis of Sequence and Class
diagrams involved in the selected Use Case.diagrams involved in the selected Use Case.

•Sequence diafram of uci.argo.Kernel.USERMODEL

•A. Bertolino •

•UML-based integration testing •7

Step 2/2:Step 2/2:
Class diagram analysisClass diagram analysis

Designer

 Decision Model

_decisions

DecisionModel()
GetDecisions()

 GoalModel

_goals

GoalModel()
GetGoals()

 Decision

Decision(name:String;priority:int)
GetName()
GetPriority()

 Goal

Goal(name:String;priority:int)
GetName()
GetPriority()

1:1..* uses 1:1..* uses

 *

contains

 *

contains

Class diagram of uci.argo.Kernel.USERMODEL

Step 3Step 3: : Test Units definitionTest Units definition

Test Units:Test Units: those system those system units separately testable forunits separately testable for
exercising a possible use of system:exercising a possible use of system:

Test UnitsTest Units::

DecisionModel, Decision, GoalModel, Goal.DecisionModel, Decision, GoalModel, Goal.

•A. Bertolino •

•UML-based integration testing •8

Step 4Step 4: : Research of Settings andResearch of Settings and
Interactions CategoriesInteractions Categories

- - SettingsCategoriesSettingsCategories:: parameters and inputs relevant in parameters and inputs relevant in
the Test Unit.the Test Unit.

- - InteractionsCategoriesInteractionsCategories:: objects interactions, exchanged objects interactions, exchanged
messages.messages.

Categories:Categories:
DecisionModelDecisionModel
Settings: Settings: _decisions_decisions
Interactions:Interactions: DecisionModel() DecisionModel()

 getDecisions() getDecisions()
DecisionDecision
Interactions: Interactions: Decision(name:String,priority:int)Decision(name:String,priority:int)

GetName()GetName()
GetPriority()GetPriority()

........................

Step 5:Step 5: Test Specification constructionTest Specification construction

•• For each identified category, we find all its possibleFor each identified category, we find all its possible
values and constraints.values and constraints.

Test Specification:

DecisionModel:

Settings: _decisions Interactions: getDecisions()
Naming Opening a new file
Storage Opening a saved file
Modularity After a modification and before saving
Inheritance After a modification and after saving
Stereotypes DecisionModel()
Relationship........ Class constructor

•A. Bertolino •

•UML-based integration testing •9

Step 6: Step 6: Search of Message Sequences and TestSearch of Message Sequences and Test
Case definitionCase definition

– MessagesSequences: set of Messages, involved in a
Sequence diagram, used by objects to define and
elaborate specific functionalities

– Test Case: is constructed, from a Test Specification, for
each possible combination of choices of every category
involved in a MessagesSequence

Test Case
getDecisions()
getName()/getPriority()

Opening a saved file
_decisions

 Naming

Note: Such a Test Case must be repeated for all possible values of _decisions.

Step 7: Step 7: Definition of UseCase Test Suite andDefinition of UseCase Test Suite and
Incremental Construction of TestFrameIncremental Construction of TestFrame

UseCase Test Suite
Design CriticsUse Case Test Suite

KERNEL

UseCase Test Suite
UserModel

UseCase Test Suite
ToDoList

Test Frame of
uci.argo.Kernel

•A. Bertolino •

•UML-based integration testing •10

ConclusionsConclusions

Use Interaction method: Use Interaction method: development of development of aa
systematic methodsystematic method and and a toola tool for for UML designUML design-based-based
integration test of complex system.integration test of complex system.

Based Based exclusively on theexclusively on the use of UML diagrams:use of UML diagrams:
+ immediately usable from + immediately usable from industries already using UML (noindustries already using UML (no

additional additional modeling or design costs);modeling or design costs);

++ analysis can be analysis can be started soon, and donestarted soon, and done contemporary with project contemporary with project

development;development;

 - different interpretations of - different interpretations of diagramsdiagrams

UI methodology itself UI methodology itself designed using UML designed using UML notationnotation

Future work:Future work:

Validation on industrial real-world case studyValidation on industrial real-world case study

Construction of a tool for automatizing part of thisConstruction of a tool for automatizing part of this
process and helping the tester in the construction ofprocess and helping the tester in the construction of
Test Case and Test FrameTest Case and Test Frame

Test tool integrated with the front-end design toolTest tool integrated with the front-end design tool

Integrating this informal method with SA-based,Integrating this informal method with SA-based,
formal methods, currently under investigationformal methods, currently under investigation

1

A Practical approach to UML-based derivation of integration tests

F. Basanieri, A. Bertolino
IEI-CNR, Pisa, Italy

Abs t rac t : We present an on-going project for developing a

tool supported test methodology based on UML descriptions.

The leading criteria of this investigation are that no

additional language or expertise is required more than UML,

and that the methodology can be easily transferred to

industrial contexts.

Keywords:

Category-partition, Integration test strategy, UML, Use-

Interaction test.

1. INTRODUCTION
In recent years, the object oriented (OO)
paradigm has got widespread use. Software
developers need appropriate OO models and
support tools for describing and analysing the
characteristics of complex distributed systems. OO
system models usually involve graphical notations,
so that the relationships between the many
elements (objects) forming the system can be
easily visualized.
UML, the Unified Modeling Language, is the
emerging graphical notation to model, document
and specify OO systems along all the phases of
the software process. Indeed, there exist now
many studies about using UML for design, and
many tools are available. However, only a little
part of these studies so far has addressed the usage
of UML for testing, and none of the available
commercial tools provide specific assistance for
test planning and generation from the UML
descriptions.
In this paper we address UML-based testing.
Specifically, we want to address this task
according to the following two guidelines: (i) we
aim at a test method that is entirely based on
UML, so that it can be easily adopted by
industries already using UML; and, (ii) we refer to
high level descriptions of the system: indeed, we
want to address test planning for the integration
test phase starting from the very first stages of
system design.

We present here our practical approach for UML-
based integration testing, that is called Use-
Interaction testing, as it mainly uses the UML Use
Case and Interaction diagrams (specifically, the
Sequence diagram). Indeed, integration testing is
aimed at verifying that the (hopefully pre-tested)
system components interact correctly, and UML
Interaction diagrams can provide the information
of how the system components should interact.
The proposed approach is very simple, and is
inspired at large by the well-known Category
Partition method [OB88]: we first look at the Use
Case diagram to identify the suitable steps of an
incremental test strategy. For each identified sub-
Use Case, we then look at the Sequence diagram
to identify the relevant components, or "Test
Units". For each Test Unit, we derive the relevant
"Settings" (could be parameters, variables,
environmental states) and the relevant
"Interactions" (essentially, messages from other
Test Units), and identify for them the significant
"Choices" (with the same meaning of the Category
Partition method). To do this, we can analyse the
related Class Diagrams, as well as other design
documentation. Hence, by following the
sequences of messages between the components
over the Sequence Diagram, we construct the Test
Cases, whereby each Test Case is characterized by
a combination of all suitable choices of the
involved Settings and Interactions.
We have applied the method to a case study,
Argo/UML [Argo]. Argo/UML is an open source
tool that provide cognitive support to system
design. We have developed quite a few Test Cases,
and we have been able to identify a few bugs in
the case study. However, the method is currently
manual, and still under evaluation. Our short term
plan is the realization of a tool that support it, by
smoothly expanding an existing UML design
tool.
The paper is organized in the following way. In
the next section, we provide some introductory
material to UML and Integration testing. In

2

Section 3, we describe the method in more detail,
explaining it step by step. Then, in Section 4 the
case study Argo/UML is briefly introduced, so
that in Section 5 some examples of application of
Use-Interaction to it are shown. In Section 6 we
also provide a very brief sketch of a UML
definition of the Use Interaction method itself by
means of the UML extension mechanism of
stereotypes.

2. BACKGROUND
UML is a graphical modeling language to
visualize, specify, design and document all the
phases of a software development process. Born
by the unification of I. Jacobson, J. Rumbaugh
and G. Booch methods, in 1997 it was declared by
OMT the standard for analysis and design of
Object-Oriented systems.

2.1 UML diagrams
A UML design consists of an integrated meta-
model composed of many elements representing
OO common world concepts. Through this meta-
model we define Views showing different aspects
of the system to be modelled (Logical View,
Component View, Deployment View,
Concurrency View and Use Case View). As a
whole, these views provide a complete picture of
the system to be built. UML diagrams are graphs,
each describing the content of a view; they can be
arranged in different combinations to provide
several system’s views.
We only provide in this section a brief description
of the UML diagrams mainly used in our
methodology (for more details see [UML97a],
[UML97b]):
Use Case diagram: a use case is the
representation of a functionality (a specific use)
provided by the system. This diagram shows a
number of external users (actors) and their
relationships with the system, when this is used to
satisfy a specific functional requirement.
Class diagram: it shows the static structure of the
system through the representation of its classes
with their attributes and methods. Moreover it
specifies the relations between the classes using
different types of associations. A system can have
more than one Class diagram; in subsequent
phases of the software development process, the
Class diagram represents objects at different levels
of abstraction.

Sequence diagram: it shows the dynamic
collaborations between a certain number of
objects, highlighting the way in which a particular
scenario1 is realized using the interactions of a
(sub)set of these objects. More precisely, a
scenario is described by the set of messages
exchanged between objects. A Sequence diagram
expresses the same information of a Collaboration
diagram, whereby the former describes the
interactions between the objects during their life-
cycle, while the latter shows the relative
distribution of these objects links in the space.

2.2 Integration Testing and UML-based Testing
The testing goal is to execute the system to verify
its behaviour and to reveal possible failures.
Testing is an important piece of the software
development process, because of its cost and
impact on the reliability of final product. In our
methodology we consider the Integration Testing
phase, performed to find errors in unit interfaces
and to build up the whole structure of software
system in a systematic way.
To do this, one could use a non-incremental
approach (big-bang), where all the modules are
linked together and tested all at once, or
preferably, incremental approaches like top-down,
where modules are integrated from the main
program downto the subordinated ones, or,
bottom-up, where tests are constructed from
modules at the lowest hierarchical level and then
are linked together upwards, to construct the
whole system.
But, when we consider an object-oriented system,
the described techniques are not always usable,
because, for example, we cannot identify the
hierarchical structure of control by which it is
possible to define top-down or bottom-up
strategies. In an object-oriented environment we
can test the class interactions by, for example,
integrating together those classes used in reply to
a particular input or system event (thread-based
testing) or by testing together those classes that
contribute to a particular use of the system. In the
proposed methodology, the classes to be
integration tested (modules, subsystem, processes)
are those that realize a system functionality
identified from a Use Case diagram.

1 A scenario is defined as a specific sequence of actions that

illustrates behaviour and may be used to show an interaction.

[UML97b]

3

As a matter of fact, even though UML is a
powerful mechanism of description, we have
found few studies about its use to guide the testing
phases.
Some researchers have proposed methods to
translate a UML description into another formal
description, and then derive the tests from the
latter. For instance, in [JGP98] the authors present
a tool, UMLAUT, that is used to manipulate the
UML representation of the system and
automatically transforms it into an intermediate
form, suitable for validation. Another interesting
paper is [OA99], where a method is proposed to
generate test data from UML State diagrams.
They translate the UML State diagram into formal
SRC specifications, from which input data for unit
testing are automatically generated. Finally, in a
recent paper from Siemens Corporate Research
[HIM00] UML diagrams are used to
automatically construct test cases as follows. The
developers first define the dynamic behaviour of
each system component using a State diagram; the
interactions between components are specified by
annotating the State diagrams, and then the global
FSM that corresponds to the integrated system
behavior is used to generate the tests. This
approach is being automated to execute the tests
in an environment compatible with the UML
modelling tool Rational Rose.
All the mentioned studies are interesting, and we
see them as complementary to ours, as we do not
use State diagrams, but system descriptions at
coarser granularity.

3. AN INTEGRATION TEST APPROACH

3.1 Overview of the Use Interaction Testing
approach.
As said, Integration Testing progressively verifies
the interactions between software components
(modules, packages, subsystem, processes, classes)
in order to realize the final integrated system.
The Use Interaction methodology for Integration
testing uses as a reference model the UML
diagrams to systematically construct and define
tests.
The Use Case diagrams, by visualizing the various
system functionalities, help the tester to decide the
way in which the system can be decomposed for
testing each of its parts (representing a specific
functionality of a Use Case) and then the whole
system. Each Use Case can contain in turn other

Use Cases, since, to obtain a complete system
functionality, it is generally necessary to execute
several actions realizing lower level functionalities.
In our methodology, Use Case diagrams drive
Integration test according to an incremental
strategy. We start analysing low-level
functionalities that represent a subset of actions
described by a sub-Use Case, and then we
progressively put them together, until the whole
system described in the main Use Case is
obtained.
For each selected Use Case we analyse the
corresponding Sequence diagram, composed by
objects and the messages they exchange. The
objects involved in the diagram are those that
realize and execute the functionality described in
the Use Case through elaborations and message
exchanges and so they are precisely the
components to be tested. In this phase we consider
the Class diagram too, and particularly a Class
diagram at high level of abstraction. This diagram
becomes important to define operations (or
abstract operations) and attributes required by
classes for the interactions of their objects. Also
the Collaboration diagram could be used to
analyse the object interactions, but it is not as
expressive, since it underlines links and
dependencies among objects, but not their
dynamic interactions along a temporal sequence.
Therefore, for our methodology, the most
important diagram is Sequence diagram, that is
the basis for generating integration tests. In
[JBR98], in fact, we can find a suggestion to use
this diagram in integration testing phase. They
suggest to study different sequences found in this
diagram from a possible input state, or from a
system input done by actors.
To analyse the message sequences we have used a
systematic methodology inspired by the well-
known Category Partition Method [OB88].

3.2. The Category Partition method
Category Partition (CP) [OB88] is a well-known
method to systematically derive functional tests
from the specifications.
Generally speaking, the partitioning of the input
domain is a standard approach to functional
testing, based on the idea that, for the classes of
equivalence defined by the identified partitions,
one or few tests can be selected as representative
of the whole class behaviour.

4

The first step of the CP method is to analyse the
functional requirements to divide the analysed
system in functional units to be separately tested.
A functional unit can be a high-level function or a
procedure of the implemented system. For each
defined functional unit, the environment
conditions (system characteristic of a certain
functional unit) and the parameters (explicit input
of the same unit) relevant for testing must be
identified. Test Cases are then derived by finding
significant values of environment conditions and
parameters; this can be done dividing them into
categories representing relevant system properties
or particular characteristics of parameters or
environment conditions. Then, for each category,
we identify different choices, that are different
significant values for these categories. The CP
method uses a tool to automatically construct test
cases from specifications expressed into a
dedicated semi-formal specification language,

called TSL. The CP method has encountered wide
interest, and has inspired the development of a
large number of test methodologies, also using
formal languages such as Z.

3.3 Steps for Use-Interaction testing
We now describe in more detail the proposed
approach. It can be logically subdivided into
seven steps.
Step 1: UML Design analysis and search of
different Use Cases. We analyse UML design and,
particularly, Use Case diagram. This diagram can
lead test construction by defining different
integration test stages with respect to an
incremental strategy from lower-level abstraction
levels upto higher ones. Inside this diagram we
can thus find different Use Cases representing
(sub)functionalities used to construct the main
one (see, for example, Fig.1)

Fig 1: Use Case diagram (of uci.argo.Kernel)

Step 2: Analysis of Sequence and Class diagrams
involved in the selected Use Case. After selecting
one of the Use Cases, we analyse the relative
Sequence (Fig. 2) and Class (Fig. 3) (at a high
level of abstraction) diagrams. The focus is
mainly on the Sequence diagram, analysed along
two orthogonal directions corresponding to its
axes. The horizontal axis (Arrow a) shows a set of
objects that interact through messages; this axis is
used to verify the object interactions and their
correct use with respect to the Use Case
requirements. The vertical axis (Arrow b) is
studied because it shows the temporal sequence,

from top to bottom along the objects life time, of
messages involved in object interactions.
Moreover, horizontal axis is useful for tracing the
message sequences, that is at the basis of test cases
construction.
Step 3: Test Units definition. Each object inside a
Sequence diagram is considered a Test Unit, since
it can be separately tested and it represents and
defines a possible use of system. Test Units search
can be done automatically because it descends
directly from a Sequence diagram.
Step 4: Research of Settings and Interactions
Categories. Interactions categories are the

5

interactions that an object has with the others
involved in a same Sequence diagram and they
are represented by all the messages to the
considered object. In this type of diagram, in fact,
the interactions are defined with a sender who
sends a message to a receiver asking for a service
provided by the latter. So, following vertically the
life time of the analysed object, we can find all its
Interaction Categories represented by the entering
arrows. We could also study these methods in the
Class diagram description, but it is for searching
the Settings Categories that the Class diagram
becomes very important. Settings categories are
attributes (or a subset of them) of a class (and the
corresponding Sequence diagram’s object), like
input parameters used in messages or data
structures.
Step 5: Test Specification construction. In this
step we define a Test Specification involved in a
Test Unit, that is: for each found category we find
all its possible values and constraints. For this aim
we use the Class diagram where we can find a
preliminary description of a method
implementation, its possible input values or the
description of an attribute used and its significant
values.
Step 6: Search of Messages Sequences and Test
Cases definition. Following the temporal order of

the messages involved in a Sequence diagram, it is
possible to find some Messages Sequences, i.e., a
set of messages used by objects to define and
elaborate particular functionalities. Several
categories can correspond to each found Message
Sequence, of the two types Interaction and
Settings: precisely, messages/methods in the
considered sequence identify the Interaction
Categories, and the attributes that affect these
messages identify the Settings Categories. For
each category (of either types) within a Message
Sequence, we consider each possible choice,
taking them from the Test Specification (Step 5).
Then, we derive as many Test Cases as necessary,
by considering all potential combinations of
compatible choices. The construction of Test
Cases could be performed by a tool, after
Messages Sequences and Test Specification have
been appropriately defined.
Step 7: Definition of Use Case Test Suite and
Incremental Construction of Test Frame. Finally,
all Test Cases built for a same Use Case are
collected together into a Use Case Test Suite. If
there exist more than one Use Cases to be
analysed at the same level of abstraction, we repeat
the process from step 2, constructing other Use
Case Test Suites.

Fig 2: Sequence diagram analysis

After all the (sub)-Use Cases, at a given level, have
been analysed, we consider other possible Use

Cases at higher levels of abstraction, based on the
Use Case diagrams, until we reach the main Use

6

Case. The same seven-steps process is applied at
the identified (higher) Use Cases, using again the
Sequence and Class diagrams. As we move
towards the main Use Case, the Test Units in the
Sequence diagram will generally be more abstract

system components than those considered for the
(sub)-Use Cases.
Finally, we define a Test Frame, that is, the set of
all Use Case Test Suites built for the analysed
(sub)system.

Fig 3: Class diagram of the selected Use case for uci.argo.UserModel

4. THE CASE STUDY
The analysed case study is Argo/UML [Argo], a
tool supporting Object Oriented design with
UML; this is an open source project that was
launched by a research group of the Institute of
Computer Science of Irvine, University of
California. Argo/UML is based on the UML 1.1
specification and uses a Java version of UML
meta-model with support for OCL and XMI
(XML Model Interchange format).
We selected this case study because it follows
exactly the UML specifications, and it is
completely UML designed with good
documentation on Java code, even if only a part
of its UML design is available on the web. This
tool is designed to provide very interesting
features, but most of them are not yet developed
and only three diagrams are supported so far: Use
Case, Class and State Machine diagrams. Its major
feature is to provide “cognitive support for
design”, that is an intelligent support for
designers who have to build a complex software
product. This support, as the authors describe, is

based on: (a) Reflection-in-action; (b)
Opportunistic Design.
(a)Reflection-in-action is divided into: Design Critics :

simple agents that continuously execute design analysis in a

background thread of control, while the designer is working,

and suggest possible improvements. The suggestions can be,

for instance, the signalling of syntax errors or reminders to

return to parts of the design that needed to be finishing;

Corrective automations : done by a Wizard for critics

identifying specific problems in the design; To Do List :

items, organized in a To Do List, helping designer about

many details of his work. They are, for example, suggestions

from arisen critics, personal notes, suggestion for

improving and completing some parts and so on; User

Model : maintains information about designer’s choices

about project and its features. This is done, for example,

suggesting only critics that are relevant for designer’s tasks.

User model consists on a dec i s ion model , a list of

decisions that must be made when doing object-oriented

design and goa l mode l , a list of goals that designer must

reach for the design project. (b) Opportunistic Design divided

into: To Do List : a list of To Do Item; CheckList : used to

remind designers to cover all design details and avoid

Decision

Decision(name:String;priority:int)
GetName()
GetPriority()

Goal

Goal(name:String;priority:int)
GetName()
GetPriority()

 *

contains

 *

contains

DecisionModel

_decisions

DecisionModel()
GetDecisions()

GoalModel

_goals

GoalModel()
GetGoals()

Designer

7

common errors. These lists are specific to the selected design

element (association, classes, attributes..).

For our case study we have chosen the part of the tool

realizing cognitive support for design, the Argo package,

divided into two other packages: uci.argo.Kernel, that

manages Critics, User Model and To Do List and

uci.argo.Checklist, that manages Checklist. In this paper,

for reason of space, we analyse only uci.argo.Kernel. Its

functionalities are divided into: Des ign Cri t ics : that

manages critics, their definition and use during design.

Usable critics are visible in Critic Browser, Fig.4, that keeps

track of all information like critic state (active or inactive),

priority, general description and so on. All critics properties

can be changed by users but it implies changes in To Do

items, where you can keep track, every time, of active critics

and their priority values. T o Do Lis t : manages To Do

Items, Fig. 5; it shows all active critics descriptions and

steps to eliminate them. User Model : manages decisions

(Decision Model) and goals (Goal Model) made by users for

project. Decis ion Model , Fig. 6, is used to specify which

requirements are important for designer’s aim; they have a

priority value from 0 to 5 and if a decision priority is 0 the

corresponding critics are made inactive. Goal Model

shows which goals designer would achieve, Fig. 6. Now only

a goal type (Unspecified) is usable; like decisions, goals

have a priority from 0 to 5 and, if a goal has priority 0 the

related critic is made inactive.

Fig 4: Argo/UML Critic Browse Windows

 Fig 5: Argo/UML To Do Pane

8

Fig 6: Argo/UML Design Issues Panel and Design Goals Panel

5. APPLICATION OF USE INTERACTION
METHODOLOGY TO THE ARGO CASE
STUDY

Step 1: UML Design analysis and search of
different Use Cases. The Use Case diagram of
uci.argo.Kernel is shown in Fig. 1. We can see that
the main functionality of Kernel is divided into
three sub-functionalities, each of which can
represent a single sub-Use Case. These Use Cases
can be analysed separately to construct the Test
Units and Test Cases of a Use Case Test Suite, and
then linked together to build one main Test
Frame. In this section we analyse only the User
Model functionality.
Step 2: Analysis of Sequence and Class diagrams
involved in the selected Use Case. Fig. 2 and 3
show Sequence and Class diagram for
uci.argo.Kernel.UserModel.
Step 3: Test Units definition.
TestUnits :

DecisionModel, Decision, GoalModel, Goal.
Step 4: Research of Settings and Interactions
Categories.
Categories :

DecisionModel

 setting: _decisions

 interactions: DecisionModel(), getDecisions()

Decision

 interactions: Decision(name:String,priority:int) ,

 GetName(), GetPriority()

GoalModel

 settings:_goals

 interactions:GoalModel(), getGoals()

Goal

 interactions: Goal(name:String, priority:int),

 GetName(),GetPriority()

Step 5: Test Specification construction. We
describe the Decision Model Test Unit.
Decision Model: is a part of Design state, it describes which

type of decisions are useful for designer; critics relevant for

these decisions become active.

Settings: _decision

 Naming, Storage, Stereotypes, Inheritance

 Relationship, Modularity, ….

Interactions:

 GetDecisions()

Opening a new file

 Opening a saved file

 After a modification and before saving

 After a modification and after saving

 DecisionModel()

 Constructor of class.

Step 6: Search of Messages Sequences and Test
Cases definition. One of the possible Messages
Sequences, highlighted in Fig.2 by Arrow c, is:
getDecisions() -> getName / getPriority(),
and the corresponding Test Case for a possible
choice involved categories is:
TEST CASE

g e t D e c i s i o n s ()

9

getName() /getPrior i ty()

 Opening a saved file.

_ d e c i s i o n s = Naming

Action to perform test:Visualizing Design Issues Panel for

the considering decision and priority opening a saved

document.

Instructions for checking the test: opening the Design Issues

Panel we see decision with Name=Naming and priority like

priorità of the same file previously saved.

Note 1: This Test must be repeated for all possibile values of

_decisions.

Step 7: Definition of Use Case Test Suite and
Incremental Construction of Test Frame. After
defining Test Cases we build a Use Case Test Suite
for User Model, Design Critics, To Do List and
then, following an incremental integration test
strategy, we analyse the main functionality of
Kernel constructing its Use Case Test Suite and, at
the end, the entire Test Frame.
Results from the case study: when the method has
been applied to case study Argo/UML some bugs
were discovered. We show two Test Results: the
first one, without bugs, is referred to previous Test
Case (Step 6); the second is an example of a test
with fail result.
TEST CASE 1

getDecisions()

getName()/getPriority()

Opening a saved document.

_decisions = Naming

Test Result: Passed.

TEST CASE 2

SetDecisionPriority (priority:int)

 From a >0 value to 0 before saving.

 BeInactive()

Critic is active.

RemoveItems(item:ToDoItem)

Critic is disactivated.

RecomputeAllToDoITems()

A decision has priority 0.

_ d e c i s i o n s : Naming.

Test Result: Fai led.

Fai l report: Test is made for all _dec i s ion values. For

each of these related critics are disactivated but one critic is

never disactived. This is critic 28: "Add operation to

<ocl>self</ocl>". This critic is linked to decision Behavior,

but this type of decision does not exist among built

decisions and inside DesignIssuesPanel. Moreover, in the

related ToDoPane the critic, even if active, is not visible

since it is not linked to any existing decision. The critic can

be disactivated only manually from Critic Browse Window.

6. UML DEFINITION OF METHODOLOGY
The Use Interaction testing methodology follows
a precise process, and therefore can itself be
designed using the UML language. We show, in
Fig. 7, a Use Case diagram in which the actor is
Tester who interacts with system generating test
cases.
Moreover, all the new introduced concepts, like
Test Unit or Setting and Interactions Categories,
have been defined using exthension mechanism
of stereotypes. A stereotype [UML97a] is a new
type of modeling element that extends the

Fig. 7: Use Case diagram of Use Interaction Test method.

semantic of the existing metamodel; all our new
concepts are (sub)classes of the existing metaclass
Class with new additional characteristics and
constraints. For instance, we show a stereotyped
class, Test Unit, with its properties and constraints
defined using the OCL language [UML97c].

Test Unit:

Stereotype Test Unit for instances of meta-class Class

[1] For each Test Unit there exists one and only one related

Classifier Role.

self_forAll(t: TestUnit | self.has_exists(c1: ClassifierRole |

c1.name = t.name and forAll(c2| c1<>c2 implies c2.name

<>t.name)))

<<Test Unit>>
TEST UNIT

SettingsCategories
InteractionsCategories

DefineTestUnit()
FindRelevantSettings()
FindRelevantInteractions()

10

[2] The attributes of a TestUnit are SettingsCategories and

InteractionsCategories.

self.Attribute.ocltype = enum{SettingsCategories,

InteractionsCategories}

[3] A SettingsCategory represents one of the class

attributes and it is involved in one iteration.

self.SettingsCategory_exists(a Attribute| a.isused=self and a

IsInvolvedIn Interactions)

[4] InteractionsCategories are the only associations of

CollaborationDiagram.

self.InteractionsCategory_forAll(i|self.ocltype.Collaboratio

n.Association_exists(ass| ass.name = i))

7. CONCLUSIONS
In this paper we have presented our methodology,
Use Interaction Test, that generates Integration
Tests from UML diagrams like Use Case and
Interactions diagrams.
This testing approach is placed inside a larger
research project trying to develop methods and
tools for design-based integration test of complex
system. The approach used in this work is not
based on formal methods for specification, like
the related [BCIM00], [MLB99] works, but only
on exclusive use of UML diagrams.
For this reason, we think it may be a viable
method for its simplicity and easy portability to
industrial contexts; moreover, since we use only
UML diagrams, the methods does not require
specialised expertise and analysis, and so
generation of test cases can be done
contemporary with project development, at no or
little extra cost.
On the other hand, the exclusive use of UML
diagrams can be considered also a limit of our
method, because as known UML semantic is not
very precise, and therefore the diagrams can have
different interpretations from different users, and
also different designers could provide different
diagram specifications.
In future, we aim at constructing a tool
automatizing part of this process in collaboration
with industrial partners. The tool would help the
Tester in Test Cases generation for the tasks not
requiring human judgement (for example,
identification of Test Unit and Messages
Sequences), thus enhancing the cost effectiveness
of the approach.

Acknowledgements

This work is supported in part by the Italian Murst Project

"Saladin : Software Architecture and Languages to

coordinate Distributed Mobile Components".

References:
[Argo] "Argo/UML", available from
http://argouml.tigris.org.

[BCIM00] A. Bertolino, F. Corradini, P. Inverardi and H.
Muccini, "Deriving Test Plans from Architectural
Descriptions"”, Proc. ACM/IEEE 22nd Int. Conf. on
Soft. Eng. (ICSE 2000), Limerick, 4-11 June 2000, pp
220-229.

[HIM00] J. Hartmann, C. Imoberdof, M. Meisenger,
"UML-Based Integration Testing", Proceedings of ISSTA
2000, Portland, Oregon, 22-25 August 2000.

[JBR98] I. Jacobson, G. Booch, J.Rumbaugh, The
Unified Software Development Process, Addison-Wesley,
1998.

[JGP98] J.M Jézéquel, A. Le Guennec, F. Pennanech,
"Validating Distributed Software Modeled with UML",
Proc. UML98, in LNCS 1618, pp. 365-376.

[MLB99] F. Mercier, P. Le Gall, A. Bertolino,
Formalizing integration test strategies for distributed
systems”, First Int. ICSE Workshop Testing Distributed
Component-Based System, Los Angeles, May 1999.

[OA99] J. Offutt, A. Abdurazik, "Generating Test from
UML Specifications", Second International Conference on
the Unified Modeling Language, UML 99, Fort Collins,
CO, October 1999.

[OB88] T.J. Ostrand, M.J. Balcer, "The Category
Partition Method For Specifying and Generating
Functional Tests", Communication of the ACM, 31(6),
p. 676-686, June 1988.

[UML97a] UML Notation Guide, v. 1.1, Sept. 1997,
www.rational.com/uml/resources/documentation/formats.j
tmpl

[UML97b] UML Semantics, v. 1.1, Sept. 1997,
www.rational.com/uml/resources/documentation/formats.j
tmpl

[UML97c] Object Constraint Language Specification,
version 1.1, Sept. 1997,
www.rational.com/uml/resources/documentation/formats.j
tmpl

QWE2000 Session 3A

Mr. Rob Hendriks & Mr. Robert
vanVonderen & Mr. Erik van

Veenendaal [Netherlands]
(Improve Quality Services)

"Measuring Software Product
Quality During Testing"

Key Points

ISO-9126●

Quality requirements●

Quality characteristics●

Testing●

Practical experience●

Presentation Abstract

Quality requirements of software products are often described in vague and broad
terms. As a consequence it makes it difficult for software engineers to determine how
quality influences their assignment and is it almost impossible for test engineers to
evaluate the quality of the software product as no concrete and quantitative
reference, of what quality in that context means, exists. The International
Organization for Standardization (ISO) has defined a set of quality characteristics to
enable the definition of software product quality in terms of functionality, reliability,
usability, efficiency, maintainability and portability. These quality characteristics are
described and defined in the ISO-9126 standard. In various annexes to this standard
metrics are provided to actually measure the characteristics. Within Océ
Technologies B.V., a Dutch developer and manufacturer of copying and printing
equipment, the ISO-9126 standard has been used in the testing phase, to specify the
software quality targets for the newest line of copier controller software. This copier
controller software is a multi-site development project, which takes place in the
Netherlands and France. Approximately 60 software engineers are involved in the
project. This paper depicts, step-by-step, the actions taken to implement ISO-9126 in
the project organisation and the results that were obtained. Described is how the
most important quality characteristics (functionality, reliability and maintainability)
were selected, by means of a questionnaire developed for the European
SPACE-UFO project, to form a quality model. The next step on how to define and
select the metrics to measure on the quality characteristics is described, including
the determination of a baseline value for each metric. Finally the actual
measurement during the test execution and the evaluation of the results obtained are
discussed. During the evaluation of the results the relevance of the various metrics

QWE2000 -- Conference Presentation Summary

http://www.soft.com/QualWeek/QWE2K/Papers/3A.html (1 of 2) [9/28/2000 11:00:02 AM]

and the baseline values were analyzed and, if necessary, modified. An evaluation of
the advantages and disadvantages of the approach taken concludes the paper.

About the Speaker

Rob Hendriks has several years of experience within the area of software quality for
embedded software systems, with a specialisation on software testing. The past
years he has been working as a test co-ordinator and consultant in projects for
consumer electronics and professional systems. On a regular basis he gives training
in the area of software testing and has a specialisation in testing techniques. He is
the co-author of the paper ‘Structured testing of embedded software’ published in
Software Release Magazine in February 2000. Rob is co-founder of WEB, a study
group for embedded software testing, which is a co-operation of companies, both
development as service organisations, working in the area of technical automation.

Robert L.A.H. van Vonderen, MsC, has worked for Océ Technologies B.V. since his
graduation from the Eindhoven University of Technology. He conducted a range of
applied research studies in the area of embedded software, geographical information
systems and printer controller software. In recent years he has worked as a project
manager and project leader for the Océ Printing Systems division in the area of
printer controllers and maintenance. He is currently responsible for the integration,
testing and QA activities of the newest line of controller development within the Océ
Document Printing Systems division.

QWE2000 -- Conference Presentation Summary

http://www.soft.com/QualWeek/QWE2K/Papers/3A.html (2 of 2) [9/28/2000 11:00:02 AM]

© 2000 Océ-Technologies B.V. 1

1

November 22, 2000

Measuring software product quality
during testing

Rob Hendriks¹
Robert van Vonderen²

¹ Improve Quality Services B.V.
² Océ Technologies B.V.

2

November 22, 2000

Measuring software product quality during testing

Presentation outline

� Introduction/context
� Selection of product quality characteristics
� Definition of quality metrics
� Measurement
� Results and conclusion
� Questions

© 2000 Océ-Technologies B.V. 2

3

November 22, 2000

Introduction/Context

� Objective: measure objectively software quality
for copier controller

� Necessary to define software quality unambiguously

� Applied at Océ Technologies copier controller
software development
• Multi-site (NL/F)
• 60 developers
• new technology
• incremental
 development
 (V-model)

4

November 22, 2000

Introduction/Context

� Controller software test team
� verify correct functional behavior
� determine software product quality
� but…

� No software quality requirements

© 2000 Océ-Technologies B.V. 3

5

November 22, 2000

Selection of product quality characteristics

� Determine software quality requirements
� from the total product quality requirements

� MCBF, ACPR

� from ISO9126
� functionality
� reliability
� usability
� efficiency
� maintainability
� portability

6

November 22, 2000

ISO9126

ISO9126
Quality

characteristics

Functionality Reliability Usability Efficiency Maintainability Portability

Suitability
Accuracy

Interoperability
Security

Functionality
compliance

Maturity
Fault tolerance
Recoverability

Reliability compliance

Understandability
Learnability
Operability

Attractiveness
Usability compliance

Time behaviour
Resource utilisation

Efficiency compliance

Analysability
Changeability

Stability
Testability

Maintainability
compliance

Adaptability
Installability

Co-existence
Replaceability

Portability compliance
.

© 2000 Océ-Technologies B.V. 4

7

November 22, 2000

Selection of product quality characteristics

� Not all quality characteristics equally
important

�Selection by interviewing key-persons
� project manager
� software architect
� types of users

� operator
� service technician
� system administrator

� Use of a questionnaire

8

November 22, 2000

Selection of product quality characteristics

Example from questionnaire:
(SPACE-UFO / Improve Quality Services B.V.)

� Process related questions, e.g.:
What kind of market type is the product oriented towards?
(Business/Consumer)

(Related to suitability, interoperability, learnability, resource utilisation
and time behaviour)

� User related questions, e.g.:
What is the average age of the users?

� Under 25
� 25 – 40
� Older than 40

(Related to learnability and attractiveness)

© 2000 Océ-Technologies B.V. 5

9

November 22, 2000

Selection of product quality characteristics

Questionnaire results

Score = 1 Score = 2 Score = 3 Score = 4 Score = 5
Functionality X
Reliability X
Usability X
Efficiency X
Maintainability X
Portability X

10

November 22, 2000

Definition of quality metrics

� Metrics per quality characteristic

� ISO-9126-2 and ISO-9126-3

� Extend with product-specific metrics

� In total 15 ISO metrics selected and 1
additional metric defined

© 2000 Océ-Technologies B.V. 6

11

November 22, 2000

Examples of metrics defined

Qua lity
c ha rac te ris tic

S ub-
c harac te ris tic

Me tric Pu rpo s e

Functiona lity S uita bility Functional im ple m e ntation
com ple te ne s s :
Numbe r of mis s ing functions
de te cte d during s ys te m te s ting /
Numbe r of functions de s cribe d in
re quire me nt s pe cifica tions .

How ma ny functions ha ve be e n
imple me nte d in re la tion to the
numbe r of functions s pe cifie d in
the re quire me nt s pe cifica tions ?

Re lia bility Ma turity Me an Copie s Be twe e n Failure s :
Tota l numbe r of copie s during
s ys te m te s ting / Numbe r of
de fe cts , ca us e d by controlle r
s oftwa re , de te cte d during
ope ra tion time .

How fre que nt a re the de fe cts of
the controlle r s oftwa re in
ope ra tion?

Ma inta ina bility Ana lys a bility Availability of de s ign
docum e ntation:
Ava ila ble (a nd a pprove d) de s ign
docume nta tion (i.e . S W
a rchite cture , top-le ve l de s ign,
a na lys is vie ws , de s ign vie ws a nd
inte rfa ce s pe cifica tions) /
Ide ntifie d de s ign docume nta tion.

Wha t’s the proportion of de s ign
docume nta tion a va ila ble ?

12

November 22, 2000

Measurement

� Baseline for every metric

� Ask experienced people to estimate
baseline

� ‘Minimum but sufficient level’

© 2000 Océ-Technologies B.V. 7

13

November 22, 2000

Measurement

� Measure during system test phase of each
development cycle

� clearly instruct test engineers what data to record per defect,
e.g.:

number of copies made
total down time of the system

� Compare against baseline and previous
cycle

14

November 22, 2000

Results and conclusions

� 4 measurements done
� cycles C1, C2, C2patch, C3

Qu a lity -
c h a ra c te ris t ic

S u b -
c h a ra c te ris tic

Me tric B a s e -
l in e

Va lu e
C 1

Va lu e
C2

Va lu e
C 2

p a tc h

Va lu e
C3

F u n c tio n a lity S u ita b ility F u n c tio n a l im p le m e n ta tio n
c o m p le te n e s s

0 .9 0 0 .9 1 1 .0 1 .0 0 .8 2

F u n c tio n a l im p le m e n ta tio n
c o r re c tn e s s

0 .8 0 0 .4 5 0 .8 0 0 .8 4 0 .6 1

R e lia b ility Ma tu r ity D e fe c t d e te c tio n 0 .7 5 0 .4 6 0 .6 3 0 .6 3 1 .0 8
Me a n c o p ie s b e tw e e n
fa ilu re s

1 0 0 0 0 0 n .a . 9 3 1 7 5 4 8 8 0

T e s t c o m p le te n e s s 0 .9 0 0 .7 5 0 .7 8 0 .3 3 0 .9 2
R e c o ve ra b ility Me a n d o w n tim e 1 0 m in . n . a . 5 m in . 5 m in . 5 m in .

© 2000 Océ-Technologies B.V. 8

15

November 22, 2000

Results and conclusions

� Not all metrics could be measured each cycle
� Perception of quality does not always show in the

metrics (C2 vs. C2patch)
� Correlation between metrics and improvements /

changes in development approach hard to
determine

� Calculation of expected defect rate incorrect (C3
value higher than 1): to be investigated

16

November 22, 2000

Results and conclusions

� Relative short measurement period (less then 1
year) - with prolonged tests planned, our metric
accuracy will improve

� Currently, no corrective actions are taken based
on the measured results

� No real-life experience what happens with
insufficient quality metrics at release date

� Lift experience with software quality
measurement to total product quality
measurement

� Continue!!!

© 2000 Océ-Technologies B.V. 9

17

November 22, 2000

Questions?

© 2000 Océ-Technologies B.V.

- 1 -

Measuring software product quality during testing

Rob Hendriks, Robert van Vonderen and Erik van Veenendaal

Quality requirements of software products are often described in vague
and broad terms. As a consequence it makes it difficult for software
engineers to determine how quality influences their assignment and it is
almost impossible for test engineers to evaluate the quality of the software
product as no concrete and quantitative reference, of what quality in that
context means, exists. This paper describes a possible way to define and
measure software product quality. The authors have applied this method
during the development of copier/printer controller software at Océ
Technologies B.V., a Dutch developer and manufacturer of copying and
printing equipment.

Context

In 1997, Océ Technologies started the development of a new line of
copier/printer controllers, to be used in a new family of monochrome high-
volume hybrid copier/printers. In April 1999 this development entered the
engineering phase. The engineering of the software for this controller line
takes place on three sites, of which two are in The Netherlands and one is
in France. Approximately 60 software engineers are involved in the
development of this software, hereafter referred to as the ‘controller
software’. The controller software is developed in an incremental fashion,
with each development cycle conforming to the V-model. Each iteration of
such a development cycle takes between 3 and 5 months.

At the start of the engineering phase a test team was formed with the
assignment to verify correct functional behaviour and to determine product
quality of the controller software. One of the main problems that occurred
for the test team was the fact that the required quality level of the controller
software was not specified. The only quality requirements available
referred to the copier/printer product as a whole and not particular to it’s
software components. Those requirements were however easily
measurable and easy to understand. Examples are the mean number of
copies between failures (MCBF, which pertain to all system errors) and the
average copies per repair (ACPR, which is the number of copies made
between visits of a service technician).

The objective of the test team was to get a clear baseline of the quality
requirements before the testing phase would actually start. Therefore a
quality model had to be found that could help in defining and measuring
software product quality. This model was found in ISO9126 (ISO/IEC 9126-
1:2000). In this ISO standard six quality characteristics are defined, which
help in decomposing quality in manageable parts. The quality

© 2000 Océ-Technologies B.V.

- 2 -

characteristics defined in the ISO9126 standard are functionality, reliability,
usability, efficiency, maintainability and portability. To have a more detailed
description these quality characteristics are divided into 27 sub-
characteristics (Figure 1) in total.

Figure 1 ISO9126 quality characteristics overview

Selection of product quality characteristics

Not all quality characteristics are of equal importance to the software
product. Portability might be unimportant when the development aims at a
dedicated platform and maintainability might not be an issue when it’s a
throwaway product. The important quality (sub-)characteristics need
therefore be selected. This selection can be made by interviewing key
persons in- and outside the project. Inside the project one can think of the
product manager, the project manager or the software architect. Outside
the project the various types of users are important. Copier users are not
only limited to the person operating the copier, often forgotten are e.g. the
service technician, the system administrator, etc.

The quality characteristics as defined by the ISO9126 standard are not
always easy to interpret. What is meant by maintainability, or even worse
usability? It’s difficult to express these quality characteristics in an
unambiguous way. As it will be hard to understand for IT professionals it
will be even harder for users of the copier, who, in general, have no or
limited knowledge of software. Most of the users don’t even perceive that
the product contains software. It will therefore be difficult to determine
those quality characteristics that are important for the software component
of the product just by asking “Do you think usability is important?” The
persons interviewed have their own definition of the characteristics and

ISO9126
Quality

characteristics

Functionality Reliability Usability Efficiency Maintainability Portability

Suitability
Accuracy

Interoperability
Security

Functionality
compliance

Maturity
Fault tolerance
Recoverability

Reliability compliance

Understandability
Learnability
Operability

Attractiveness
Usability compliance

Time behaviour
Resource utilisation

Efficiency compliance

Analysability
Changeability

Stability
Testability

Maintainability
compliance

Adaptability
Installability

Co-existence
Replaceability

Portability compliance

.

© 2000 Océ-Technologies B.V.

- 3 -

their own view of what the system should do and therefore what is
important.

To overcome the problems mentioned above a questionnaire based
method has been developed in the European SPACE-UFO project, funded
by the European Union, and further elaborated by Improve Quality
Services B.V.. This questionnaire consists of a number of questions about
general product characteristics. These product characteristics are
understandable for all interviewed persons. Instead of asking whether
usability is important one asks questions about the characteristics of the
users that influence the usability requirements, e.g. the number of different
users, their experience with the product (or a similar one) and their
educational level. Similar questions are asked for the other quality
characteristics. The answers given are used to deduct the most relevant
quality (sub-)characteristics. A fragment of the questionnaire is included in
appendix A. This appendix also shows the related quality (sub-)
characteristics.

Within the project 4 key-persons were selected and also 3 representatives
of the different types of users were selected. Thus 7 persons were
interviewed, each having their typical view on the copier/printer product.
From the answers given a ranking for the product quality (sub-)
characteristics could be deducted. A score from 1 to 5 was given, with 1
being unimportant and 5 most important. The results then were averaged
for all respondents. This resulted in the score shown in table 1.

 Score = 1 Score = 2 Score = 3 Score = 4 Score = 5
Functionality X
Reliability X
Usability X
Efficiency X
Maintainability X
Portability X
Table 1 Score per quality characteristic

As can be seen from the results of the questionnaire, the quality
characteristics functionality, reliability and maintainability were considered
to be important for the controller software. This is explainable from the type
of copier the project is developing: it is expected to run in a highly
professional document production environment, where the uptime (to be
expressed in ‘reliability’ and ‘maintainability’) is of utmost importance.
Also, the copier/printer will be the successor product of an analogue high-
volume copier model, where a clear functionality demand (being
compatible with existing products as well as providing an extension) is
expressed. Usability also scores high but it has been decided not to take it
into account for testing the controller software. The reason for this is that

© 2000 Océ-Technologies B.V.

- 4 -

usability is considered to be a property of the user interface, which is not
part of the controller software development.

Given this, the test team decided to focus on three quality characteristics
(functionality, reliability and maintainability) primarily, and to develop
quality metrics for these quality characteristics.

Definition of quality metrics

When the relevant quality (sub-)characteristics have been determined, one
should think about how to measure quality. The ISO9126 standard defines,
in the technical reports ISO 9126-2 (external metrics) and ISO 9126-3
(internal metrics), a number of metrics per quality characteristic that can be
used for measurement.

A selection of metrics can be made and, when necessary, extended with
self-defined metrics. The latter only on condition that the metrics are
motivated by defining the goal and the attribute that will be measured.

For each quality sub-characteristic, a selection of metrics from the
ISO9126 standard parts 2 and 3 (ISO/IEC 9126-2 and ISO/IEC 9126-3)
and from the product requirements was made (e.g. Mean Copies Between
Failures). The selection of metrics to be used was mainly based on the fact
whether it was possible and easy to measure them, mainly because this
was the first experiment with measuring quality characteristics.

Most of the requirements could be used directly from the ISO technical
reports and some of them had to be fine-tuned to the project’s definitions.
An example is the ISO9126 metric Mean Time Between Failures (MTBF).
This metric is often used to give an indication of the maturity of the system.
For copier/printers the maturity is often indicated by means of the metric
Mean Copies Between Failures (MCBF). Therefore a slight change in the
metrics could be desirable. Furthermore the product requirements often
include quality statements applicable to the product as a whole. As only the
controller software was taken into account, these quality aspects needed to
be translated for the controller software. E.g. the MCBF is higher for the
controller software than for the product, because only failures caused by
the controller software should be taken into account. Paper jams are not
important when evaluating the maturity of the software.

In total 16 metrics were defined, of which only 1 was defined additional to
the internal and external metrics provided in the ISO technical reports. The
availability of design documentation was considered to be a good
indication of the maintainability. Therefore a metric was added to verify the
amount of design documentation that was available versus the amount of

© 2000 Océ-Technologies B.V.

- 5 -

design documentation planned. Examples of the metrics defined can be
found in table 2.

Quality
characteristic

Sub-
characteristic

Metric Purpose

Functionality Suitability Functional implementation
completeness:
Number of missing functions
detected during system testing /
Number of functions described in
requirement specifications.

How many functions have been
implemented in relation to the
number of functions specified in
the requirement specifications?

Reliability Maturity Mean Copies Between Failures:
Total number of copies during
system testing / Number of
defects, caused by controller
software, detected during
operation time.

How frequent are the defects of
the controller software in
operation?

Maintainability Analysability Availability of design
documentation:
Available (and approved) design
documentation (i.e. SW
architecture, top-level design,
analysis views, design views and
interface specifications) /
Identified design documentation.

What’s the proportion of design
documentation available?

Table 2 Examples of metrics defined

Measurement

It was decided that a hypothetical baseline had to be defined before
starting the actual measurement. Our goal was not to measure relative
improvement with each test-cycle, but to compare the measured quality
against an absolute goal, which was to be reached before the product
could be released. Defining a baseline in advance forces people to start
discussion when quality targets are not met. If no baseline is defined one is
tempted to accept the quality as is, because no reference exists. The
product is considered to be ‘good enough’.

This baseline was defined by asking a number of experienced people
within the project and comparable software projects for an estimate on
each metric. These estimates were then averaged. Each estimate was
requested to be the ‘minimum but sufficient level’ for release. E.g., the
metric Mean Copies Between Failures was defined to be 100000. This
holds that only 1 failure, attributable to the controller software, may occur
every 100000 copies.

Decided was to measure all metrics (when applicable) during the system
test phase of each incremental development cycle. The result of each
development cycle could thus be scored against the defined baseline. In
this way, both the improvements per development cycle, as well as the

© 2000 Océ-Technologies B.V.

- 6 -

discrepancy with the ‘minimum but sufficient level’ could be depicted and
reacted upon.

Collection of the metric data during the system test phases implied that
some thorough administration was necessary during the test execution.
Besides the defects found it was important to administer e.g. the number of
copies made, the total down time of the copier/printer and the number of
failures successfully restored by the system itself. It was important to
clearly instruct the test engineers on what data should be recorded,
otherwise important information to compute the metrics could be missing.

After each system test phase the measured values needed to be evaluated
to see whether the baseline values defined at the start were still correct.
Where necessary the baseline values could be modified, but then at least
the discussion took place on the desired quality level. Project management
should always have approved changing a baseline.

Real life experience

Until the moment of writing this paper, 3 development cycles have been
tested and scored. For one increment, an extra system test cycle was
added, leading to a fourth measurement (2 patch). Some results of this
increment are presented in the table below.

Quality-
characteristic

Sub-
characteristic

Metric Base-
line

Value
C1

Value
C2

Value
C2

patch

Value
C3

Functionality Suitability Functional implementation
completeness

0.90 0.91 1.0 1.0 0.82

 Functional implementation
correctness

0.80 0.45 0.80 0.84 0.61

Reliability Maturity Defect detection 0.75 0.46 0.63 0.63 1.08
 Mean copies between

failures
100000 n.a. 93 175 4880

 Test completeness 0.90 0.75 0.78 0.33 0.92
 Recoverability Mean down time 10 min. n.a. 5 min. 5 min. 5 min.

Table 3 Measurements results

From the table can be seen that not all metrics were measured for all
increments. This is caused by the incremental development methodology
used within the project, where it appeared to be impossible to measure e.g.
‘Restorability’ on release 1, since this functionality was not yet present.

The mean copies between failures is far below the baseline defined. Still
this baseline is not adjusted. The low number for MCBF is caused mainly
by the fact that the controller software was not yet robust for failures in the

© 2000 Océ-Technologies B.V.

- 7 -

scanner or printer. E.g. a paper jam also resulted in a failure in the
controller software. Release 3 was robust for paper jam and one can see
that the MCBF increased tremendously.

Interesting to note are the measurements on release 2 patch compared
with release 2. The actual use of the software resulting from release 2 was
hindered by major instability and performance problems. These problems
were resolved, after which measurement 2 patch took place. Although the
difference between the metrics of release 2 and release 2 patch is only
relatively small (only 9 major defects were solved, approx. 5% of the total
amount of defects solved), the users perceived release 2 patch as a much
‘better’ system. This example shows that the metrics and values indicated
in the previous table should be carefully interpreted. When the system only
shows a few critical defects in the most used part of the system this
system will be of an unacceptable quality level, but the metrics show
otherwise. The severity of a defect and its location in the system is not
taken into account. So besides the metrics also an evaluation based on
common sense has to be made.

For release C3 one can see that the defect detection rate currently is
higher than 1, which means that more defects have been found than
initially expected. The calculation for the defects expected to be found
might be incorrect, which has to be investigated. Literature and metrics of
the own organisation were used to derive the number of defects expected
to be found.

Conclusion and final remarks

We have now been measuring software quality metrics for less than a year.
With more future releases planned (including more extended test periods),
our metrics will improve, to the point where we can more clearly use them
to set development priorities.

The metrics currently only are used to see what the quality level of the
controller software is. The next step will be to submit changes in the
development process to improve the quality of the software itself and the
process. E.g. if the defect detection rate is lower than expected, as can be
seen for releases C1 to C2 patch, but the test completeness is quite high
(75% - 78%) it might be necessary to evaluate the effectiveness of the test
process. It’s of course also possible that the engineering team makes
fewer errors as expected.

Furthermore it’s still unknown what will happen if the metrics show an
insufficient quality level, but the release date has come. How will the
organisation react on this and how much importance will it attach to the
metrics? This is what still has to be found out.

© 2000 Océ-Technologies B.V.

- 8 -

Up till now the reporting on quality has been received well within the
project, both for people involved in the quality model development and
those only receiving the test results. The statements on product quality are
now based on more than the number of defects and the feeling one has.
Besides in the controller software development this method will now also
be lifted to project level in order to make statements on the quality level of
the copier/printer product as a whole.

As test and quality engineers we’re very positive about the ISO9126
approach for defining quality and the questionnaire based method. It gave
us a way of defining and reporting product quality in a clear and, quite,
unambiguous manner. We’ve learned a lot and will continue the
measurements for the remaining of the project and intend to also use it in
future projects.

Authors information

Rob Hendriks Robert van Vonderen
Improve Quality Services B.V. Océ Technologies B.V.
Waalreseweg 17 P.O. Box 101
5554 HA Valkenswaard 5900 MA Venlo
The Netherlands The Netherlands
E-mail: rhe@improveqs.nl E-mail: lvvo@oce.nl

© 2000 Océ-Technologies B.V.

- 9 -

References

ISO/IEC 9126-1:2000, Information technology – Software product quality –
Part 1: Quality model, International Organization for Standardization.

ISO/IEC 9126-2:1999, Information technology – Software product quality –
Part 2: External metrics, International Organization for Standardization.

ISO/IEC 9126-3:2000, Information technology – Software product quality –
Part 3: Internal metrics, International Organization for Standardization.

Solingen R. van & E. Berghout (1999), The goal/question/metric method, a
practical method for quality improvement of software development,
McGraw-Hill, UK, ISBN 007-709553-7.

Trienekens J.J.M. and E.P.W.M. van Veenendaal (1997), Software Quality
from a business perspective, Kluwer Bedrijfsinformatie, Deventer, The
Netherlands, ISBN 90-267-2631-7.

Veenendaal, E.P.W.M. van & J. McMullan (eds.) (1997), Achieving
Software Product Quality, UTN Publishers, ‘s-Hertogenbosch, The
Netherlands, ISBN 90-72194-52-7.

© 2000 Océ-Technologies B.V.

- 10 -

Appendix A Example product quality characteristics
questionnaire

This appendix contains some of the questions of the product quality
characteristics questionnaire. For each question the related quality sub-
characteristics are indicated.

Process related questions:

What kind of market type is the product oriented towards?
1. Business market
2. Consumer market
(Related to suitability, interoperability, learnability, resource utilisation and
time behaviour)

What is the geografic market target?
1. Local
2. Global
(Related to suitability, interoperability, learnability, resource utilisation and
time behaviour)

What is the number of products to be sold in a certain market area?
1. 1-1000
2. 1000-10000
3. More than 10000
(Related to suitability and maturity)

User related questions:

What is the average experience of the recognized user groups with regard
to the product?
1. More than one year of experience
2. Less than one year of experience
3. No experience
(Related to understandability)

What is the average age of the users?
1. Under 25
2. 25 – 40
3. Older than 40
(Related to learnability and attractiveness)

© 2000 Océ-Technologies B.V.

- 11 -

Software product related questions:

Are there any alternatives to carry on with the activities when the software
fails?
1. Yes
2. No
(Related to reliability)

Does the product perform actions without the user intervention?
1. Yes
2. No
(Related to understandability, learnability and operability)

QWE2000 Session 3I

Mr. Massimiliano Spolverini [Italy]
(Etnoteam)

"Measuring And Improving The Quality Of Web Site
Applications (3I)"

Key Points

Web site quality●

Suggested methods●

Techniques to evaluate and improve Web site quality●

Presentation Abstract

Up to January 2000 there were approximately 10 million Web sites, 25 million are
foreseen by the end of the year 2000 and approximately 100 million for the following
year [1]. This explains why competition becomes stronger and stronger in the Web
economy era. Visitors can easily switch their attention away from the Web site they
are visiting, they feel free to purchase from any supplier no matter how far it can be,
because the world is just a mouse click away. VisitorsË choices depend upon
features such as the Web site down load time, the ability to easily find the content
and services they are looking for, and the trust in the site security and privacy.

The perceived quality of a Web site produces a measurable effect: in the USA in
1999 they estimated losses up to $ 4.4 million due to insufficient Web site quality
(Zona Research).

There is a single, simple metric to measure the quality of a Web site. The conversion
rate measures the number of visitors who come to a particular Web site within a
particular period divided into the number of people who take action on that site, for
instance to purchase any of the item on sale [2]. As an average, conversion rates
nowadays are in the 3 percent to 5 percent range. For e-commerce Web sites 10
percent conversion rate is considered excellent (i.e. one visitor buys out of 10 who
just visit the site).

Merchants will increase their business by increasing the conversion rate. This is why
merchants need visitors who are satisfied, remain loyal and therefore create traffic
and favourable word-of-mouth.

About the Speaker

Massimiliano Spolverini is Vice President and Chief Consulting Officer of Etnoteam
S.p.A., a System Integrator and Consulting firm in the business of the Internet. An

QWE2000 -- Conference Presentation Summary

http://www.soft.com/QualWeek/QWE2K/Papers/3I.html (1 of 2) [9/28/2000 11:23:09 AM]

SEI authorized Assessor and ISO Quality Systems evaluator, he is currently involved
in the research and application to the Internet technologies of the most accredited
frameworks for project management, process and product quality improvement.

QWE2000 -- Conference Presentation Summary

http://www.soft.com/QualWeek/QWE2K/Papers/3I.html (2 of 2) [9/28/2000 11:23:09 AM]

00 AO TEMP 100/100 1

MEASURING AND IMPROVING THE QUALITY
OF WEB SITES

Adriana Bicego, Aldo Maione, Massimiliano Spolverini, Etnoteam S.p.A

00 XX

2

PC
TE

M
P.

21
1-

03

Presentation Objectives
Background
Toward a definition of Web Quality
How to build Web site Quality
Web site assessment and Web Quality

00 AO TEMP 100/100 2

00 XX

3

PC
TE

M
P.

21
1-

03

PRESENTATION OBJECTIVES

• an overview of background and requirements underlying Web
quality

• a tentative definition of “Web quality”
• an approach to build Web quality
• a framework to assess Web quality

To provide:

00 XX

4

PC
TE

M
P.

21
1-

03

BACKGROUND 1

A typical Web user clicks away, if he/she cannot boot up a
Web page within 8 seconds

At about $362 million per month, perhaps as much as $4.35
billion in e-commerce sales in the U.S. may be lost each year
due to unacceptable download speed and resulting user
bailout behaviours.

00 AO TEMP 100/100 3

00 XX

5

PC
TE

M
P.

21
1-

03

BACKGROUND 2

Despite the benefits of shopping online, a staggering 43
percent of US Internet shoppers failed to complete an
attempted purchase in the last year:

almost half said they abandoned a site
due to slow page downloads

another 45 percent ditched Web sites
with confusing content or poor
navigability

00 XX

6

PC
TE

M
P.

21
1-

03

BACKGROUND 3

Trends in Internet security show a remarkable increase of
the number of successful attacks reported

US government Web sites were

involved in security incidents

� Department of Justice
� NASA
� CIA

Web site security is a key factor to
success in the Internet economy

00 AO TEMP 100/100 4

00 XX

7

PC
TE

M
P.

21
1-

03

BACKGROUND: INTERNET ECONOMY BASIC RULES

❏ Web sites struggle for visitors’ time and attention

❏ The competitors are a click away

❏ User experience with the site affects buying behaviour

00 XX

8

PC
TE

M
P.

21
1-

03

STAKEHOLDERS

Web quality requirements and needs are going to affect more and more decisions
and practices of the following players:

❏ Companies (bricks & mortar and Internet pure players)

❏ Sites users/customers

❏ Online advertising spenders

❏ Investors

❏ Venture capital firms

❏ Web design agencies

00 AO TEMP 100/100 5

00 XX

9

PC
TE

M
P.

21
1-

03

TOWARD A DEFINITION OF WEB QUALITY

Some key questions

✔ Do site content and functions meet user needs and expectations?

✔ Can users easily find the site?

✔ Can users quickly find what they’re looking for?

✔ Does the site communicate effectively?

✔ Is the site fast and reliable?

✔ Does the site protect user privacy effectively?

✔ Does the site assure information security effectively?

00 XX

10

PC
TE

M
P.

21
1-

03

IS THE SITE FAST AND RELIABLE ? 1

In 1999 performance data at 40 major business Web sites showed:

❏ an average homepage download time less of 6
seconds

❏ an average availability rate of 95%

➲ Recent researches (Robert Miller/Jakob Nielsen) show that 10 seconds
is about the limit for keeping the Web user's attention focused on the
interaction with the site.

00 AO TEMP 100/100 6

00 XX

11

PC
TE

M
P.

21
1-

03

IS THE SITE FAST AND RELIABLE ? 2

Practices which proved to ensure site satisfactory performances
(BEST PRACTICES)

✪ To keep the page sizes within 34 KB and to keep objects and multimedia effects to a
minimum

✪ Web pages have to be designed with speed in mind: i.e. to achieve desired response
times for various connection speeds:

✪ To plan Web infrastructure capacity for future scalability, not just for immediate needs

✪ ...

Modem 34 KB
ISDN 150 KB

00 XX

12

PC
TE

M
P.

21
1-

03

IS THE SITE SECURE? �

Year 1990 1995 1999 2000

Incidents 252 2412 9859 4226

 A few headlines from CNET news, 25 February 2000:

�FBI struck by Web attack
�Canadian Policy searches ISP for hacker
�Hacker discloses new attack software
�White House calls for security summit

 ...and a few statistics about attacks:

00 AO TEMP 100/100 7

00 XX

13

PC
TE

M
P.

21
1-

03

IS THE SITE SECURE? �

Practices which proved to ensure site security (BEST PRACTICES):

✪✪✪✪ APPLICATION SECURITY
❏ Authentication
❏ Confidentiality
❏ Integrity
❏ Non repudiation

Solutions: digital signature and certificates

✪✪✪✪ NETWORK SECURITY
❏ Access control
❏ Traceability

Solutions: Firewall-based architectures, intrusion detection, penetration test

00 XX

14

PC
TE

M
P.

21
1-

03

TOWARD A DEFINITION OF WEB QUALITY

Design and Process Quality
State-of-the-art technology
solutions
Integration with legacy
systems
Quality of design processes
 Quality of content
management processes
Staff and skills used to
support the site and content
evolution

Ease of use
Navigation
Performance
Privacy
Security

Perceived quality
(user experience)

00 AO TEMP 100/100 8

00 XX

15

PC
TE

M
P.

21
1-

03

THE USER EXPERIENCE

❏ Visitors who get a favorable user experience
become loyal users

❏ Loyal users generate traffic and favorable
word-of-mouth

Web site quality ensures excellent user/customer experienceWeb site quality ensures excellent user/customer experience

00 XX

16

PC
TE

M
P.

21
1-

03

HOW TO ASSESS THE QUALITY OF A WEB SITE?

Senior managers responsible for mission critical Web sites need to assess:

the user experience user experience especially with regard to the site
usabilityusability and performanceperformance (e.g. response time)

the compliance with standards, recommendations, laws, rules and
codes of practices

the policies and solutions implemented to ensure the site site
securitysecurity

the technologies, processes and skills involved in the Web
development and operations

Web quality assessment

00 AO TEMP 100/100 9

00 XX

17

PC
TE

M
P.

21
1-

03

Includes assessing:
the SITE ADEQUACY with regard to:

best practices
standards/rules
competitors’ sites
best-in-class sites

TECHNOLOGIES, PROCESSES and SKILLS used for the site
development, content management and operations

WEB QUALITY ASSESSMENT

BENCHMARKINGBENCHMARKING

00 XX

18

PC
TE

M
P.

21
1-

03

WEB QUALITY ASSESSMENT COMPONENTS

USABILITY TESTINGUSABILITY TESTING

 PERFORMANCE Assessment PERFORMANCE Assessment

 SECURITY Assessment SECURITY Assessment

 TECHNOLOGY Assessment TECHNOLOGY Assessment

 PROCESS Assessment PROCESS Assessment

00 AO TEMP 100/100 10

00 XX

19

PC
TE

M
P.

21
1-

03

USABILITY TESTING

Usability testing, based on state-of-the-artUsability testing, based on state-of-the-art
BEST PRACTICES,BEST PRACTICES, evaluates the following: evaluates the following:

 NAVIGATION
 EXPECTED UTILITY
 CONTENTS
 WORD AND LABEL COMPREHENSION
 COMMUNICATION EFFECTIVENESS
 GRAPHIC ATTRACTIVENESS
 PERCEIVED RESPONSE TIME

00 XX

20

PC
TE

M
P.

21
1-

03

PERFORMANCE ASSESSMENT

Performance assessment includes:

 actively monitoring the Internet applications
during operations to timely detect problems and
delayed response time

 evaluating to what extent best practices
affecting the site performance are applied

00 AO TEMP 100/100 11

00 XX

21

PC
TE

M
P.

21
1-

03

SECURITY ASSESSMENT

 SECURITY AUDIT: complete analyses of the
security infrastructure

 PENETRATION TEST: attack and intrusion
simulation (security scanning)

 SECURITY ADVICE: scanning data interpretation to
provide detailed advice

Security assessment Security assessment includesincludes::

00 XX

22

PC
TE

M
P.

21
1-

03

AUDITING COMPLIANCE AGAINST STANDARDS

Standards, rules, recommendations and code ofStandards, rules, recommendations and code of
practices for e-business sites have been developed:practices for e-business sites have been developed:

ISEC eQM2001 rev. 03

GII “Standard for Internet Commerce”
ver.1.0

CLICKSURE “Quality Standard for Electronic
Commerce” ver 1.4

ALTROCONSUMO “Web Trader Code”

TRUSTe “Program principles”

00 AO TEMP 100/100 12

00 XX

23

PC
TE

M
P.

21
1-

03

COMPETITIVE BENCHMARKING

The assessment results can be
compared to those obtained by the
competitors/best-in-class sites

00 XX

24

PC
TE

M
P.

21
1-

03

TECHNOLOGY ASSESSMENT

 HARDWARE/SOFTWARE
 ARCHITECTURE AND PLATFORMS

 INTEGRATION WITH
 BACK-END/LEGACY SYSTEMS

 NETWORK RESOURCES

 INTERNET CONNECTIVITY

Technology assessment evaluates the site with regard to:Technology assessment evaluates the site with regard to:

00 AO TEMP 100/100 13

00 XX

25

PC
TE

M
P.

21
1-

03

PROCESS ASSESSMENT

Process assessment evaluates the processes
and organisation which support the Web
development and operations :

 CONTENT MANAGEMENT

 STAFF E SKILL

 WEB DESIGN WORKFLOW

00 XX

26

PC
TE

M
P.

21
1-

03

CONCLUSIONS

Web quality is a must to ensure excellent user experience
❏ Visitors who get a favorable user experience become loyal users
❏ Loyal users generate traffic and favorable word-of-mouth

Drivers which turn visitors into loyal users include:
High quality contents, which provide added value to visitors
Frequently updated contents
Reduced access and download time
Trust
Ease of use

QWE2000 Session 3M

Mr. Kees Hopman [Netherlands]
(IQUIP Informatica BV)

"How to Implement New Technologies? Four Proven
Cornerstones for Effective Improvements"

Key Points

Technology Transfer and Process Improvement●

Customer Focus●

Sandwich Paradigm●

Four Complementing Tracks●

Goal Tracking●

Cornerstone Application Matrix●

Presentation Abstract

The presentation deals with the challenges an organisation encounters during a
change programme such as the implementation of a new process or new
technology. New promising technologies are adopted successfully in one
organisation, whilst others still suffer. It's often not the technology that fails but the
ability of an organisation to transfer that technology.

Organisations can succeed such implementations by applying four cornerstones for
improvements. These cornerstones are:
1. Customer Focus. Focus on your customer: what "improvement" can really help
you to make quality products?
2. Sandwich Paradigm. Use both top-down and bottom-up approach: the whole
organisation participates.
3. Four Complementary Tracks. Four complementary tracks: blend culture,
instrumentation, assurance and fast results.
4. Goal Tracking. Validate your implementation regularly.

The key thing is to balance the four cornerstones in the improvement programme.
The Cornerstone Application Matrix (CAM) supports organisations in getting
overview and insight to balance their improvement programme.

This presentation describes the characteristics of technology transfer, the four
cornerstones and their application. It has been larded and it concludes with work
experiences that cover the results of applying the cornerstones.

QWE2000 -- Conference Presentation Summary

http://www.soft.com/QualWeek/QWE2K/Papers/3M.html (1 of 2) [9/28/2000 11:06:25 AM]

About the Speaker

Kees Hopman has been active as an IT consultant and improvement consultant
since 1987. The last 7 years he has been involved in improvement programmes
either as the project leader or as a consultant. The Business Areas have been
Banking, Insurance and Telecom.
Kees is an employee of Software Control Quality Care, the unit of IQUIP Informatica
B.V. that provides services in the area of quality improvement and quality assurance
for processes, projects and products.
In his work Kees has become an advocate of the improvement approach which
blends both the instrumental side and the cultural (or human) side of improvement.
Kees is also member of the national competence group "Strategies for Software
Process Improvement" of the Dutch Software Process Improvement Network
"SPIder" (Stichting SPIder) .

QWE2000 -- Conference Presentation Summary

http://www.soft.com/QualWeek/QWE2K/Papers/3M.html (2 of 2) [9/28/2000 11:06:25 AM]

mailto:c.r.hopman@iquip.nl
http://www.iquip.nl/
http://www.iquip.nl/
http://www.st-spider.nl/

“How to change to new technologies?”
Four proven cornerstones for effective improvement

Quality Week Europe 2000

C.R. Hopman © Copyright All rights reserved 2000 IQUIP Informatica B.V. 1

IQUIP
00 nr SC 384.1

How to Change
to New Technologies?

Four Proven Cornerstones for Improvement

Kees Hopman
Change Consultant

IQUIP - The Netherlands

IQUIP
00 nr SC 384.2

Technology Transfer Influences

• Organisational
• Cultural
• Personal
• Communication
• Technology

It is the change ability
that determines dominantly

a successful technology transfer

“How to change to new technologies?”
Four proven cornerstones for effective improvement

Quality Week Europe 2000

C.R. Hopman © Copyright All rights reserved 2000 IQUIP Informatica B.V. 2

IQUIP
00 nr SC 384.3

Four Cornerstones for Improvement

Customer
Focus

Sandwich
Paradigm

Four
 Complementary

Tracks

Goal
Tracking

IQUIP
00 nr SC 384.4

External view: What service does my customer want?
Internal view: Are we able to provide this service?

Customer Focus

“How to change to new technologies?”
Four proven cornerstones for effective improvement

Quality Week Europe 2000

C.R. Hopman © Copyright All rights reserved 2000 IQUIP Informatica B.V. 3

IQUIP
00 nr SC 384.5

Sandwich Paradigm

Top-Down: vision and structure
Bottom-Up: participation and measures

IQUIP
00 nr SC 384.6

Goal Identification: a goal for everyone
Goal Monitoring and Reporting: insight and show
Goal Evaluation: improve Goal Tracking

Goal Tracking

“How to change to new technologies?”
Four proven cornerstones for effective improvement

Quality Week Europe 2000

C.R. Hopman © Copyright All rights reserved 2000 IQUIP Informatica B.V. 4

IQUIP
00 nr SC 384.7

Long and short range measures
Structure and culture measures

Four Complementary Tracks

IQUIP
00 nr SC 384.8

Consolidation Track (1)

• Dimension: Assurance
• Goal:

– Consolidate present situation
– Institutionalise new improvements

• Involves:
– Quality Handbook
– Audits and Reviews
– Training and Mentoring
– Knowledge Management
– Resource Management

“How to change to new technologies?”
Four proven cornerstones for effective improvement

Quality Week Europe 2000

C.R. Hopman © Copyright All rights reserved 2000 IQUIP Informatica B.V. 5

IQUIP
00 nr SC 384.9

Consolidation Track (2)

• Without consolidation no improvement
• Inflexibility leads also to consolidation

IQUIP
00 nr SC 384.10

Instrumental Track (1)

• Dimension: Structure improvement
• Goal:

– Creating instruments to change
• Involves:

– Identification of new instruments
– Development of new instruments
– Pilot and Implementing
– Training and Mentoring materials
– Hand over to organisation

“How to change to new technologies?”
Four proven cornerstones for effective improvement

Quality Week Europe 2000

C.R. Hopman © Copyright All rights reserved 2000 IQUIP Informatica B.V. 6

IQUIP
00 nr SC 384.11

Instrumental Track (2)

• Consolidation Track:
– Hand over from Instrumental Track to

Consolidation Track

IQUIP
00 nr SC 384.12

Culture Track (1)

• Dimension: Culture improvement
• Goal:

– Creating behaviour, attitude and atmosphere
for change

• Involves:
– Identification of current and desired culture
– Visualise and communicate desired culture
– Inspiration and motivation
– Participation model
– Commitment
– Enlarge Innovation power

“How to change to new technologies?”
Four proven cornerstones for effective improvement

Quality Week Europe 2000

C.R. Hopman © Copyright All rights reserved 2000 IQUIP Informatica B.V. 7

IQUIP
00 nr SC 384.13

Culture Track (2)

• Consolidation Track:
– Motivation results in consolidation
– HR instruments

IQUIP
00 nr SC 384.14

Score Track (1)

• Dimension: Credit
• Goal:

– Showing intermediate results
– Convincing people to change

• Involves:
– Solve acute problems
– Support vision with evidence
– Gets improvement team and approach accepted
– Remove limitations for change

“How to change to new technologies?”
Four proven cornerstones for effective improvement

Quality Week Europe 2000

C.R. Hopman © Copyright All rights reserved 2000 IQUIP Informatica B.V. 8

IQUIP
00 nr SC 384.15

Score Track (2)

• Culture Track:
– Fast and visible results lead to motivation for

change

IQUIP
00 nr SC 384.16

Main Pitfalls for Improvement

Perceived pitfalls:
• No focus on customer
• Mobilisation gap
• Too complex solutions
• Culture invisible and intangible
• Flavour of the Day
• Silent success

In terms of Cornerstones:
• Unbalance between Cornerstones

“How to change to new technologies?”
Four proven cornerstones for effective improvement

Quality Week Europe 2000

C.R. Hopman © Copyright All rights reserved 2000 IQUIP Informatica B.V. 9

IQUIP
00 nr SC 384.17

Application of Cornerstones

• Use the Cornerstones:
– Plan Improvements
– Manage and Control Improvements
– Provide overview and insight
– Validate Improvement approach

• Balancing Cornerstones
– Professional judgement
– Creating success, avoiding pitfalls
– Tool: Cornerstone Application Matrix (CAM)
– Emphasising Cornerstones

IQUIP
00 nr SC 384.18

Case 1: From Scratch

• Improvement goals: Cost reduction and higher
productivity

• Solution: Multi-functional test centre
• New technology: TMap®, TPI®, test tools, role model
• Application: CAM scan and monitoring
• Measures:

– Customer Focus
– Participation and Motivation

• Result:
– Test centre established

“How to change to new technologies?”
Four proven cornerstones for effective improvement

Quality Week Europe 2000

C.R. Hopman © Copyright All rights reserved 2000 IQUIP Informatica B.V. 10

IQUIP
00 nr SC 384.19

Case 2: Reinforcing the Improvement

• Improvement goals: Higher productivity
• Solution: New technologies
• New technology: DSDM, Powerbuilder/Sybase, CMM
• Application: Reinforcement, CAM scan and monitoring
• Measures:

– CAM after unsuccessful start reveals unbalance
– Integrate new technologies
– Participation and Motivation

• Result:
– Project on track

IQUIP
00 nr SC 384.20

Summary

• Four proven cornerstones for improvement
– Customer Focus
– Sandwich Paradigm
– Four Complementary Tracks

– Consolidation
– Instrumental
– Culture
– Score

– Goal Tracking
• The ability to change determines success

Quality Week Europe 2000

"How to change to new technologies? Four proven cornerstones for effective improvements"

C.R. Hopman Copyright 2000 IQUIP Informatica B.V. page 1 of 14

 “How to change to new technologies?”
Four proven cornerstones for effective improvements

by Kees Hopman

IQUIP Informatica B.V.
Software Control Quality Assurance

P.O. Box 263, 1110 AG Diemen,
The Netherlands

Phone: +31 20 660 66 00
Fax: +31 20 660 66 32

Email: c.r.hopman@iquip.nl

0. Abstract

New promising technologies are adopted successfully in one organisation, whilst others still
suffer. It’s often not the technology that fails but the ability of an organisation to transfer the
technology. Four cornerstones for change are discussed for transferring new technologies or
processes. These cornerstones are:
1. Customer Focus
2. Sandwich Paradigm
3. Four Complementary Tracks
4. Goal Tracking

This paper describes these four cornerstones, their dependencies and their application.
It concludes with two work experiences that cover the results of applying the cornerstones.

Quality Week Europe 2000

"How to change to new technologies? Four proven cornerstones for effective improvements"

C.R. Hopman Copyright 2000 IQUIP Informatica B.V. page 2 of 14

1. Characteristics of Technology Transfer

All models are wrong some are useful
(George Box)

All technologies are wrong some are useful
(Kees Hopman)

Organisations are facing many external and internal influences, under which the introduction
of new and promising technologies. It may be technologies like WAP, e-commerce and
Internet that support or enable the business processes. Or technologies for software
development and software management tooling like code generators and version control
systems.
Improvement programmes are initiated to transfer the technologies and to make the promised
benefits also profitable for their own organisation. However, various factors influence the
likelihood of the technology transfer. Influencing factors such as:
• Organisational factors: the corporate strategy, organisational structure, quality of worklife,

rewarding structure, management style;
• Culture factors: encouraging and accepting change, dynamics, change history, the

“hidden” organisation;
• Personal factors: professional qualities, faith, perceived necessity, personal win,

motivation, trust;
• Communication factors: participation structure, decision making, celebrating successes;
• Technology factors: cohesion and connection with existing technology.

What really determines the success of the technology for an organisation is the ability of the
organisation to deal with these influencing factors. Even the 'right' technology for an
organisation will not work if the technology transfer isn’t successful.

Quality Week Europe 2000

"How to change to new technologies? Four proven cornerstones for effective improvements"

C.R. Hopman Copyright 2000 IQUIP Informatica B.V. page 3 of 14

2. Four Cornerstones for Successful Transfer

It is assumed here that a technology transfer takes place during an improvement programme.
A lot of improvement approaches have been developed in the past years. Most of these
approaches focus on just one or two of the mentioned influencing factors. The reason might
be something like “Flavour of the month”, personal preferences, organisational style or
perhaps management style.

However, an improvement programme should have a holistic approach. That implies an
improvement programme that contains measures for all the influencing factors. To make such
improvement programmes an organisation should adapt four cornerstones of change. These
four cornerstones are:
1. Customer Focus
2. Sandwich Paradigm
3. Four Complementary Tracks, consisting of:

A. Consolidation Track
B. Instrumental Track
C. Culture Track
D. Score Track

4. Goal Tracking

Cornerstone 1. Customer Focus

"When customers demand improvement,
organisations will respond."

(Our customer's view)

Customer Focus is about the vision of the organisation. It has an external and an internal
view:
• External view: What does my customer want?

This implies that the organisation must set objectives for serving the customer and must
focus on these objectives.

• Internal view: How able is the organisation to provide the service the customer wants?
This implies that the change capabilities of your organisation should be determined. These
change capabilities are necessary to constantly provide the required services.

Customer Focus means that the processes, the technology and the organisation should be
focused on the quality of the services and of the products the customer wants, and in terms of
the customer. Customer Focus also means that only these processes and technologies are
improved and implemented that contribute to the effectiveness and efficiency of your
organisation. Accordingly there is a cultural side of Customer Focus: the organisational and
personal attitude and willingness to serve the customer.

The main pitfall organisations encounter in the area of Customer Focus is the absence of
focus, mainly caused by ‘internal affairs’ or diffuse markets.

Quality Week Europe 2000

"How to change to new technologies? Four proven cornerstones for effective improvements"

C.R. Hopman Copyright 2000 IQUIP Informatica B.V. page 4 of 14

Cornerstone 2. Sandwich Paradigm

“The mental processes of senior management
have always an advantage on the emotions of their staff.

The pace of improvements puts the adaptability of the staff on test.”
(former Vice President)

Sandwich Paradigm is about the mobilisation of the organisation for changing. It consists of
two - complementary - mainstreams: Top-Down and Bottom-Up.

The Top-Down mainstream flows through the organisation from top management to the staff,
reflecting the management view. The Top-Down mainstream is the pulling force of an
improvement, it sets the direction and preconditions.
Keywords for the Top-Down mainstream are:
• Creation and projection of a Vision;
• Goal setting;
• Creation, communication and implementation of guiding and daily beliefs;
• Determination of limitations to change (budget, capacity, means, organisational structure)

and resetting the limitations;
• Commitment to the change and keep the commitment alive and visible;
• Creation of institutionalisation preconditions;
• Walk-the-talk.

The Bottom-Up mainstream flows through the organisation from staff (workers) to top
management, reflecting the staff’s view. The Bottom-Up mainstream is the pushing force of
an improvement, it creates action according the direction and within the limitations.
Keywords for the Bottom-Up mainstream are:
• Participation;
• Define, develop and implement measures;
• Highly motivation;
• Strong institutionalisation;
• Many different views.

Sandwich Paradigm implies that both mainstreams must be present within the organisation.
The Top-Down mainstream sets the direction and contour, the Bottom-Up mainstream fills in
the contour along the direction.

The main pitfall organisations encounter in the area of Sandwich Paradigm is the mobilisation
gap. The mobilisation gap is the difference in attitude to change of the involved persons. It is
caused by absence of awareness, participation, knowledge, ability, communication or
motivation.

Quality Week Europe 2000

"How to change to new technologies? Four proven cornerstones for effective improvements"

C.R. Hopman Copyright 2000 IQUIP Informatica B.V. page 5 of 14

Cornerstone 3. Four Complementary Tracks

Four Complementary Tracks is about the actual realisation of the change along the four
dimensions of change. The four tracks are:
A. Consolidation track
B. Instrumental track
C. Culture track
D. Score track

Track A: Consolidation track

The dimension of the Consolidation Track is assuring the processes, technology and
organisation.

The goal of the Consolidation Track is to consolidate the present situation, from a
management and control perspective. It is the foundation of each improvement: without
consolidation no improvement.

The Consolidation Track involves:
• A storage of

• Process descriptions,
• Procedures,
• Instructions and
• Templates
that is
• Reachable;
• Traceable;
• Usable;
• Maintainable.
Storage is also known as “Handbook”

• An approach to control and maintain the storage;
• An approach to audit and assess the usage of the processes, procedures and instructions;
• An approach to check the results of the use processes;
• Knowledge Management with respect to

• Preserving Good Practices;
• Re-using Good Practices;
• Information and Training materials.

• Resource Management attributes as:
• Functional judgements;
• Role descriptions;
• Rewarding systems.

The main pitfall organisations encounter on the Consolidation Track is that they can’t keep
their “Handbook” simple, lean and mean. Handbooks tend to grow to a Moloch:
• Unreachable: “But it is available on Intranet”
• Untraceable: “Where can I find the process I'm using?”

Quality Week Europe 2000

"How to change to new technologies? Four proven cornerstones for effective improvements"

C.R. Hopman Copyright 2000 IQUIP Informatica B.V. page 6 of 14

• Unusable: “We are in step 4.3.0.1.4b, subsection 23”
• Unmaintainable: “I'm sorry, it takes at least 6 months to update your process description.”

Track B: Instrumental track

The dimension of the Instrumental Track is improving from an instrumental viewpoint.

The goal of the Instrumental Track is to reach the improvement objectives by creating new
instruments. The Consolidation Track provides the Instrumental Track with input of existing
processes, standards, approaches and Good Practices. Reverse, the Instrumentation Track
provides the Consolidation Track with new instruments, once they are accepted or
implemented.

The Instrumental Track involves:
• Identification of the necessary instruments;
• Definition and development of the instruments;
• Piloting and implementation of the new instruments;
• Providing training and information materials;
• Hand over to the organisation, using the Consolidation Track.

Examples of instruments are process descriptions, procedures, instructions, but also
techniques, tooling, training packages, rewarding-mechanisms, career paths.

The main pitfall organisations encounter on the Instrumental Track is to make too complex
instruments, too many detailed instructions and too early automation of instruments.

Track C: Culture track

The dimension of the Culture Track is improving from a cultural viewpoint.

The goal of the Culture Track is to reach the improvement objectives by creating an
atmosphere for change. The Consolidation and Instrumental Track provide the Culture Track
with information and training material and Resource Management attributes. Additional, the
Culture Track cares for the right behaviour and attitude to use the new instruments and keep
using them.

The Culture Track involves:
• Identification of the current culture;
• Definition of the desired culture;
• Identification of instruments to change the culture (input for the Instrumental Track)
• Identification and planning of the change strategy;
• Define the participation strategy: the roles and responsibilities for the change;
• Creation of a basis for change;
• Creation of momentum for change;
• Inspiration and motivation of people involved.

Quality Week Europe 2000

"How to change to new technologies? Four proven cornerstones for effective improvements"

C.R. Hopman Copyright 2000 IQUIP Informatica B.V. page 7 of 14

Typical examples of Culture Track activities are:
• Plan the communication;
• Informing people about the (their) need for change;
• Informing people about the approach;
• Strong participation of people involved in the change;
• Training in process thinking;
• Vision quests;
• Encourage Re-use, or: Discouraging Not-Invented-Here syndrome;
• Teambuilding sessions;
• Informing customers about the new culture;
• Customer participation in definition new culture;
• One-on-one sessions;
• Management coaching;
• Building trust by making and keeping commitments, honesty, learn from mistakes, asking

feedback;
• Removing resistance;
• Structurally reward participation in the program and usage of the results of it.

The main pitfall organisations encounter on the Culture Track is the inability of organisations
to make the culture tangible and visible. If not tangible, organisations tend to forget the
cultural part.
A rather difficult pitfall to overcome is the absence of leaders, either formal managers or
natural leaders. Many organisations lack heroes, who will inspire the organisation to change
to a new way of living.

Track D: Score track

You must have long range goals
to keep you from being frustrated by short range failures

(Charles C. Noble)

You must have short range successes to build on believe in the long range goals
(Arthur Vermeulen)

The dimension of the Score Track is credit for improvements.

The goal of the Score Track is to reach the improvement objectives by showing frequently
intermediate results and celebrating successes. The Score Track is pre-eminently useful to:
• solve a problem immediately;
• solve an acute problem;
• support the management vision with evidence;
• motivate by showing results and successes, both to the improving organisation and to the

customer;
• get the improvement team accepted;
• remove limitations for improvements.

Quality Week Europe 2000

"How to change to new technologies? Four proven cornerstones for effective improvements"

C.R. Hopman Copyright 2000 IQUIP Informatica B.V. page 8 of 14

It supports the Culture Track by providing evidence to convince non-believers. It provides the
Consolidation Track with new instruments, once they are accepted or implemented.

Typical examples of Score Track activities are:
• Remove not used procedures and standards;
• Formalise the frequently used short-cut "procedure";
• Improve what staff think is important to improve.

The main pitfall organisations encounter on the Score Track is Pipedreaming or "Flavour of
the Day": leaving the organisation with series of not-ended ad-hoc improvement start-ups.

Four Complementary Tracks concluded

The main pitfall organisations encounter on the Four Complementary Tracks is the unbalance
between the tracks. If not balanced well, the change will not occur.
For example: an organisation focuses on the Instrumental and Consolidation Track, neglecting
the Culture Track. The result is that the instruments will not be used, although they are
technically perfect. The organisation is not able to adopt and use the new technology by heart
and mind.

Cornerstone 4. Goal Tracking

Goal Tracking deals with providing quantitative and qualitative insight in the realisation of
the improvement objectives. Goal Tracking might be the smallest cornerstone; it certainly is
one of the most underestimated and difficult elements of improvement programs.

Goal Tracking is divided into three parts:
• Goal Identification

Identifying goals and deriving subgoals on each level and for each part of the
organisation. For top management, staff, projects, teams, departments.

• Goal Monitoring and Reporting
Monitoring goals and targets as well as the activities to reach the goals. Reporting results
to involved persons and management.

• Goal Evaluation
Evaluation of the Goal Tracking process to be able to improve this process.

Goal Tracking uses techniques such as the Goal-Question-Metric paradigm or the Quality
Function Deployment to identify and monitor the goals and sub-goals.

Goal Tracking has a strong relationship with Customer Focus: to what extent is the
organisation supporting the customer? And also with Score Track: Goal Tracking shows
intermediate successes!

The main pitfall organisations encounter on Goal Tracking is to track the effort instead of the
results.

Quality Week Europe 2000

"How to change to new technologies? Four proven cornerstones for effective improvements"

C.R. Hopman Copyright 2000 IQUIP Informatica B.V. page 9 of 14

3. Application of Cornerstones

Many pitfalls for change have been mentioned in this paper. Pitfalls that will be recognised by
anyone who is working in the field of change management. Perceived pitfalls are:
• No focus on customer
• Mobilisation gap
• Too complex solutions
• Culture invisible and intangible
• Flavour of the Day
• Silent success

In terms of Cornerstones In terms of Cornerstones these perceived pitfalls could be translated
to unbalance between Cornerstones.

It is of great importance to balance and emphasise the cornerstones well and timely before and
during the improvement program. Unbalance between cornerstones results in ineffective or
unsuccessful programs. Emphasising cornerstones influences the balance and it is the way to
manage and control the cornerstones.

Determination of the right balance is one of the most difficult parts. Experience and
professional judgement is the answer. One can gain in professional judgement by doing,
analysing, learning and relying on feelings.
However, a somewhat simple but effective method to determine the right balance is to over-
emphasise a measure, either in practise or in theory. What is the effect of doubling the process
audits? What is the effect of more instructions? Or weekly training sessions? Or participation
of half the staff? The answers might give you a clue for the right balance.

Organisations use the Cornerstone Application Matrix (CAM) to help them with the
application of the cornerstones. The CAM supports them in getting overview and insight.
As an example, the following CAM is filled in for a simplified five-step improvement
program that has been reduced to the essence. These five steps are represented by the rows.
The columns represent the cornerstones. Each partition lists examples of applicable
improvement activities.

Cornerstone
Application

Matrix

Customer Focus Sandwich Paradigm Four Complementary
Tracks

Goal Tracking

Step1:
Be Aware and
Be Committed

• Aware of
customer/market

• Aware of own
performance

• Commit to change

• Determine
Participation Model

• Envision Top-Down
• Mobilise Bottom-Up

• Awareness of
necessary performance
and gap

• Identify Best in
Class ranges

Step 2:
Determine Current
Status

• Determine current
and future market

• Determine own
performance on
current and future
market

• Determine Customer
Satisfaction

• Determine
organisational
behaviour

• Determine Personal
behaviour and Added
Value

• Determine ability to
consolidate
(Consolidation)

• Determine present
status of instruments
(Instrumental)

• Determine ability to
change (Culture)

• Zero measurement
• Identify and

assemble historical
data

Quality Week Europe 2000

"How to change to new technologies? Four proven cornerstones for effective improvements"

C.R. Hopman Copyright 2000 IQUIP Informatica B.V. page 10 of 14

Cornerstone
Application

Matrix

Customer Focus Sandwich Paradigm Four Complementary
Tracks

Goal Tracking

Step 3:
Set Goals

• Set goals related to
product, services,
markets (external
view)

• Set goals related to
processing and
performing services
and products
(internal view)

• Set Top-Down Targets
• Set Individual Targets,

derived from or added
to the Top-Down
Targets

• Determine long range
goals

• Determine scoring
possibilities

• Implement
Measurement
Program

• Make goals
quantifiable

Step 4:
Improve

• Value operational
solutions against
customer focus

• Top-Down: Show
sponsorship and
commitment

• Bottom-Up:
Participate and Act

• Define operational
solutions

• Implement
• Show Successes
• Consolidate

• Track Goals
• Feed backwards

and corrective
action

• Feed forward

Step 5:
Go to step 2

• Consolidate new
customer focus

• Validate new
Customer
Satisfaction

• Consolidate new
organisational
relations

• Consolidate new
processing and
technology

• Consolidate new
culture

• Show usage of
(improved)
instruments

• Validate Results
against Goals

• Archive Results for
future use

In practice, each organisation shall create its own Cornerstone Application Matrix. The
advantages are obvious:
• The CAM provides an organisation a tool to balance and emphasise the improvement

measures;
• The CAM provides an overview of measures taken for every cornerstone for each

improvement step;
• The CAM provides management insight in planning and tracking the application of the

four cornerstones.

During the initiation of the improvement programme the CAM is set up. Preferably by the
programme manager with top management, middle management and staff. If possible,
customers are invited to join. Regularly, f.i. at the end of each step, the same group evaluates
and validates the CAM:
• Are the measures taken ready and effective?
• Are the planned measures sufficient?
• Are the planned measures balanced?
• Are there any areas that should be emphasised?

As matter of fact this use of CAM is an example of Goal Tracking.

Quality Week Europe 2000

"How to change to new technologies? Four proven cornerstones for effective improvements"

C.R. Hopman Copyright 2000 IQUIP Informatica B.V. page 11 of 14

4. Work Experiences applying the Cornerstones

Two work experiences as an example of organisations that really learned and earned from the
improvement cornerstones.

Work Experience 1: The Test Centre

This work experience is an example of where the cornerstones were applied right from the
beginning.

Company characteristics: government.
Starting position: several test groups, 4-20 persons, one main application each group, system
testing.
Goals: cost reduction, higher productivity, higher effectivity.
Solution: establishment of a multi functional test centre.
New technology: TPI ®1, TMap®, testtools, role model.

This company wanted to reduce costs and at the same time increase the effectivity and
productivity. The solution was to merge several small test groups into a multi functional test
centre. This test centre should provide several test services (system testing, system integration
testing, acceptance testing, consultancy, test scripts) for several applications on several
platforms. In the past a few attempts were made to merge the groups but never succeeded.
Often due to lack of top management commitment, diffuse goals and a non-fit in the present
culture.
The new responsible top manager decided to launch a new programme: more tests for less
cost. A TPI ® assessment revealed strong and weak points of the main test group (20 persons)
in the test domain: management, process, tooling and organisation. The TPI assessment report
provided the input for the initial programme. A CAM scan validated the initial programme on
the change areas. As CAM scan result the initial programme had been completed on several
points: multi-level improvement organisation, participation model and on the consolidation,
score and culture track.

Other examples of successfully applied improvement areas - related to the Four Cornerstones
- were:
Customer Focus:
• Goals and objectives are on demand of the customer;
Sandwich Paradigm:
• Top management commitment and support,
• Bottom Up mobilisation: everyone participated in the working groups to improve the

process;
Four Complementary Tracks:
• Consolidation Track: establishment of Quality Handbook, training materials, process- and

product audits;

1 Test Process Improvement (TPI ®) and Test Management approach (Tmap ®) are registered trademarks of IQUIP Informatica B.V.

Quality Week Europe 2000

"How to change to new technologies? Four proven cornerstones for effective improvements"

C.R. Hopman Copyright 2000 IQUIP Informatica B.V. page 12 of 14

• Instrumental Track (according to TPI assessment): identification of test types,
implementation of defect registration and process, test reference intake;

• Culture Track: adapt and adopt tools of other test groups, coaching, test process mindset,
information sessions for (future) customers;

• Score Track: 4 week improvement cycles: every month new small process updates, based
on TPI® and TMap®.

Goal Tracking:
• Hour registration and budget control (improved);
• Cost calculation for projects (improved).

During the programme continuous balancing and emphasising resulted in an effective
improvement programme.

Work Experience 2: People and Technology but no Process

This work experience is an example where the application of the cornerstones made the
difference between success and failure.

Company characteristics: telecommunications.
Starting position: small software development group, +30 persons in two months, large
enhancement on one main application.
Goal: higher productivity.
Solution: introduction of new technologies.
New technology: DSDM, PowerBuilder, Sybase, Architecture & Building Blocks, Capability
Maturity Model (CMM).

This department wanted to enhance their application. It was not possible - they claim - to
make the software in time in the conventional way. New technology would help them. They
selected a - for them - new development method (DSDM) and new software development
tools (PowerBuilder and Sybase). Their available staff had no experience with both new
technology and tools. The department decided to recruit new staff (hired people) and tripled
their group in 2 months with 30 more and less experienced people. Training and additional
tools had not been provided: the new group should be able to find their way (…).
It is obvious that this group couldn’t succeed in this company. The group focussed on the new
promising technology but forgot to focus on the customer (they even had problems to identify
the customer) and on their approach (about 30!). They made no use of the consolidation track
(technology independent tools and standards). Just the right people and the right technology.
After a few months the department started an improvement program - applying the four
cornerstones – to make the group and its project successful.

Examples of improvement areas - related to the Four Cornerstones - were:
Customer Focus:
• Identification of the Customer.
Sandwich Paradigm:

Quality Week Europe 2000

"How to change to new technologies? Four proven cornerstones for effective improvements"

C.R. Hopman Copyright 2000 IQUIP Informatica B.V. page 13 of 14

• Top Down: management provided resources for improvement and participated in the
improvements (project management);

• Bottom Up mobilisation: everyone participated in the working groups to improve the
process and to use the technology in the process.

Four Complementary Tracks:
• Consolidation Track: establishment of the new Quality Handbook, derived from the one

used for previous releases, process- and product audits;
• Instrumental Track (according to CMM assessment): introduction of software

management (CMM), software development method (DSDM), tools (PowerBuilder,
Sybase) and organisational standards.

• Culture Track: teambuilding, process thinking and attitude, Customer participation in the
improvement program.

• Score Track: 4 week improvement cycles: every month new small process updates.
Goal Tracking:
• Hour registration (improved);
• Product size (FPA);
• Defect registration.

This group managed to improve their process and to adapt the new technology, despite strong
(operational) time pressure. Their improvements matched precise with their needs and
moreover with the needs of their customer.

Work Experiences Concluded

The organisation in the first work experience had been prevented from another failure. The
latter work experience could show us the difference in results between an unbalanced and a
balanced improvement program.
Several other successful work experiences can be described here too, discussing the impact of
the cornerstones. Also analysing past - and failed - improvement programs reveals major
unbalance in applying the cornerstones.
On the other hand, applying the four cornerstones does not guarantee - unfortunately -
reaching the improvement goals. But it certainly does prevent organisations from obvious
disasters on beforehand (which is sometimes on itself a success). Moreover, the described
work experiences give two examples of organisations that really learned and earned from the
improvement cornerstones.

Quality Week Europe 2000

"How to change to new technologies? Four proven cornerstones for effective improvements"

C.R. Hopman Copyright 2000 IQUIP Informatica B.V. page 14 of 14

5. Advantage and conclusion

Promising new technologies and processes shine seductive and it is difficult for organisations
- that have a 'hot pence' burning in their pockets - not to buy these technologies and processes.
Unfortunately, after buying an organisation often fails in transferring the technology for its
own use. Often, organisations neglect or have been unaware of the fact that technologies are
not selling themselves but should be adopted and be adapted. This adopting and adapting
process is not a one-dimensional path but deals with various influences and dimensions.

Four cornerstones have been discussed which give organisations an overview in and direction
to a technology transfer. These cornerstones also support organisations to manage or control
the various influences and dimensions.

Organisations that balance and emphasise the four cornerstones well before and during the
technology transfer are able to succeed their improvements. In practice, organisations find it
helpful to use the Cornerstone Application Matrix for that purpose.

This paper is concluded with a reminder and small revision of the first quote:

All models are wrong some are useful
(George Box)

All cornerstones are wrong some are useful
(Kees Hopman)

In short: It’s not the model, it’s the change ability of the organisation that really counts for
success.

QWE2000 Vendor Technical
Presentation VT3

Mr. David Walker
(TBI)

"Effective Requirements
Management Using Caliber-RM"

Key Points

How to improve the requirements management process with an automated, object-oriented
approach

●

How to facilitate communication and collaboration among the project team●

How to track requirements through the lifecycle for impact analysis●

Presentation Abstract

To support an object-oriented approach to requirements management, David Walker
will demonstrate Caliber-RM, a collaborative, Web-based requirements management
system from TBI that enables organizations to develop higher quality e-business and
enterprise applications. By allowing all project stakeholders-including business
analysts, product marketing, developers, testers and end users-to collaborate on
project requirements, Caliber-RM helps organizations ensure that their applications
will meet end-user needs. Caliber-RM facilitates communication among project
teams, providing centralized requirement data to distributed team members and
allowing documented discussions about requirements and projects. Through lifecycle
traceability between requirements and related development and testing tools, project
teams are able to understand the impact of potential requirement changes on the
project scope, schedule and budget before the changes are accepted. When
requirement changes are made, team members are kept up to date with automatic
emails notifying responsible individuals of the changes. The demonstration will show
how team members can quickly identify potential requirement problems, and manage
scope creep through requirement versioning and project baselines. Those in
attendance for this session will learn how to better control their requirements
definition and management process to increase quality and meet expectations.

About the Speaker

David Walker, Manager, Worldwide Partner Engineering

In his role at Technology Builders, Inc., David Walker is integral in establishing
presence and gaining market share for the TBI-Caliber products, with particular

QWE2000 -- Conference Presentation Summary

http://www.soft.com/QualWeek/QWE2K/Papers/VT3.html (1 of 2) [10/11/2000 2:28:22 PM]

emphasis in European markets.

TBI's first Caliber-RM implementation consultant, David has improved IT initiatives at
many Fortune 500 companies through implementation of requirements management
methodologies combined with industry-leading automated tool support. He provides
pre- and post-sales assistance and mentoring to account managers and customers.
As a sales engineer for TBI, David has leveraged his communication and
presentation proficiency in applying real world experience to solve prospects' real life
challenges. David also is instrumental in ever-developing requirements management
course curriculum for TBI's Learning Institute.

David's extensive background also encompasses project management, process
re-engineering, tech courseware development, as well as experience in mortgage
banking, investment management, and banking operations. David is a member of
SEI and PMI.

QWE2000 -- Conference Presentation Summary

http://www.soft.com/QualWeek/QWE2K/Papers/VT3.html (2 of 2) [10/11/2000 2:28:22 PM]

RM for Product Management

Allocating Solutions to Concepts for
Successful Product Management

Aligning Technology with Business

RM for Product Management

Copyright Technology Builders, Inc. 2000. All rights reserved.

What gets lost in the
translation?

RM for Product Management

Copyright Technology Builders, Inc. 2000. All rights reserved.

The goal of Requirements
Management

RM for Product Management

Copyright Technology Builders, Inc. 2000. All rights reserved.

What do I need to know?
Why are we doing this task?

What is this component supposed to do?

How will we integrate this?

When can I expect this functionality?

Where is this request being fulfilled?

RM for Product Management

Copyright Technology Builders, Inc. 2000. All rights reserved.

are we doing this task?

is this component supposed to
do?

will we integrate this?

can I expect this functionality?

is this request being fulfilled?

Why

What

How

When

Where

What do I need to know?

RM for Product Management

Copyright Technology Builders, Inc. 2000. All rights reserved.

The whole is greater than the sum
of it’s parts…

Needs

Requirements

Specifications

Deliverables

Project Plan

Concept

Solution

RM for Product Management

Copyright Technology Builders, Inc. 2000. All rights reserved.

The market is rapidly evolving…
• Software is a relatively immature industry
• The Internet has dramatically changed the

marketplace
• The buffer between companies and

customers is gone (IE. POS staff)
• Reliable software is a must to avoid losing

customers to the competition
• Reliable software begins with good

requirements

RM for Product Management

Copyright Technology Builders, Inc. 2000. All rights reserved.

Distribution of Defects

Other
CodeDesign

Requirements

27%

56%

7%
10%

Source: James Martin

RM for Product Management

Copyright Technology Builders, Inc. 2000. All rights reserved.

0

100

200

300

400

500

600

700

800

900

1000
U

ni
t C

os
t

Phase in which foundPhase in which found
* A unit cost of one is assigned to the effort required to detect and repair a defect

during the requirements phase.
- Gause, Donald and Gerald Weinberg. Exploring Requirements: Quality Before Design.

Relative Cost to Fix an Error*

1

Requirements

3-6

Design

10

Coding Development

15-40

testing
Operation

40-1000

testing

30-70

Acceptance

RM for Product Management

Copyright Technology Builders, Inc. 2000. All rights reserved.

• Desktop databases

• Word processors

• Spreadsheets

• White boards

• Spiral notebooks

• Post-its

• Napkins

Traditional Requirements Tools

M
at

ur
ity

 L
ev

el

RM for Product Management

Copyright Technology Builders, Inc. 2000. All rights reserved.

• True 3-tier client/server/repository
• Internet-based, web-enabled
• Object-centric
• Requirements Management tool
• that supports a collaborative process to

fully:
– define
– manage and
– communicate changing requirements

QWE2000 Session 4T

Lisa Crispin
(iFactor-e)

The Need for Speed: Automating
Functional Testing in an eXtreme

Programming Environment

Key Points

Why Testing for XP is Different, challenging conventional wisdom●

How to educate yourself in the eXtreme Programming (XP) methodology●

How to automate functional tests quickly and leverage them to save time●

Presentation Abstract

In my two and a half years working in a web environment, where quality and time to
market are both essential to success, I've been frustrated by the difficulty in
combining these traits within traditional software process. After reading Kent Beck's
book, eXtreme Programming Explained, I couldn't wait to try this methodology to
enable small teams to deal with short timeframes and changing requirements while
still producing high quality software. I recently joined iFactor-e, where we use XP to
combine the highest levels of quality and shortest time to market.

Testing in a Web environment can feel like leaping out of a plane. Testing in an XP
environment feels like competing in a sky-surfing competition. You have to be better
than everyone else, but you don't have much time. You can only hope for a soft
landing. While the eXtreme Programming literature (including Ron Jeffries' book,
eXtreme Programming Installed), centers around unit and integration testing as part
of the XP core process, I felt that functional/acceptance testing from the customer
perspective was incompletely defined. The role of the tester in XP is clearly defined -
to help the customer choose and write functional tests and to make sure those tests
run successfully. The question is, how to do this when the ratio of developers to
testers is quite high (8 - 1 is recommended, and we are in a more extreme ratio than
that) and the development iterations are so short.

Like an extreme-sports competitor, the XP tester needs courage, speed, stamina
and creativity. Working with the developers and with input from an automated test
tool vendor, I have developed an approach to designing modularized, self-verifying
tests that can be quickly developed and easily maintained. I'll present my basic
design and give some examples. I used the test tool WebART, but this methodology
should be applicable to any au tomated tool that includes a scripting language.

QWE2000 -- Conference Presentation Summary

http://www.soft.com/QualWeek/QWE2K/Papers/4T.html (1 of 2) [9/28/2000 11:06:44 AM]

About the Speaker

I have eighteen years experience in the industry with the last nine in Testing and
Quality Assurance. I started out as a programmer and later worked in customer
support and QA for large software vendors. In March of 1998, I discovered the world
of Web startups, joining TRIP.com as the first test engineer. The challenge of
building quality into Web applications while meeting tight development cycles was
eye-opening. At TRIP.com, I built a QA department of seven test engineers testing
state-of-the-art, first-of-their-kind applications such as flightTracker and intelliTRIP. I
felt, however, that we never found a really good process that worked to produce
high-quality software in a short amount of time. Missed deadlines were common.
Still, we were proud of our accomplishments, as TRIP.com grew to one of the
highest-traffic travel Web sites, rated 4.5 out of 5 starts by BizRate and ranked near
the top of the Keynote Top 40 websites for performance.

Several developers from TRIP.com left to join a new startup, iFactor-e, devoted to
using eXtreme Programming to combine high quality and short time to market to
wow the customer. One of these developers loaned me Kent Beck's book. After I
read that, I was eager to try XP myself and was fortunate enough to be hired as the
first test engineer at iFactor-e in July of 2000. Since then, I have been racing to
establish a functional testing methodology that successfully applies the values of XP.

I have given successful presentations at both local and international user and QA
conferences to audiences of up to 60 people. I have many years experience training
both technical and end users.

QWE2000 -- Conference Presentation Summary

http://www.soft.com/QualWeek/QWE2K/Papers/4T.html (2 of 2) [9/28/2000 11:06:44 AM]

1

1

The Need for Speed: Acceptance Test
Automation in an Extreme
Programming Environment

Lisa Crispin, Senior Test Engineer, iFactor-e
Contributors:

Tip House, OCLC Inc.
Carol Wade, TRIP.com

2

What is XP?

Simplicity
Communication
Feedback
Courage

XP Values:

2

3

What Makes it Extreme?

If testing is good, everybody tests all the time
If code reviews are good, pair program
If design is good, refactor every day
And so on...

Commonsense Practices to Extreme Levels

4

iXP Overview

3

5

Automated XP Testing

How Testing in XP is Different
iXP Automated Test Design
Tools for Writing Acceptance Tests
Tools for Automating Acceptance Tests
Tools for Reporting Results

This Presentation Will Give Tips On:

6

XP Practices

 Pair Programming
Test First, Then Code
Do the Simplest Thing that Works
40-Hour Week

At iFactor-e:

4

7

XP Practices

 Refactoring
Coding Standards
Small Releases
Incremental planning

At iFactor-e:

8

 Customer can change mind anytime
Lack of written documents
Short cycles 1 - 3 weeks
High developer/tester ratio

XP Differences
How is Testing Different with XP?

5

9

XP Differences

Unit tests
Integration tests
Unit and integration tests must pass 100%
Customer writes acceptance tests
Development team assists with test automation

How is This OK?

10

iXP Test Automation

Be modular and self-verifying
Verify the minimum success criteria
Contain no duplicate code
Do the simplest thing that works
Feature reusable modules

Tests must:

6

11

12

iXP Test Tools

jUnit test framework
http://www.junit.org
Can do some functional
Run all tests with ant

Unit Tests

7

13

Acceptance Test Automation

Files full of facts...
Applied to a system of "fixtures"...
Encourage change

Productivity doesn't slow as system grows
Recorded scripts are murdered by change

XP Principles

14

Acceptance Test Automation

Customer enters data in spreadsheet, Word
table, other format that can be parsed

Test "fixture" reads data and inputs to
application backend

Record results, write out in html (visual cue
such as color)

Keeps business logic on server side, not in UI

XP Principles

8

15

Acceptance Test Creation
Spreadsheet Template for Customer Tests

16

iXP Test Tools

Enter test cases directly in XML
Tool to transfer spreadsheet data to XML

<input>
 <loan-amount>1000000000.00</loan-amount>
 <interest-rate>0.5</interest-rate>
 <term-of-loan>1200</term-of-loan>
 </input>
 <output>
 <monthly-payment>A big, fat wad of dough!</monthly-
payment>
 </output>

Acceptance Test Creation

9

17

iXP Test Tools

HTTP-based tool - WebART
Tool inputs test cases to WebART
Tool to convert result files to charts and

graphs

Automated Testing for Web Applications

18

iXP Test Tools

In-house tool "TestFactor-e"
Prompts user for repeatable test
Records pass or fail, comments
Detail and summary reports
Extending to input automatically

Automated Testing for GUI Applications

10

19

XP Acceptance Testing

When run, green bar or background for pass,
red for fail - visual feedback

Allow drill down for detail
Printed reports posted prominently

Acceptance Test Reports

20

XP Acceptance Testing

Concrete feedback about current state of
system

Helps team steer the project
Demonstrates business value of system
Promotes change

Acceptance Test Reports

The Need for Speed:
Automating Acceptance Testing in an Extreme Programming Environment

Lisa Crispin, Senior Test Engineer, iFactor-e

Contributors: Carol Wade, TRIP.com; Tip House, OCLC.org

"Extreme Programming, or XP, is a lightweight discipline of software development based
on principles of simplicity, communication, feedback, and courage. XP is designed for
use with small teams who need to develop software quickly in an environment of rapidly
changing requirements." Ron Jeffries, http://www.xprogramming.com.

What makes XP Extreme?

As Kent Beck says in Extreme Programming Explained, XP takes commonsense
principles and practices to extreme levels. For example: if testing is good, everybody
will test all the time (unit testing), even the customers (acceptance testing). Taking
anything to extremes can feel scary. While you or I might happily go skiing, we're not
likely to ski off the side of a cliff in the manner of Warren Miller. Extreme Programming
isn't about taking risks - it's about reducing risks and having fun. It takes courage, but the
rewards are immediate.

The XP practices we follow at iFactor-e include:
� pair programming
� test first, then code
� do the simplest thing that works (NOT the coolest thing that works!)
� 40-hour week
� refactoring
� coding standards
� small releases
� play the planning game

How is Testing in XP Different?

How does acceptance testing in an XP environment deviate from traditional software
testing? First of all, let's look at acceptance testing. XP authors prefer this term to
'functional' testing, as it better reflects how they are written and is more approachable to
customers. Acceptance tests prove that the application works as the customer wishes.
Acceptance tests give customers, managers and developers confidence that the whole
product is progressing in the right direction. Acceptance tests check each increment in the
XP cycle to verify that business value is present. Acceptance tests, the responsibility of
the tester and the customer, are end-to-end tests from the customer perspective, not trying
to test every possible path through the code (the unit tests take care of that), but
demonstrating the business value of the application.

Should I strap on a helmet and elbow pads?

Testing in an XP environment feels like a run through a half-pipe when you first try it,
turning the software development model on its head. The customer is allowed to change
her mind anytime. The XP techniques make sure the cost of making changes remain
constant throughout the life of project.

Testers may be dismayed at first by the lack of formal written requirements and
specifications. To produce small releases very quickly, XP minimizes written
documentation. The system is documented through the unit tests, acceptance tests and
the code itself. Customers may create mockups of screens and sample reports, but no
traditional specifications are written. Design is done primarily with a whiteboard.
Collective ownership, promoted by pair programming, reduces the need for written
documentation (Which usually is immediately out of date anyway!)

Question: How do you write acceptance test cases without documents?
Answer: You don't. This is the most dramatic way that XP acceptance testing varies from
the traditional software development process: In XP, the customer writes the acceptance
tests, assisted by the tester.

Other differences between traditional and XP development are more subtle. It's really a
matter of degree. XP projects move fast even when compared with the pace at the Web
startup where I used to work. It's like running a motocross race when you're accustomed
to a street bike. A new iteration of the software, implementing new customer "stories", is
released every one to three weeks. The customer must start writing acceptance tests at
the beginning of each iteration, as these are the only written "specifications" available.
Acceptance tests should run along with unit tests after each integration - which could be
several times a day.

From a tester's point of view, the developer to tester ratio in XP looks about as
comfortable as street luge. According to Kent Beck, there should be one tester for each
eight-developer team. At iFactor-e, the ratio is even higher.

Eeek! Are you SURE protective armor is not required?

Fear not! XP builds in checks and balances that enable a small percentage of test
specialists to do an adequate job of controlling quality.
� Becuse the developers write so many unit tests , which they must write before they

begin coding - the tester doesn't need to verify every possible path through the code.
� The developers are responsible for integration testing and must run every unit test

each time they check in code. Integration problems are manifested before acceptance
tests are run.

� The customer is responsible for writing and performing acceptance tests. Naturally,
the tester will need to guide the customer in this effort and just as naturally, the
customer will soon tire of manual testing and beg for help in the form of test
automation.

� The entire development team, not just the tester, is responsible for automating
acceptance tests. Developers also help the tester produce reports of test results so that

everyone feels confident about the way the project is progressing.

The roles of the players on an XP team are quite blurred compared with those in a
traditional software development process. Thus our iFactor-e XP ("iXP") philosophy is
"specialization is for bugs". Here are some of the tasks I perform as a tester:
� Help the customer write stories
� Help break stories into tasks and estimate time needed to complete them
� Help clarify issues for design
� Team with the customer to write acceptance tests
� Pair with the developers to code the application and the test tools
� Pair with the developers to code automated test scripts

Question: Wait a minute. The whole concept of pair programming sounds weird enough.
How can a tester pair with a programmer?
Answer: I'm not a Java programmer and our developers don't know the WebART
scripting language, but we still pair program. The partner who is not doing the actual
typing contributes by thinking strategically, spotting typos and even serving as a
sounding board for the coder. This is a fabulous way for developers and testers to
understand and work together better. It also gives the tester much more insight into the
system being coded.

Once you've mustered the courage to jump in to XP, the water's great.

How do I Educate Myself About XP?

Just as you wouldn't attempt to climb Mount Everest without preparing yourself with
months of intense training. the XP team needs good training to start off on the right path
and stay on it.

Start by reading the XP books. The first book on to be written on XP is Extreme
Programming Explained, by Kent Beck. It's a fascinating and quick read. Two new
books will be published in the fall of 2000, Extreme Programming Installed, by Ron
Jeffries, Ann Anderson, and Chet Hendrickson; and Planning Extreme Programming, by
Kent Beck and Martin Fowler.

You can get an overview and extra insight into XP and similar lightweight disciplines
from the many XP-related websites, including:
http://www.xprogramming.com
http://www.extremeprogramming.org
http://c2.com/cgi/wiki?ExtremeProgrammingRoadmap
http://www.martinfowler.com

When we at iFactor-e had assembled our first team of eight developers and a tester, we
got together and went through Extreme Programming Explained and Extreme
Programming Installed as a group, discussing each XP principle, recording our questions
(many of them on testing) and deciding how we thought we would implement each

principle. This took several hours but put us all on common ground and made us feel
more secure in our understanding of the concepts.

Once your team has read and discussed the XP literature, it's time to get professional
training. We hired Bob Martin of ObjectMentor, a consulting company with much XP
expertise, for two days of intense training (see www.objectmentor.com for more
information). After Bob answered all our questions, we felt much more confident about
areas that had previously been difficult for us to understand, such as the planning game,
automated unit testing and acceptance testing.

Don't stop there. Talk to XP experts. Look at the Wiki pages and sign up for the
egroups. If no XP user group has been formed in your city, start one.

Automating Acceptance Tests

What can you automate?

According to Ron Jeffries, author of XP Installed, successful acceptance tests are
customer-owned, comprehensive, repeatable, automatic, timely and produce results that
are known to everyone. The "automatic" criterion has given us trouble in some cases,
although our goal is to automate whenever it makes sense. Sometimes a mountain bike is
the best way up the hill; other times it's easier to get off and walk your bike. For
example, we haven't found a cost-effective way to automate Javascript testing. Also
we're struggling with how to automate non-Web GUI testing in an acceptable timeframe.
Even if we can't automate a test right away, we can make it comprehensive, repeatable
and timely, and we can publish our results.

Principles of iXP Test Automation

Automated acceptance tests at iFactor-e must meet the following criteria:
� Modular and self-verifying to keep up with the pace of development.
� Verify the minimum criteria for success. Because the unit tests are comprehensive,

we don't need to duplicate it in QA.
� Perform each function in one and only one place to minimize maintenance time.
� Contain modules that can be reused, even for unrelated projects
� Do the simplest thing that works. This XP value applies as much to testing as to

coding.

In addition, the developers try to design the software with testability in mind. This might
mean building hooks into the application to help automate acceptance tests. Push as
much functionality as possible to the backend, because it is much easier to automate tests
against a backend than through a user interface.

iXP Automated Test Design

Appendix A includes a diagram of the design I am using for testing Web applications.

I'm using WebART (see the Tools section below) to create and run the scripts. However,
this design should work with any method of automation that permits modularization of
scripts. Please see Appendix A for the details of this test design.

Who automates the acceptance tests?

Some sports appear to be individual, when in actuality, they involve a team. Winners of
the Tour de France get all the glory, but their victory represents a team effort. Similarly,
the XP team may have only one tester, but the entire team contributes to automating
acceptance tests. If tools are needed to help with acceptance testing in an XP project,
write stories for those tools and include them in the planning game with all the other
stories. You'll probably need to budget at least a couple of weeks for creating test tools
for a moderately size project.

In the early days of iFactor-e, we initiated a project for the specific purpose of developing
automated test tools. This had several advantages, in addition actually producing the
tools:
� Practice with XP writing stories, playing the planning game, estimating. This gave

us confidence in our XP skills that served us future projects.
� Practice with development technologies. Developers could experiment with

different approaches and get experience with new tools. For example, the developers
investigated in advance the advantages of using a dom versus a sax parser on the
XML files containing customer test data. Doing this in advance gave us more time to
experiment and research technologies than we might have had later with a client
project.

� Mutual understanding. The team tasked with producing an acceptance test driver
consisted of only four members and me, so I was called on to pair program. This
exercise gave me insight into how tough it is to write unit tests, write code and
refactor the code. The developers gave a lot of thought to acceptance testing and we
had long discussions about what the best practices would be. This is a great
foundation for any XP team.

Tools

Sky surfers don't leap out of the plane wearing any old parachutes purchased from a
discount store. They look for state-of-the-art harness and container systems, main and
reserve canopies, helmets and goggles, even altimeters, all designed with their particular
needs in mind. XP testers need a good toolbox too, one containing tools designed
specifically for speed, flexibility and low overhead.

I've asked several XP gurus, including Kent Beck, Ward Cunningham and Bob Martin,
the following question: "What commercial tools do you use to automate acceptance
testing?" Their answers were uniform: "Grow your own". Our team extensively
researched this area. Our experience has been that we are able to use a third-party tool
for Web application test automation, but we need homegrown tools for other purposes.

For unit testing, we use a framework called jUnit, which is available free from
http://www.junit.org. It does an outstanding job with unit tests. Even though I am not a
Java programmer, I can run the tests with jUnit's TestRunner and can even understand the
test code well enough to add tests of my own. It's possible to do some functional tests
with jUnit. Some XP teams use this tool for automating acceptance tests, but it cannot
test the user interface. We didn't find it to be a good choice for end-to-end acceptance
testing.

Tools for Creating Acceptance Tests

Some XP pros such as Ward Cunningham advocate the use of spreadsheets for driving
acceptance tests. This isn't a new idea. We want to make it easy for the customer to
write the tests, and most are comfortable with entering data in a spreadsheet.
Spreadsheets can be exported to text format, so that you and/or your development team
can write scripts or programs to read the spreadsheet data and feed it into the objects in
the application. In the case of financial applications, the calculations and formulas your
customer puts into the spreadsheet communicate to the developers how the code they
produce should work.

At iFactor-e, we provide a couple of ways for the customer to enter acceptance test cases.
Sometimes they work with me to enter test data and test case actions directly into an
XML format that is used by our acceptance test driver. If they prefer to use a
spreadsheet, we simply convert the spreadsheet into XML format later. We're currently
working to make these methods more user-friendly. See Appendix B for a sample
acceptance test spreadsheet template.

Appendix C shows a partial excerpt of a sample XML file used for acceptance test cases.
The customer enters a description of the test, data and expected output, steps with actions
to be performed and expected results.

Automated Testing for Web Applications

Test automation is relatively straightforward for Web applications. The challenge is
creating the automated scripts quickly enough to keep pace with the rapid iterations in an
XP project. Like a motocross racer, I'm zipping down hills and slogging through mud,
trying to keep up with the pack of developers. For that extra burst of speed, I use
WebART (www.oclc.org/webart), an inexpensive HTTP-based tool with a powerful
scripting language. WebART enables me to create modularized test scripts, creating
many reusable parts in a short enough timeframe to keep up with the pace of
development. Javascript testing presents a bigger obstacle. We test it manually and
carefully control our Javascript libraries to minimize changes and thus the required
retesting. Meanwhile, we continue to research ways of automating Javascript testing.

Our developers wrote a tool to convert test data provided by the customers in spreadsheet
or XML format into a format that can be read by WebART test scripts so that we can

automate Web application testing. Even small efforts like this can help you gain that
competitive edge in the speedy XP environment.

Automated Testing for GUI Applications

Test automation for non-HTTP GUI applications has been more of an uphill climb. You
can travel faster in a helicopter than a mountain bike, but it takes a long time to learn to
fly a helicopter; they cost a lot more than a bicycle and ou may not find a place to land.
Similarly, the commercial GUI automated test tools we've seen require a lot of resources
to learn and implement. They're budget breakers for a small shop such as ours. We
searched far and wide but could not come up with a WebART equivalent in the GUI test
world. JDK 1.3 comes with a robot that lets you automate testing of GUI events with
Java, but it's based on the actual position of components on the screen. Scripts based on
screen content and location are inflexible and expensive to maintain. We need tests that
give the developers confidence to change the application, knowing that the tests will find
any problems they introduce. Tests that need updating after each application change
could cause us to lose the race.

We felt that the most important criteria for acceptance tests is that they be repeatable,
because they have to be run for each integration. We decided to start by developing our
own tool, "TestFactor-e", that will help customers and testers run manual tests
consistently. It will also record the results. We're now enhancing this tool to feed the test
data and actions directly into application backends in order to automate the tests.

Reports

Getting feedback is one of the four XP values. Beck says that concrete feedback about
the current state of the system is priceless. An extreme skier constantly monitors snow
conditions, the course, his speed, the state of his equipment, all while keeping an ear out
for the avalanche that may be coming along behind him. He accommodates these factors
with changes in speed, trajectory and position. The XP team needs a constant flow of
information to steer the project, making corrections in mid-course just as the skier would.
The team's continual small adjustments keep the project on course, on time and on
budget. Unit tests give programmers minute-by-minute feedback. Acceptance test
results provide feedback about the "Big Picture" for the customer and the development
team.

Reports don't need to be fancy, just easy to read at a glance. A graph showing the
number of acceptance tests written, the number currently running and the number
currently succeeding should be prominently posted on the wall. You can find examples
of these in the XP books. Our development team wrote tools to read result logs from
both automated tests and manual tests run with "TestFactor-e". These tools produce
easy-to-read detail and summary reports in HTML and chart format.

With all this feedback, you’ll confidently deliver high-quality software in time to beat
your competition. You’ll meet the challenges of 21st century software development!

Appendix A: Test Design Description

Because this paper is so long I am not going to include code examples here. Contact me
at lisa.crispin@ifactor-e.com if you would like some sample WebART scripts.

Main Script
The main module calls the supporting module to perform a typical user
scenario and to validate the system responses at strategic points along the
way. A basic user scenario is created for each customer story. The
supporting modules are divided into several groups based on their function.
These modules are described below.

The main module passes to the supporting modules test cases from tables of
test data along with other parameters.

Sample basic user scenario:

Action Minimum Passing Criteria
1. Go to Add Entry page. Browser challenges for authentication.
2. Login. Valid userid/password does not get error.
3. Add a time entry using selected test
case (may be done with multiple users).

Form fields are on page at start.

After submit, still on Add screen (checks by text
and forms.

4. Go to Generate Reports page. Browser challenges for authentication

(Currently, because these are two separate
scripts, could be combined).

5. Login . Valid userID/password does not get error.
6. Generate a report for the date range
specified for the test case added in
Action 3.

Form fields are on generate reports page

After submitting, report contains correct text,
correct links back to generate page, and contains
the userID, release and iteration from the test
case added in Action 3.

7. Log out. Log out successful message displayed.

Interface Modules

Called by the main script module (and possibly other interface modules) to
perform user functions and to validate the correct system response. Some of
these modules such as start, login and exit can be used by multiple tests for
the same application. The main module passes parameters to the interface
modules as follows:

page loaded - An output parameter; it receives the value of the page loaded
by the module. For example, the start module loads the addEntry.jsp page.

page used - An input parameter; it is the handle of the page used by the
interface module to know what page to load.

test case data - An input parameter; it is data to be parsed by the interface
module and used for input or validation. For example, for a login module, the
test case consists of an userid and password .

validation clause - Tells the interface module how much validation to
perform. A value of STD indicates to do only the minimum validation;
extended validation options may be specified and added to STD.

outcome - An output parameter that receives a value of PASS or FAIL
indicating the overall outcome of the call.

Additional parameters may be used if needed (eg., more than one page needs
to be loaded).

Validation Modules

Called by interface modules to check for specific conditions in a system
response and return a pass or fail condition. The validation modules in turn
call utility modules to record the results. Parameters are:
results - An output parameter which returns PASS or FAIL to the calling
module

controls - An input containing values that control how the validation is
done, specific to each validation module.

response or handle - An input parameter containing either the system
response to be validated or the handle of the page into which the response
was loaded.

Currently, there are three validation modules that can be used by any test:
vtext validates that a response contains specified text. Parameters are:

result - PASS or FAIL

text - the text that must be present for the validation to pass

response - the system response to check for the text string.

vlink validates that a page contains a specific link. Parameters are:

result , urlMatch - the value which must exist in a link in the page
whose handle is in pPage

pPage - the page handle of the page being validated.

vform validates that a page contains a specified form. Parameters are:

result , formvars - one or more required variables for the form - if
any are missing, the validation fails.

 pPage - the page handle of the page being validated.

Utility Modules
Currently there are two utility modules which can be used by any test:
trace - Displays execution tracing information in the WebART execution
window. Called by interface and log modules. Without going into detail of the
many parameters, they reveal who called it and what happened.
log - Records validation outcomes in a log file. Parameters are:

type - detail or summary, outcome - PASS or FAIL

validation - describes the validation performed.

Appendix B: Sample Acceptance Test Spreadsheet Template

Appendix C: Partial Excerpt of XML Template for Acceptance Test
Cases

<?xml version="1.0" encoding="UTF-8" standalone="no" ?>

<!DOCTYPE at-test SYSTEM "at-test.dtd" [
 <!ELEMENT input ANY >
 <!ELEMENT loan-amount ANY >
 <!ELEMENT interest-rate ANY >
 <!ELEMENT term-of-loan ANY >
 <!ELEMENT output ANY >
 <!ELEMENT monthly-payment ANY >
]>

<at-test name="calc-monthly-payment" version="1.0" severity="CRITICAL">

 <at-project>mortgage-calc</at-project>

 <at-description>
 Enter loan amount, interest rate, term of loan (in months)
 to calculate monthly payment.
 </at-description>

 <at-data-sets>
 <at-struct id="values">
 <input>
 <loan-amount>1000000000.00</loan-amount>
 <interest-rate>0.5</interest-rate>
 <term-of-loan>1200</term-of-loan>
 </input>
 <output>
 <monthly-payment>A big, fat wad of dough!</monthly-payment>
 </output>
 </at-struct>
 </at-data-sets>

 <at-plan>

 <at-step name="populate-loan-amount">
 <at-action>
 <at-text>Enter "{0}" in the "Loan Amount field".</at-text>
 <at-value dset="values" select="/input[2]/loan-amount"/>
 </at-action>
 <at-expect>
 <at-text>Cursor moved to "Interest Rate" field for input.</at-text>
 </at-expect>
 </at-step>

 </at-plan>

</at-test>

QWE2000 Session 4A

Mr. Steve Littlejohn [UK]
(SIM Group Limited.)

"Test Environment Management -- A Forgotten Basic"

Key Points

Test Environments are a fundamental requirement for good testing. Their role in testing
methods and practices is misunderstood.

●

The move or integration of Legacy systems to other platforms has complicated rather than
improved the use of test environments - E-commerce has added to this complexity.

●

Data requirements fall in the gap between configuration management and test
management. Test environments need control, management principles, disciplines from
cradle to grave.

●

Presentation Abstract

This presentation is drawn from an extensive knowledge and background in test
environment use and requirements. All to often these valuable test assets are
ignored, abused or blamed for the poor quality of testing undertaken. This is not
limited to a particular platform or type of system, it is a problem over all testing from
Legacy to E-commerce. The presentation is based upon customer experiences and
uses detailed examples to show how the test environments directly affect the
effectiveness of testing and testing practices. It also explains how this could have
been prevented and how to implement test environment management.

Beginning with actual examples of the issues with test environments and their affect
on testing, the case for test environment management will be built. Otherwise good
solid testing practices have failed against the need for a test environment to test in.
Plans, scripts and data all tend to be managed and knonwn, test environments are
seen as the painful part of testing.

Legacy systems were problematic in terms of test environments and downsizing
became fashionable for many reasons. However, in the next examples this is shown
not to have improved the test environemnt situation but added extra complexity to
the environment requirements. The recent rise in E-commerce has added to the
burden of test environments.

Version Control is placed over times in environments, but not necessarily on the test
environment objects. Configuration management requirements are highlighted by
detailed examples explaining why this is a necessity for test environments.

QWE2000 -- Conference Presentation Summary

http://www.soft.com/QualWeek/QWE2K/Papers/4A.html (1 of 2) [9/28/2000 11:06:48 AM]

Data requirements are also largely ignored until the test cases demand that data is
made available. A search for data ensues or a creation process takes place - all of
which takes it's toll on the test environment. The data issues are explored with
detailed examples to illustrate how this vital component is underused.

To implement or renew test environmen management a course of action needs to be
in place. This is a suggested solution in order to achieve managed, controllable test
environments.

About the Speaker

Steve Littlejohn has been involved in the IT Industry for about 20 years. He has
worked in most IT roles from operations through to project management via
programming, analysis and design before specialising in testing for the past eight
years. With SIM Group he is a Senior Consultant and has worked on testing projects
for a variety of clients within many industry sectors. He has a special interest in the
techniques of test environment management and automation and their use with
automated testing.

QWE2000 -- Conference Presentation Summary

http://www.soft.com/QualWeek/QWE2K/Papers/4A.html (2 of 2) [9/28/2000 11:06:48 AM]

Gresham Computing November, 99

Company Confidential - for Internal use only 1

Test EnvironmentTest Environment
ManagementManagement

A Forgotten BasicA Forgotten Basic

Steve LittlejohnSteve Littlejohn
stevesteve@simgroup.co.uk@simgroup.co.uk

© 2000, SIM Group Ltd.

Test Environment ManagementTest Environment Management

Test Environment Management Disasters
Test Environments and the brave new World
Configuration Management - needs and wants
Test Environments vs Data Requirements
Test Environment Management - gaining control
Implementing Test Environment Management
Summary

Test Environment Management Disasters
Test Environments and the brave new World
Configuration Management - needs and wants
Test Environments vs Data Requirements
Test Environment Management - gaining control
Implementing Test Environment Management
Summary

Agenda

Gresham Computing November, 99

Company Confidential - for Internal use only 2

© 2000, SIM Group Ltd.

Test Environment Management -
Disasters, an illustration of what can
happen….

Test Environment Management -
Disasters, an illustration of what can
happen….

© 2000, SIM Group Ltd.

Test Environment ManagementTest Environment Management

Why Disaster?
A good environment is a fundamental requirement

For most any old environment will do

Developers do care but put up with what is available

Legacy systems on Mainframe always difficult

Tend to have been grown organically with applications development

Application integration and development “too involved and slow”

Environment maintenance ignored except by necessity

Unix, eCommerce - requirements “bolted on”

Environments available until live then disappear

Test Environments generally do not match target

Why Disaster?
A good environment is a fundamental requirement

For most any old environment will do

Developers do care but put up with what is available

Legacy systems on Mainframe always difficult

Tend to have been grown organically with applications development

Application integration and development “too involved and slow”

Environment maintenance ignored except by necessity

Unix, eCommerce - requirements “bolted on”

Environments available until live then disappear

Test Environments generally do not match target

Gresham Computing November, 99

Company Confidential - for Internal use only 3

© 2000, SIM Group Ltd.

Test Environment ManagementTest Environment Management

Example 1 - Legacy System, Mainframe
3 Test Environments

Development/Unit Test

System Test

User Acceptance

No version control or configuration management

Testing normally tried and abandoned after Unit Test

Batch processes run and abandoned if through program

User Acceptance environment only used by some

Production was the main test environment

Example 1 - Legacy System, Mainframe
3 Test Environments

Development/Unit Test

System Test

User Acceptance

No version control or configuration management

Testing normally tried and abandoned after Unit Test

Batch processes run and abandoned if through program

User Acceptance environment only used by some

Production was the main test environment

© 2000, SIM Group Ltd.

Test Environment ManagementTest Environment Management

Example 2 - Unix
Machines bought, network set up, according to size requirements

Package installed, configured for use

Customisation takes place

Testing becomes an issue, demands environments

Training becomes an issue, demands environments

Sized boxes not enough to meet demands

Environment sharing becomes a necessity and an issue

Performance, Load and Stress squeezed into last week

Many faults found with machine configuration

Example 2 - Unix
Machines bought, network set up, according to size requirements

Package installed, configured for use

Customisation takes place

Testing becomes an issue, demands environments

Training becomes an issue, demands environments

Sized boxes not enough to meet demands

Environment sharing becomes a necessity and an issue

Performance, Load and Stress squeezed into last week

Many faults found with machine configuration

Gresham Computing November, 99

Company Confidential - for Internal use only 4

© 2000, SIM Group Ltd.

Test Environment ManagementTest Environment Management

Example 3 - eCommerce
Requirement is to integrate to current platforms and data

Unix box sized and purchased

Application development partly outsourced

Security becomes an issue, cannot be tested due to environment

Performance, Load and Stress not seen as a requirement

Testing becomes nightmare

Integration to shared test environments reduces time available

Data available not good enough for application

Final realisation that different box required for live environment

Example 3 - eCommerce
Requirement is to integrate to current platforms and data

Unix box sized and purchased

Application development partly outsourced

Security becomes an issue, cannot be tested due to environment

Performance, Load and Stress not seen as a requirement

Testing becomes nightmare

Integration to shared test environments reduces time available

Data available not good enough for application

Final realisation that different box required for live environment

© 2000, SIM Group Ltd.

 People tend to overly concentrate on
hardware and infrastructure as opposed to
configuration management and data.

Gresham Computing November, 99

Company Confidential - for Internal use only 5

© 2000, SIM Group Ltd.

Test Environment ManagementTest Environment Management

General Test Environment Mistakes
No recognition of test environments importance

If recognised, no true assessment of the test requirements

Performance, Load and Stress testing is the prime example

“We bought way over size so performance will not be an issue”

“We can use the test box and extrapolate the results for live”

Poor use of version control, both source and environment objects

Configuration management piecemeal, if any

Source, Compatibility, Operating systems, Configuration parameters

Data - meta, static, input, parameters, sources of, integration

Files, Databases, Connectivity, Network, Constraints

General Test Environment Mistakes
No recognition of test environments importance

If recognised, no true assessment of the test requirements

Performance, Load and Stress testing is the prime example

“We bought way over size so performance will not be an issue”

“We can use the test box and extrapolate the results for live”

Poor use of version control, both source and environment objects

Configuration management piecemeal, if any

Source, Compatibility, Operating systems, Configuration parameters

Data - meta, static, input, parameters, sources of, integration

Files, Databases, Connectivity, Network, Constraints

© 2000, SIM Group Ltd.

Test Environment ManagementTest Environment Management

Test Environment Issues
Test Environments are an unrecognised neglected asset

Poor use made for testing, ignored until needed, quality suffers

Development teams incur cost to sort out, project delays

Become difficult to maintain or allowed to become out of date

Tests fail due to hidden issues, or date 6 years ago, quality suspect

Uncontrollable development bug analysis cost, project delays

Much time wasted in attempting to meet test requirements

Data unknown, new data added, data items “fudged” , quality suspect

Costs rise quickly, requirements not met, many bugs and delays

Test Environment Issues
Test Environments are an unrecognised neglected asset

Poor use made for testing, ignored until needed, quality suffers

Development teams incur cost to sort out, project delays

Become difficult to maintain or allowed to become out of date

Tests fail due to hidden issues, or date 6 years ago, quality suspect

Uncontrollable development bug analysis cost, project delays

Much time wasted in attempting to meet test requirements

Data unknown, new data added, data items “fudged” , quality suspect

Costs rise quickly, requirements not met, many bugs and delays

Gresham Computing November, 99

Company Confidential - for Internal use only 6

© 2000, SIM Group Ltd.

Test Environment ManagementTest Environment Management

Test Environment Issues
Package data integration not always known

Lack of knowledge leads to poor test requirements, quality poor

Package customisation error rise, increased development cost

Sizing only recognises production needs, testing an afterthought

Test environments shared, tests and time impacted, quality suffers

Testing “squeezed” to meet deadlines, heavy cost of Live bugs

Performance, Load and Stress not considered important

Hardware test requirements ignored as well Software, quality ????

If all configured correctly….timebomb ticking…..Cost of Failure???

Test Environment Issues
Package data integration not always known

Lack of knowledge leads to poor test requirements, quality poor

Package customisation error rise, increased development cost

Sizing only recognises production needs, testing an afterthought

Test environments shared, tests and time impacted, quality suffers

Testing “squeezed” to meet deadlines, heavy cost of Live bugs

Performance, Load and Stress not considered important

Hardware test requirements ignored as well Software, quality ????

If all configured correctly….timebomb ticking…..Cost of Failure???

© 2000, SIM Group Ltd.

Test Environment ManagementTest Environment Management

Test Environment Issues
Small sized environments restrict tests possible

Not always true, normally filled with previous data, quality suspect

Best use not made, much data development at extra cost, delays

Internal or external system connectivity not available

Tests “checked” by file formats or similar, quality suspect

Problems arise, extra development costs occur, many Live bugs

Automation fails most often due to the test environment

Automation use restricted, becomes niche tool, quality poor

Expensive tools used by a few, shelfware, high license fees

Test Environment Issues
Small sized environments restrict tests possible

Not always true, normally filled with previous data, quality suspect

Best use not made, much data development at extra cost, delays

Internal or external system connectivity not available

Tests “checked” by file formats or similar, quality suspect

Problems arise, extra development costs occur, many Live bugs

Automation fails most often due to the test environment

Automation use restricted, becomes niche tool, quality poor

Expensive tools used by a few, shelfware, high license fees

Gresham Computing November, 99

Company Confidential - for Internal use only 7

© 2000, SIM Group Ltd.

Test Environments -
the Brave New World
Test Environments -
the Brave New World

© 2000, SIM Group Ltd.

Test Environment ManagementTest Environment Management

Downsizing Pains while Growing
Non Mainframe platforms “Cheaper, Better, Faster”

Unix/PCs - Don’t need Sys Progs, DBAs, Analysts, Programmers

Need other specialists - Unix, Network, PCs, DBAs!!!

Standards not required -

“It’s a PC - standards don’t apply”

“It’s a Unix box - we don’t need that stuff”

Project Lifecycles changed

Waterfall, CASE, RAD - Methodologies became fashionable!!!

All ignored testing and environments!!!!

Downsizing Pains while Growing
Non Mainframe platforms “Cheaper, Better, Faster”

Unix/PCs - Don’t need Sys Progs, DBAs, Analysts, Programmers

Need other specialists - Unix, Network, PCs, DBAs!!!

Standards not required -

“It’s a PC - standards don’t apply”

“It’s a Unix box - we don’t need that stuff”

Project Lifecycles changed

Waterfall, CASE, RAD - Methodologies became fashionable!!!

All ignored testing and environments!!!!

Gresham Computing November, 99

Company Confidential - for Internal use only 8

© 2000, SIM Group Ltd.

Test Environment ManagementTest Environment Management

The Rise of the Internet and eCommerce
Early Websites became advertisement for Companies

Basic information and contacts details, not integrated

Normally single Server to keep isolated

Next level gave more information

Integrated to some systems - product and price info

Fill in order form and receive goods and invoice

Now we have eCommerce...

Fully integrated systems with up to date information

Credit card transaction, credit checking facilities

Multi-Server system, 24 hour, 7 days a week availability

The Rise of the Internet and eCommerce
Early Websites became advertisement for Companies

Basic information and contacts details, not integrated

Normally single Server to keep isolated

Next level gave more information

Integrated to some systems - product and price info

Fill in order form and receive goods and invoice

Now we have eCommerce...

Fully integrated systems with up to date information

Credit card transaction, credit checking facilities

Multi-Server system, 24 hour, 7 days a week availability

© 2000, SIM Group Ltd.

Test Environment ManagementTest Environment Management

Test Environments during this time...
Easy in early days…

Simple Server, run the tests using the limited data required

Security, Performance and Availability not seen as issues

Next generation

Security becomes the issue, environments difficult for testing

Performance testing raised in profile, again difficult to test

eCommerce requirements...

Environment with internal and external interfaces

Multi-Servers required, ability to test as Developer and Client

Security and Performance test capability a must

Test Environments during this time...
Easy in early days…

Simple Server, run the tests using the limited data required

Security, Performance and Availability not seen as issues

Next generation

Security becomes the issue, environments difficult for testing

Performance testing raised in profile, again difficult to test

eCommerce requirements...

Environment with internal and external interfaces

Multi-Servers required, ability to test as Developer and Client

Security and Performance test capability a must

Gresham Computing November, 99

Company Confidential - for Internal use only 9

© 2000, SIM Group Ltd.

Test Environment ManagementTest Environment Management

The Future (is already here!!!)
WAP Technology

Systems already developed

Test Environment is a mobile phone!!

Palmtops

Requirement for more systems to interface

Web enabled and Physical linkages required

Test environment is a hand held box!!

Next hardware technologies - watches, wrist commands etc..

Test environment management principles still apply

The same mistakes will be made!!

The Future (is already here!!!)
WAP Technology

Systems already developed

Test Environment is a mobile phone!!

Palmtops

Requirement for more systems to interface

Web enabled and Physical linkages required

Test environment is a hand held box!!

Next hardware technologies - watches, wrist commands etc..

Test environment management principles still apply

The same mistakes will be made!!

© 2000, SIM Group Ltd.

Test Environments -
Configuration Management
Needs and Wants

Test Environments -
Configuration Management
Needs and Wants

Gresham Computing November, 99

Company Confidential - for Internal use only 10

© 2000, SIM Group Ltd.

Test Environment Management
- Environment Contents
Test Environment Management
- Environment Contents

Isolation from development
and live environments

Programs / executablesPrograms / executables

Files

Test Data

ParametersBatch Jobs
and Schedules

Problem,change
& release CONTROL

Reference
Data Databases

Space allocations

New names
& locations

Networks

Operating
Systems

Servers
PCs

© 2000, SIM Group Ltd.

Test Environment ManagementTest Environment Management

Test Environment Creation
Much more technical exercise on today’s Client/Server systems

Many more factors to control, configure and record

Setting up of Production environment copy not a necessity

Number of Servers reduced, Hard drive capacity reduced

Limited PCs available, “standard” PCs or found in corner

No “clean” environment with Production desktop configuration

Performance testing always an issue in today’s systems

Configuration recorded?

Not always, if an element fails, could be no method of reproduction

Management systems not seen as a necessity

Test Environment Creation
Much more technical exercise on today’s Client/Server systems

Many more factors to control, configure and record

Setting up of Production environment copy not a necessity

Number of Servers reduced, Hard drive capacity reduced

Limited PCs available, “standard” PCs or found in corner

No “clean” environment with Production desktop configuration

Performance testing always an issue in today’s systems

Configuration recorded?

Not always, if an element fails, could be no method of reproduction

Management systems not seen as a necessity

Gresham Computing November, 99

Company Confidential - for Internal use only 11

© 2000, SIM Group Ltd.

Test Environment ManagementTest Environment Management

Configuration Management
Normally stops at the Executable objects

Version Control system available

Each department then has a method of recording configuration

Networks

Databases

PC Support

Unix Support

Configuration recorded?

Data requirements tend to be ignored

No overall management or control, departments independent

Configuration Management
Normally stops at the Executable objects

Version Control system available

Each department then has a method of recording configuration

Networks

Databases

PC Support

Unix Support

Configuration recorded?

Data requirements tend to be ignored

No overall management or control, departments independent

© 2000, SIM Group Ltd.

Test Environment ManagementTest Environment Management

Management Requirements
Overall Configuration Management system

Provide the ability to reproduce the complete environment

Improved ability to understand the environment

Improved ability to troubleshoot environment problems

Centrally recorded, available to all

Importance of Configuration understood

Better basis for obtaining correct test environments

Test Requirements more able to be met

Test Kit recognised as needed current rather than old

Impact of change can be readily identified

Management Requirements
Overall Configuration Management system

Provide the ability to reproduce the complete environment

Improved ability to understand the environment

Improved ability to troubleshoot environment problems

Centrally recorded, available to all

Importance of Configuration understood

Better basis for obtaining correct test environments

Test Requirements more able to be met

Test Kit recognised as needed current rather than old

Impact of change can be readily identified

Gresham Computing November, 99

Company Confidential - for Internal use only 12

© 2000, SIM Group Ltd.

Test Environments -
Data Requirements
Test Environments -
Data Requirements

© 2000, SIM Group Ltd.

Test Environment Data Requirements
High Coverage Test data

Base Test Data

Specific Test Conditions

Manageable Volumes of data

Responsive to project testing time frames

Able to support each level of testing

Ability to back-up/restore

Data must have integrity

Internal and External data interfaces

Test Environment Data Requirements
High Coverage Test data

Base Test Data

Specific Test Conditions

Manageable Volumes of data

Responsive to project testing time frames

Able to support each level of testing

Ability to back-up/restore

Data must have integrity

Internal and External data interfaces

Test Environment ManagementTest Environment Management

Gresham Computing November, 99

Company Confidential - for Internal use only 13

© 2000, SIM Group Ltd.

Test Environment ManagementTest Environment Management

Data Requirements for Test Environments
High Coverage of test conditions

Need to know data vs. condition

Need data matched to the testing need

Ability to vary quantity to the testing need

Ability to back-up/restore

Ability to refresh when required

Able to set dates for particular run scenarios

Data Requirements for Test Environments
High Coverage of test conditions

Need to know data vs. condition

Need data matched to the testing need

Ability to vary quantity to the testing need

Ability to back-up/restore

Ability to refresh when required

Able to set dates for particular run scenarios

© 2000, SIM Group Ltd.

Unit testing

System testing

UAT

Pre-Production testing

Performance testing

➨ Real test cases

➨ Integrity of data

➨ Real business scenarios

➨ Real environments

➨ Real volumes

More on Test Data….

Full copies of Production unmanageable
Difficult to add or maintain each time
Meeting these needs is where management is applied

More on Test Data….

Full copies of Production unmanageable
Difficult to add or maintain each time
Meeting these needs is where management is applied

Test Environment ManagementTest Environment Management

Gresham Computing November, 99

Company Confidential - for Internal use only 14

© 2000, SIM Group Ltd.

Test Environment Management -
Gaining Control
Test Environment Management -
Gaining Control

© 2000, SIM Group Ltd.

Test Environment ManagementTest Environment Management

Gain Control of what?
Gain understanding first

Test Environments vs. Production environment
Configuration - Quantify differences, which are important?
Interfaces available and required-

Data
Purpose, Content and volume -
Sources
Integration

Applications
Objects associated
Relational integrity rules - Data or Application?

Gain Control of what?
Gain understanding first

Test Environments vs. Production environment
Configuration - Quantify differences, which are important?
Interfaces available and required-

Data
Purpose, Content and volume -
Sources
Integration

Applications
Objects associated
Relational integrity rules - Data or Application?

Gresham Computing November, 99

Company Confidential - for Internal use only 15

© 2000, SIM Group Ltd.

Test Environment ManagementTest Environment Management

Gaining Control
Determine boundaries of applications

Determine the data flow through applications

Understand how the application works

DOCUMENT ALL YOU HAVE FOUND!!!!

Gaining Control
Determine boundaries of applications

Determine the data flow through applications

Understand how the application works

DOCUMENT ALL YOU HAVE FOUND!!!!

© 2000, SIM Group Ltd.

Test Environment Management -
Implementation
Test Environment Management -
Implementation

Gresham Computing November, 99

Company Confidential - for Internal use only 16

© 2000, SIM Group Ltd.

Test Environment ManagementTest Environment Management

So what is missing?
Test Environment Management is a new role, part of test culture

The culture should ensure the environments are

Refreshable

Maintainable

Up to date

Flexible

Integrated

Data requirements must be able to be met

Configuration management is a must for all objects

Project Team time on environments is too costly

So what is missing?
Test Environment Management is a new role, part of test culture

The culture should ensure the environments are

Refreshable

Maintainable

Up to date

Flexible

Integrated

Data requirements must be able to be met

Configuration management is a must for all objects

Project Team time on environments is too costly

© 2000, SIM Group Ltd.

Test Environment ManagementTest Environment Management

First Steps, Environment basics
Ensure all databases and files are latest configuration

Remove all data that is superfluous

Refresh Reference and Static data

Add interfaces required

Test the environment, back-up/restore procedures

Automate the processes for the above wherever possible

Seek a Project requiring an environment

Source the required data for the testing needs

Deliver the environment

This becomes your test for best process

First Steps, Environment basics
Ensure all databases and files are latest configuration

Remove all data that is superfluous

Refresh Reference and Static data

Add interfaces required

Test the environment, back-up/restore procedures

Automate the processes for the above wherever possible

Seek a Project requiring an environment

Source the required data for the testing needs

Deliver the environment

This becomes your test for best process

Gresham Computing November, 99

Company Confidential - for Internal use only 17

© 2000, SIM Group Ltd.

Test Environment ManagementTest Environment Management

Implement Best Process
For Data Refresh and Maintenance

For Data Identification for Test Requirements

To build the test environment

To provide data volume scalability

For Environment Maintenance

To provide estimates, and fit into Project Lifecycle

Automate Processes wherever possible
Provides an easy method to build, populate and refresh

Gives greater control to manage environments

Implement Best Process
For Data Refresh and Maintenance

For Data Identification for Test Requirements

To build the test environment

To provide data volume scalability

For Environment Maintenance

To provide estimates, and fit into Project Lifecycle

Automate Processes wherever possible
Provides an easy method to build, populate and refresh

Gives greater control to manage environments

© 2000, SIM Group Ltd.

SummarySummary

Gresham Computing November, 99

Company Confidential - for Internal use only 18

© 2000, SIM Group Ltd.

SummarySummary

New platforms have not improved Test
Environment use, control and management
The importance of the Test Environment has been
largely overlooked in the race to develop
Implementation of Automation fails most often
due to poor or shared test environments
Configuration Management is necessary for all
objects associated with a Test Environment
Data content and integration must be known to
fulfil the test requirements
Test Environment Management frees the Project
Team, makes assets reusable, reduces costs

New platforms have not improved Test
Environment use, control and management
The importance of the Test Environment has been
largely overlooked in the race to develop
Implementation of Automation fails most often
due to poor or shared test environments
Configuration Management is necessary for all
objects associated with a Test Environment
Data content and integration must be known to
fulfil the test requirements
Test Environment Management frees the Project
Team, makes assets reusable, reduces costs

QWE2000 Session 4I

Mr. Adrian Cowderoy
(ProfessionalSpirit Limited)

Complex WebSites Cost More to Maintain- Measure
the Complexity of Content

Key Points

Maintenance cost reduction●

Development Planning●

Change-rate control●

Presentation Abstract

The proposed paper addresses the use of metrics and measures that describe the
complexity and size of the different types of content within web-sites, for web-sites
that are content rich.

These measures serve short-term commercial needs, such as:

- Maintenance cost reduction. Complexity measures provide indications of which
digital objects are likely to be difficult to maintain. (The cost of maintenance for
websites is typically 50-200% of the original development cost, and can be many
times the cost of the original project.) Often high-risk objects can be designed
differently, or documented better.
- Development planning. Simple size measures are useful for allocating work
between the team. Complexity measures (and technical quality requirements)
indicate the level of skills, testing and quality improvement methods that are needed.
- Change-rate control. Externally visible size and complexity measures are needed
for defining the size of the product, so that subsequent major change-requests are
charged separately.

Measures are also useful for giving crude indications of cost (such as via
analogy-based estimation) and for simple benchmarks (such as to assess whether
there is a significant difference resulting from the introduction of a new tool).
However there is so much volatility in the development process, and so many
uncontrolled influencing factors, that estimation and benchmarking are unreliable
processes.

Web-sites consist of both content and functionality. The quantity and complexity of
the content is typically the main cost driver in many software projects. Software is
generated automatically from HTML editors, graphics tools and movie/animation

QWE2000 -- Conference Presentation Summary

http://www.soft.com/QualWeek/QWE2K/Papers/4I.html (1 of 3) [9/28/2000 11:08:32 AM]

editors. Further (relatively simple) code may be added by staff who are not
professional programmers. The effort to assemble the code is small, but the effort for
testing and correction can be considerable. (A persistent problem with these tools is
that the reliability and performance of their embedded code, such as in browser
plug-in’s, constrains the reliability and performance of the final product.)

Some web-sites involve also major software components - e.g. e-commerce sites.
Such projects tend to perform overlapping projects, one for the software component
and the other for the content, followed by a period of system integration. There are
significant differences in the software and content development processes and skills.
This paper addresses content development - the use of size and complexity for
software is covered by the software industry.

The paper introduces different sets of size measures for each of the main concurrent
activities within a web-development project. Table 1 below gives some examples of
complexity and size measures for different types of digital object.

About the Speaker

Adrian Cowderoy is Managing Director of the Multimedia House of Quality Limited, a
company which he established to promote quality-improvement methods for the
production of websites and multimedia.

Mr Cowderoy was the General chair of ESCOM-SCOPE-99 and
ESCOM-ENCRESS-98 conferences, and was Program chair for ESCOM 96 and 97
(The European Software Control and Metrics conference promotes leading-edge
developments in industry and research, worldwide û see www.escom.co.uk). He is
the METRICS-ESCOM Coordinator for IEEE METRICS 2001 and was on the
Program committee of Metrics 98 and 99, European Quality Week 99 and
COCOMO/SCM 96-99. In 1998 he was acting Conference Chair of the Electronics
and Visual Arts conference in Gifu, Japan. He is a registered expert to the European
Commission DGXIII.

He has provided consultancy and industrial training courses on quality management,
risk management, and cost estimation to the aerospace and medical industries in the
UK, Germany and Italy since 1995. He also lectures at Middlesex University
(www.mdx.ac.uk) on e-commerce project management and managing Internet
start-up's, and at City University, London (www.city.ac.uk), on project management
for systems development.

Mr Cowderoy was project manager and technical director of MultiSpace, a 14-month
million-dollar initiative sponsored by the European Commission in which 12
European organizations explored the potential to apply quality-improvement methods
to multimedia and website development projects. (See www.mmhq.co.uk/multispace
and www.cordis.lu/esprit.)

He was a Research fellow at City University from 1990-1998, and a Research
Associate at Imperial College from 1986-1989. He was also a quality consultant and
software developer at International Computers Limited, UK, from 1980-1985, where

QWE2000 -- Conference Presentation Summary

http://www.soft.com/QualWeek/QWE2K/Papers/4I.html (2 of 3) [9/28/2000 11:08:32 AM]

he worked on operating and networking systems for mainframes and distributed
systems.

His academic qualifications include an MSc in Management Science from Imperial
College, University of London in 1986, and is a member of the Association of MBA's.
He received a BSc in Physics with Engineering from Queen Mary College, University
of London, in 1979.

Mr. Cowderoy has published and presented extensively on multimedia quality and
software cost estimation. He was joint editor of Project Control for 2000 and Beyond
(Elsevier, 1998), Project Control for Software Quality (Elsevier, 1999), and Project
Control: The Human Factor (Elsevier, 2000).

QWE2000 -- Conference Presentation Summary

http://www.soft.com/QualWeek/QWE2K/Papers/4I.html (3 of 3) [9/28/2000 11:08:32 AM]

1

Copyright © ProfessionalSpirit Ltd., 2000

“Complex websites
cost more to

maintain”
QWE2000, page 1

PROFESSIONALSpirit

Complex websites
cost more to maintain

Adrian Cowderoy

Presented at Quality Week Europe, Brussels, 2000
Copyright © ProfessionalSpirit Ltd 2000

PROFESSIONALSpirit

Copyright © ProfessionalSpirit Ltd., 2000

“Complex websites
cost more to

maintain”
QWE2000, page 2

PROFESSIONALSpirit Background

• Web-sites
• functionality (e.g. Java, Lingo, etc)
• content/assets(e.g. pictures, text, movies)
• mixed elements (from application

generators)

• History
• Research: MultiSpace project

(EP23066)
• Development: MMHQ
• Community: at ProfessionalSpirit

• Influences
• Software Metrics Fenton & Pfleeger
• GQM Basili & Rombach
• FP’s Albrecht & Gaffney

2

Copyright © ProfessionalSpirit Ltd., 2000

“Complex websites
cost more to

maintain”
QWE2000, page 3

PROFESSIONALSpirit Motivation

Use of size metrics for Software
• for cost estimation
• for benchmarking
• for improving designs

… and for Content
• some different problems to solve

Copyright © ProfessionalSpirit Ltd., 2000

“Complex websites
cost more to

maintain”
QWE2000, page 4

PROFESSIONALSpirit Motivation for web-sizing

• Identify high-risk components
• complex structures, extreme size, unusual

combinations

• Costing project changes
• charge-rate for changes, subject to

constraints

• Identify poor usability
• indicators of poor operability

Also
• task scheduling
• analogy-based estimates
• evaluation of new tools
• research

3

Copyright © ProfessionalSpirit Ltd., 2000

“Complex websites
cost more to

maintain”
QWE2000, page 5

PROFESSIONALSpirit Asset types

• Logical structure
• Formatted text and hypertext
• Data content within databases
• Images

• including bitmaps, vectors, rendered 3D

• Audio
• Interactive Movies

• including animation, interactivity

Also Interactive 3D, Motion, Smell,
Physiological

Copyright © ProfessionalSpirit Ltd., 2000

“Complex websites
cost more to

maintain”
QWE2000, page 6

PROFESSIONALSpirit Types of measure

• Primary size measure
• main indicator of cost

• Complexity of an asset or asset
component
• indicates maintenance difficulty or

increased development cost

• Cohesive complexity
• indicates interaction between assets

• Extent of interactivity
• functional component within the asset

+ Classification schemes that allow
distinctions

4

Copyright © ProfessionalSpirit Ltd., 2000

“Complex websites
cost more to

maintain”
QWE2000, page 7

PROFESSIONALSpirit Measures

• Quality of Metrics
• relevance, consistency, precision,

learnability, cost

• Aggregation
• total size for identical elements
• need warning when aggregation is invalid

(e.g. from different complexity, different
classes)

• Derived measures
• combine 2 or more measures into a single

measure
• high utility, but very difficult to achieve

reliably
- example on next page

Copyright © ProfessionalSpirit Ltd., 2000

“Complex websites
cost more to

maintain”
QWE2000, page 8

PROFESSIONALSpirit Example, for website structure

“If more microsites than pages,
then technical integration may be

difficult”

“If there is high density of external hyperlinks,
then maintenance costs will be higher”

“If long sentence with long words (Fog Index)
then rewriting sentence”

“If big image sizes with multiple layers
then compression is likely to be

inefficient”

“If library size is much larger than sprite count,
then exceptional learning and

maintenance”

5

Copyright © ProfessionalSpirit Ltd., 2000

“Complex websites
cost more to

maintain”
QWE2000, page 9

PROFESSIONALSpirit Choosing what to measure

• Choose what to improve

• Choose what to measure

• Choose how much to measure

• Choose when to measure

Copyright © ProfessionalSpirit Ltd., 2000

“Complex websites
cost more to

maintain”
QWE2000, page 10

PROFESSIONALSpirit Choose WHAT to improve
Identify complex objects -

they require more testing, and
they can be difficult to maintain and extend.

Identify exceptionally large objects -
check to see the technical problems that may occur,
plan to how to allocate the staff, and
ensure there is sufficient design and maintenance
documentation, and the files are properly catalogued.

Identify expensive components -
measure their costs accurately,
identify the risks of changed needs,
identify how late the purchase can be made, and
identify the copyright and legal issues.

6

Copyright © ProfessionalSpirit Ltd., 2000

“Complex websites
cost more to

maintain”
QWE2000, page 11

PROFESSIONALSpirit Example for “graphics design”

• Exceptional size comes from an exceptional
number of delivered_images and
image_composites, especially when there are
constraints on browser_compatibility,
language_count and rigour.

• Testing effort is increased by demands on
browser_compatibility, language_count and
rigour.

• Problems with acceptance of the final
product may occur if there is high rigour and
the source_of_image is outside the
developers control.

• Maintenance is effected by the number of
image_composites compared to the
image_size.

Copyright © ProfessionalSpirit Ltd., 2000

“Complex websites
cost more to

maintain”
QWE2000, page 12

PROFESSIONALSpirit Choose how much to measure

• Risk to quality

• Risk to schedule

• Process stability

• Technology stability

• Personal motivation

7

Copyright © ProfessionalSpirit Ltd., 2000

“Complex websites
cost more to

maintain”
QWE2000, page 13

PROFESSIONALSpirit Choose when to measure

• Initial target

• Design completion

• First demonstration prototype

• Asset delivery

• Project completion

Copyright © ProfessionalSpirit Ltd., 2000

“Complex websites
cost more to

maintain”
QWE2000, page 14

PROFESSIONALSpirit Summary

• Content size is measurable

• Many complexity and structure
measures

• Measurement is feasible

• Status
• enough exists for practical uses
• opportunities for research, modelling and

tools

8

Copyright © ProfessionalSpirit Ltd., 2000

“Complex websites
cost more to

maintain”
QWE2000, page 15

PROFESSIONALSpirit Web-activity

www.mmhq.co.uk/my-complexity
• size and complexity measures
• what to measure for specific
• examples

• contact: adrian.cowderoy@professionalspirit.com

Related topics
www.mmhq.co.uk/my-quality … web

quality
www.mmhq.co.uk/multispace …

project results
www.emmus.org … web usability

Complex website cost more to maintain

Adrian Cowderoy

PROFESSIONAL Spirit

Web-site content can be characterised in terms of size, element complexity, coherence and
exceptions. Appropriate measures can be defined for all the common types of digital asset.
These measures are available for use throughout the lifecycle.

A measurement plan for projects can be derived from a variant of GQM, the information that
can meaningfully be provided by different activities, and the extent to the tolerance of the key
development staff.

The use of complexity and size for improving website costs and quality has similarities to that
for software development, however the detail and emphasis differs at almost every point.

1. Introduction

In developing the website and software for ProfessionalSpirit, we recognised from the start the
importance of controlling project costs for the content-development activities as well as the
software. To achieve this we use measures of size and complexity, adopting principles
developed in the software industry by Fenton (for software metrics definition) and by Basili
and Rombach (for Goal Question Metrics definition) [1][2]. The work also builds on the
quality-oriented framework developed by MultiSpace (project EP23066 in the EU ESPRIT
programme) [3]. Lists and supporting information can be found at the MMHQ website,
http://www.mmhq.co.uk/my-complexity/

The paper begins by addressing the business objectives for size and complexity measures. The
categorisation and measurement processes are then described. This is followed by a procedure
for developing a measurement plan. Three case studies are presented. Finally there is a
discussion, in comparison to the example set by the software industry.

Table 1: website terminology used in this paper

Content – all the elements of the website which contain no functionality, as in simple HTML
pages. JavaScript, Lingo, etc, add functionality to page and movie content.

Assets –images, narrative, movies, etc, which collectively comprise the content.

Storyboard – the sequence of narrative and interactive events within each scene of a
movie/animation, defined against the frame number.

Asset-component – a subdivision of an asset that is only accessible to its developer.

Lifecycle – website development involves parallel development of different types of asset,
often with prototyping, and concluding with overall integration.

Complex website cost more to maintain
Adrian Cowderoy, PROFESSIONAL Spirit page 2

2. The business objectives

Basili and Rombach recommend that the effort to regularly collect measures of size and
complexity must be justified by business questions, relating to business goals. For website
production, our experience is that there are three major issues that effect most projects, and
several secondary ones.

2.1. Identify high-risk components

The creation of a web-site can consume enormous resources from companies and
organisations. Corrective and adaptive maintenance costs at least a third of the lifecycle costs,
and often two-thirds. For continually changing websites the cost is even higher.

A complex website structure can increase maintenance costs considerably. Consequently every
area of complexity in a website is a potential project risk. This paper presents measures that
can be used to highlight unusual complexity in a digital asset. Such “high-risk” assets tend to
benefit from careful monitoring, the assignment of skilled staff for development, and the use of
more detailed testing. It may even be appropriate to rebuild the asset using less complexity.

Complexity also exists in the software component of websites. For e-commerce websites the
costs and complexities can be considerable, but for most websites software represents only
10% of the project costs. This paper focuses on content, and the limited amounts of
functionality resulting from code generation (as in JavaScript for rollovers) and from the
relatively simple programming functions included in animation and movie applications (such
Macromedia Flash and Director). Software complexity is dealt with elsewhere.

2.2. Costing project changes

The development of any website typically involves several iterations in which styles, graphics
and content change. The cost for a limited amount of quality-enhancement is typically included
in the budget, but to keep the project cost under control, the contract usually fixes the size (as
illustrated in Table 2). Clients who later request major changes and extensions must re-
negotiate the contract. Not only does this add further delay (in addition to that from the
extensions), but it puts the client in a very weak position contractually.

A solution is to specify in the original contract a charge-rate for changes, subject to specific
conditions being met. To achieve this effectively, suitable measures are needed for size and for
each of the specific conditions. Table 3 gives an example.

Table 2: example of a traditional method of fixing the size of a web-site

Type Measure and specification

Static pages • Number of pages.

• Specified nature of each page (i.e. type of assets it contains).

• Structure of website.

Movies and sound • Total duration.

• Nature of each movie/sound element.

Complex website cost more to maintain
Adrian Cowderoy, PROFESSIONAL Spirit page 3

• Specified nature of the required interactivity.

Table 3: basis for contract for late changes to the static pages in a website

Charge rates Conditions

€ /page

(for new page or
respecified_page)

+

€ for disruption
cost

• Request made after prototype #1.

• Extension to project deadline of twice the delay currently implied by
the product size and project duration. Also a 1-week delay for
reviewing, plus delays from re-negotiating the contract.

• No change to quality requirements.

• Complexity of each element is similar to before.

• Costs of further bought-in assets are covered by the client.

• The external risks to the project are not increased by the change.

2.3. Identify poor usability

Surveys conducted by the MultiSpace project (two using questionnaires and a third via
interviews) revealed that almost every designer and project manager in multimedia and web
production had usability as a high concern. These concerns can be typified by the questions:

• Is it difficult to get started?

• Is the interface quick and efficient?

• Is it difficult to get lost?

• Have ugly features been avoided?

Size and complexity measures can be used to indicate poor usability. These are only symptoms
of poor usability, not proof, but they have the benefit of being available early in the
development process, when it is still relatively easy to change the product.

2.4. Secondary business objectives

In addition to the three business objectives above, there are other uses for size and complexity
measures, as shown in the bullet list below. If the information is currently available, these
secondary objectives can be satisfied, however it is seldom possible to justify the collection of
further data based only on the secondary business objectives.

• Task scheduling. Simple size measures provide indications of the relative length of each of
the development tasks within the content production. Complexity measures indicate the
skill levels required to build the digital assets. Increases in complexity or size compared to
the original outlines, indicates a risk-to-schedule.

• Analogy-based estimates. Costing of website development effort can be made against an
analogous project, with the differences in size treated as a proportional increase in cost.
Differences in complexity indicate that the estimate may be wrong. (In some cases it may
also be possible to estimate the cost-impact of a change in complexity.)

Complex website cost more to maintain
Adrian Cowderoy, PROFESSIONAL Spirit page 4

• Evaluation of new tools. New graphics and authoring tools often allow considerable
increases in the complexity that can be handled by the same staff within a similar timescale.
Some tools provide a considerable productivity improvement for routine adjustments and
conversions. Such performance improvements can be measured. Performance changes are
also important for tools that involve rendering animations, where exhaustive computing
power is used – the effect of differences in complexity can lead to designs that reduce the
computing requirements.

• Research. Size and complexity measures can contribute to our understanding of the
dynamics of website development. Potentially tasks that have repeatable processes could be
supported by locally-calibrated effort estimation models akin to those used in the
construction and software industries [5].

In addition, each organisation may have further business goals that are not listed above.

3. Characterisation of the features

The different types of digital asset used within websites each requires different measures of
size and complexity, as indicated in Table 4 below. The list of different asset-types used by
MMHQ is adapted from the list published by the MultiSpace project [3].

Size and complexity measures can be defined for each of these asset-types. These measures
describe internal characteristics of the components that provide indicators of some features of
quality (as in the example of maintainability), but not are conclusive evidence. There are also
many quality features that are not described by size and complexity [6].

Table 4: different types of asset used in websites

Asset-type Definition

Web-site structure Logical structures applied to the website. (Websites can be supported by
multiple hierarchies, linear storyboards, and more.)

Hypertext Formatted text and hyperlinks to other pages (in addition to the links
implied by the web-site structure).

Database contents Data content within databases (as in e-commerce websites). Also papers
and presentations within libraries (as at the ESCOM website).

Images Graphics design work. Includes bitmaps, vector graphics and rendered
images. Also includes banners that have no storyboard.

Movies Movies, from existing images, video, text and sound. A movie always
has a linear storyboard, and may include extensive interactivity.

Audio Sound tracks (including music, voice and effects)..

Interactive 3D * Three-dimensional objects and the current generation of virtual worlds,
with which the user can interact.

Motion * Servo-assisted effects, such as in simulators and for robotic control. This
includes remote control of house appliances via the web.

Complex website cost more to maintain
Adrian Cowderoy, PROFESSIONAL Spirit page 5

Smell * Olfactory stimulation. Currently used in retail kiosks, but not yet for
conventional websites.

Physiological * Interaction between system and bodily functions. Currently used for
diagnosis, but potentially also for stimulation.

* = asset-types currently not supported by MMHQ’s lists

The lists used at MMHQ support the most-common asset-types, however the lists of options
are not exhaustive. Indeed, they are kept as short as possible for operational reasons – the
technology is not stable (and this can effect the size measures), the willingness to use measures
is limited, and usability of the service is improved by a short list.

Some assets are constructed from component elements that are similar in nature to the entire
asset. The complexity of these asset-components may different substantially within an asset,
and consequently size and complexity measures are required may best be applied to each asset-
component, rather than the entire asset. For example, a movie may consist of several scenes,
and a displayed web-page may be built automatically from several texts and images.

For each of the assets and their component parts, a distinction can be made between different
features, each of which is used differently. Specifically:

• Primary size measure is the main indicator of development cost and (for bought-in assets)
purchase price. The choice of primary size measure follows industry conventions.

• Complexity of an asset or asset component indicates maintenance difficulty or increased
development cost. (A lack of complexity, can also be significant where this has resulted
from a digital worker not maintaining individual editable layers in the image.) Some
complexity measures are also alternative size measures, but their effect on cost overlaps
considerably with the primary size measure.

• Cohesive complexity indicates the extent and nature of the interaction between the asset (or
its component parts) with other assets, either locally or anywhere on the web.

• Extent of interactivity refers to the functional component within the asset. This may include
both user-written software code and application-generated software. (If there is complex
functionality, then the interactivity would normally be developed by professional
programmers, and the size and complexity measured using software metrics.)

• The exceptions provide classification schemes that allow distinction between assets on the
basis of quality features, origin of the assets, and the use of technology. (The classification
schemes use ordinal and nominal scale metrics.)

Complex website cost more to maintain
Adrian Cowderoy, PROFESSIONAL Spirit page 6

4. Metrics and measures

A metric is needed for each size and complexity feature in order for it to be meaningfully used.
An important constraint in choosing and defining these metrics was the need to support people
with different backgrounds, many of whom are not engineers. This involved careful attention
to choice of metrics, emphasis of the importance of counting rules, and the dangers associated
with aggregation and derived measures.

4.1. Choice of metrics

The choice of whether a metric is effective was based on five criteria: relevance, consistency,
precision, learnability and cost-of-use.

Counting rules contribute directly to the criteria of consistency. Common experience of using
measures in the software industry is that many of the measures are “subjective” – i.e. the
counting rules are vague, and so consistency is reduced. The software industry also
encountered metrics that are so complex that people tend to ignore the counting rules and
consequently they count inconsistently. Measures need to be chosen that are easy to learn and
cheap to collect.

Potentially a size and complexity feature could be assessed using more than one metric,
however it helps to improve usability of the strategy if there is only measure per feature.

4.2. Aggregation

Often the size of an asset is identical to the sum of the size of each of the its component parts.
This is convenient for costing, because purchase and asset-rework costs are closely related to
size. However there are important exceptions when the whole is different to the sum of its
parts – this is caused by duplication, overlap and blank sections. Consequently each size
measures needs a “health warning” of when it is valid to calculate a “total size”.

Aggregation of complexity measures is only sometimes meaningful, and has to be assessed on
a case-by-case basis. It is seldom meaningful to have a “total complexity”, but forms of
“average complexity” are usually feasible. Some nominal and integer scale measures of
complexity have exist in reasonably large samples which appear to follow a standard
distribution (bell-shaped), and can be described using a statistical mean and standard deviation.
Most other measures can only be meaningfully reviewed in terms of modes (most common
value), upper and lower quartiles (relative to the mode), and the outliers beyond these
quartiles.

Aggregates of “exceptions” is only meaningful using derived measures, as below.

4.3. Derived measures

Derived measures combine two or more different measures to produce a single meaningful
number. A limited number have been identified by MMHQ, but there is opportunity for much
more research work in this area. Some examples are given in Table 5 below.

Complex website cost more to maintain
Adrian Cowderoy, PROFESSIONAL Spirit page 7

Table 5: examples of how derived measures can indicate problems

For a website structure, if the number of number of microsites is great compared to the
number of pages, then project coordination and technical integration may be difficult.

If there is a very high number of external hyperlinks compared to the number of words, then
maintenance costs will be higher.

Long sentences with long words are confusing – the Fog Index counts the total number of
words in a sentence plus the number of words with 3 or more syllables.

Big image sizes with multiple layers tend to result in files that compress inefficiently, and
consequently cause performance problems.

For an interactive movie, if the library size is huge compared with the number of layers (or
sprites) then more exceptional effort is needed for studying and maintaining the library.

5. Choosing what to measure

The potential list of measures exceeds what can realistically be collected in any one project.
Consequently a choice has to be made of what to measure, and what to ignore. The strategy
outlined in the section was inspired the work of the AMI project for software metrics
collections [7], but the details are different as a result of the nature of website production.
(Website development involves the use of multi-disciplinary teams from non-engineering
backgrounds, unstable technologies, loose quality requirements, and a limited historic
perspective.) The preferred strategy has four steps, as in the subsections below.

5.1. Choose what to improve

In section 2 above, a set of standard business objectives were presented for collecting size and
complexity measures. For each of these standard objectives there are various standard
suggestions of how to monitor for problems, and make improvements. Table 6 provides an
example. The project members must select which of these Improvement Suggestions is
appropriate for their own project. They may add further suggested improvements.

Table 6: standard list of Improvement suggestions for the business objective of “identifying
at-risk components”

Identify complex objects -

• they require more testing, and

• they can be difficult to maintain and extend.

Identify exceptionally large objects -

• check to see the technical problems that may occur,

• plan to how to allocate the staff, and

Complex website cost more to maintain
Adrian Cowderoy, PROFESSIONAL Spirit page 8

• ensure there is sufficient design and maintenance documentation, and the files are
properly catalogued.

Identify expensive components -

• measure their costs accurately,

• identify the risks of changed needs,

• identify how late the purchase can be made, and

• identify the copyright and legal issues.

5.2. Choose what to measure

A match can be now be made of which measures might be useful in support of each activity.
For each measure, an explanation is needed of why the measure is appropriate and how it
should be interpreted. If there is overlap between this and the Improvement Suggestions, then
it is a good candidate for inclusion.

Table 7 below presents an example (and in this case, identifying components that could be
difficult to maintain or develop). Note how measures are used for as many purposes as
possible so as to reduce the extent to which measurement is required.

Table 7: example of measures for two development activities, in response to the business goal
of “identifying at-risk components”

Activity Explanation and measures

Graphics design • Exceptional size comes from an exceptional number of
delivered_images and image_composites, especially when there are
constraints on browser_compatibility, language_count and rigour.

• Testing effort is increased by demands on browser_compatibility,
language_count and rigour.

• Problems with acceptance of the final product may occur if there is
high rigour and the source_of_image is outside the developers control.

• Maintenance is effected by the number of image_composites compared
to the image_size (if there are too few, or poor documentation, then
problems occur).

Interactive movie
production

• Exceptional size comes from exceptional duration for each type of
origin (source_of_movie).

• Testing effort is increased if there is high rigour applied to many
movies, and they involve large libraries or large object_counts.

• Testing problems are created by a movie_source that does not match
the required rigour.

• Software testing and maintenance costs are increased by the number of
decision_points.

Complex website cost more to maintain
Adrian Cowderoy, PROFESSIONAL Spirit page 9

• Lack of raw computer processing power comes from high image_size,
frame_rate, and duration.

Items in italics refer to measures

5.3. Choose how much to measure

The overall extent to which an organisation is prepared to use measurement is influenced by
various factors, as listed below. For measurement-adverse projects, the list of measures
identified via the previous two subsections has to be further reduced to a level that will easily
be tolerated by staff. (If the quantity of measurement is too high, it will be collected badly.)

• Risk-to-quality. Projects with high risk-to-quality can benefit from more detailed
monitoring analysis of at-risk components. This requires measurement.

• Risk-to-schedule. When projects have highly compressed timescales there is little
motivation to perform tasks that are not directly productive.

• Process stability. Organisations that have frequently-repeated activities, such as image
digitisation, benefit more than others from the use of measurement.

• Technology stability. Some technologies are evolving rapidly and complex issues become
easy, and new tool features are introduced that create new types of complexity. This
considerably reduces the benefits of measurement. (Currently encountered in 3D and VR.)

• Personal motivation. Every person involved in the collection, analysis and use of data has
to see direct benefits to their own work responsibilities. Thus designers are interested in
measures that contribute to problem-reduction, but are not interested in charge rates and
staff planning.

5.4. Choosing when to measure

The size and complexity metrics are (usually) applicable throughout the lifecycle, however the
measurements made for these metrics may change at each milestone. These changes can
highlight risks. The changes are also useful for analysing completed projects to understand the
development processes.

Suitable milestones for collecting metrics include those listed below:

• Initial target, measured from the outline scoping of the product.

• Design completion, measured from the storyboard outline or the sketched text or image.

• First demonstration prototype, measured following the first demonstrable version. (Such
prototypes often miss key features which will be provided later.).

• Asset delivery. The completed asset delivered for integration with the software and other
assets.

• Project completion. The modified asset after late changes are made (for whatever reason).

Complex website cost more to maintain
Adrian Cowderoy, PROFESSIONAL Spirit page 10

6. Three case studies

The reality of using measurement is often different to the intended strategies. Three
contrasting case studies are given below.

6.1. Dynamic website maintenance

The objective was to define practices that could reduce maintenance problems. The use of
measurement could be part of this, or used as an argument for other new practices.

Selected measures. The standard metrics that are used to indicate maintenance problems (as in
Table 7 above). This includes the primary size metrics that are also useful for costing
maintenance changes.

Human issues. The measurement of the data occurs at the initial scoping and upon asset
delivery, but not at milestones between or after (because of the extra limited benefits). The
collection activity depends on the enthusiasm of an individual, but work is progressing to
make it institutionalised. As of writing, general plans are in place for the data analysis, but
there is insufficient data to justify a full analysis.

6.2. Small web-site production

The objective was to help with costing and quality control for solo website developers who
produce large numbers of small websites for small businesses and community groups.

Selected measures included primary size drivers (for project costing), usability-related metrics
(for use as guidelines), and limited image metrics (to avoid project cost escalation).

Human issues. There is a tendency for measures to increase awareness of good practice, but
not to be used except in response to immediate problems.

6.3. First use of a new development tool

The objective was to determine the effect of switching from animated-GIF’s generated using
Macromedia™ Fireworks 2 to those produced by Macromedia™ Flash 5. These are different
types of tool, with the Flash providing extensive animation but lacking the graphics control of
Fireworks. However, provided the output is animated-GIF, the products are comparable.

Selected measures. Some graphics vector tools have limited animation, others the opposite.
The selected measures represent both these extremes. They thus highlight the overlap (like
image size and duration) and the differences (like animation tweening).

Observations. The two packages encourage people to develop different types of animated
GIF’s, which confuses the comparison. (Fireworks favours dramatic images and text changed
stepwise, while Flash favours smooth transitions of simple objects.) The measures suggest that
Flash only offers better maintainability if the library facility is used extensively.

Human issues. The exercise was performed by a single person, It helped him recognise that
Flash was powerful and exciting, but should not be over-used. The immediate benefit of the
comparison was that the exercise improved the subject’s understanding of the potential of the
new tool. The longer term benefit is an indication of development costs.

Complex website cost more to maintain
Adrian Cowderoy, PROFESSIONAL Spirit page 11

7. Discussion: a comparison with software

A comparison between website development and software development is useful at This
subsection presents revealing the differences that result from different kinds of product and
different working methodologies (e.g. multi-disciplinary instead of engineering-based).

In software, a common method of pricing product changes is to use function points. In website
development, the nature of the “product” is evolving and it is not possible to define a universal
and timeless measure of size. Instead, the problem of costing contract changes can be resolved
by using limited measures and constraints. (There is an opportunity for research to test
whether this would also be a better strategy for software development projects.)

The “engineering” community within the software industry advocates process maturity
towards statistically controlled processes with continual optimisation – a transition that may
take 5-10 years to achieve. In website development, short-term flexibility and use of new
technologies results in much higher financial rewards than process improvement. This impacts
on the use of measurement: software engineers regularly collect measurements as part of their
work processes, but website developers will collect measurement only for specific projects or
in support of regularly repeated (small) activities.

Website developers have an extensive range of size measures that are available early in the
project, and can be easily collected. In contrast, software development relies mainly on lines of
code (which is available very late in the project) or function points (which are expensive to
collect, not universally applicable, and can be inconsistently measured.)

Overall, the opportunities for using measurement in website development may be ultimately be
stronger than for measurement of software projects.

8. References

[1] Fenton, N.E., “Software Metrics: A Rigorous Approach”, Chapman & Hall, 1991.

[2] Basili, V.R. and Rombach, H.D., The TAME project: towards improvement-oriented
software environments. IEEE Transactions on Software Engineering, 14(6), 758-773.

[3] Cowderoy, A.J.C., Daily, K., (editors): The MultiSpace Framework, ESPRIT
EP23066 D2.2P. (Available at http://www.mmhq.co.uk/multispace/)

[4] MMHQ’s Website Complexity and Size Measures. A regularly changing list found via
http://www.mmhq.co.uk/my-complexity/

[5] Cowderoy, A.J.C., “Size and quality measures for multimedia and web-site
production”, 14th COCOMO/SCM Seminar, October 1999, Los Angeles.

[6] Cowderoy, A.J.C., Donaldson, A.J.M., Jenkins, J.O., “A metrics framework for
multimedia creation”, 5th IEEE Software Metrics Symposium, Maryland, 1998.

[7] Pulford, K., Kuntzmann-Combelles, A., Shirlaw, S., “A quantitative approach to
Software Management. The ami Handbook.” Addison-Wesley, London, 1995.

QWE2000 Session 4M

Mr. Andreas Birk & Wolfgang
Mueller [Germany]

(Fraunhofer Institute)

"Systematic Improvement
Management: A Method For

Defining And Controlling
Customized Improvement

Programs"

Key Points

Why software engineering requires continuous improvement●

How to customize software process improvement●

The benefits of knowledge management for SPI●

Presentation Abstract

Improvement has become an established practice in software engineering since the
late 1980Ëies. Many different improvement approaches have been developed.
Examples are process assessments, software engineering measurement, and quality
management systems. However, still too often improvement programs are cancelled
or do not reach their initial goals. We argue that this is due to two main reasons:

(1) Most improvement approaches have been developed in isolation from each
other. Each approach has its specific strengths and application prerequisites. Only
very little guidance is available for integrating different improvement approaches so
that they complement each other and leverage the effectiveness of improvement
programs.

(2) Appropriate management support for improvement programs is widely lacking. As
a consequence, improvement programs take too long and consume too many
resources. So improvement initiatives might even lose the support of their sponsors
and the software development teams.

Systematic improvement management can overcome these issues and ensure the
success of improvement programs. Improvement management must take care that
the applied improvement strategy is appropriate for the given goals and
characteristics of the software organization. In addition, it must monitor and control
the improvement program during its execution and finally demonstrate that the
improvement goals have actually been attained.

The paper and the presentation will introduce an improvement method that places
particular emphasis on systematic improvement management. It covers the following

QWE2000 -- Conference Presentation Summary

http://www.soft.com/QualWeek/QWE2K/Papers/4M.html (1 of 3) [9/28/2000 11:08:38 AM]

elements:

* The identification and explicit definition of business-related improvement goals,
current software development practices, and experience that will be relevant to the
improvement program.

* The integration of arbitrary improvement methods (such as process assessments,
measurement, organizational learning, etc.) into an improvement strategy that meets
the goals and characteristics of the software organization.

* A collection of typical improvement strategies for different types of software
organizations (e.g., large embedded systems manufacturers, small or mid-size
enterprises, or large banks or insurance companies).

* The monitoring and control of improvement program execution, including the risk
management for improvement programs.

* The evaluation of improvement results, including the identification of new
improvement goals and possible follow-up activities.

* An organizational infrastructure for running improvement programs and support
instruments for facilitating the improvement management tasks.

About the Speaker

Andreas Birk is a senior consultant at the Fraunhofer Institute for Experimental
Software Engineering (Fraunhofer IESE) in Kaiserslautern, Germany. His work areas
are software process improvement, knowledge management, and organisational
learning.

Andreas Birk was workpackage leader in the European technology development and
transfer projects PROFES (ESPRIT 23239) and PERFECT (ESPRIT 9090). He has
developed and evaluated several improvement methods for different types of
software organisations. As a consultant, he has been working with many European
software companies in the build up and extension of their process improvement
programmes.

Andreas Birk has received a masters degree in computer science and economics
(Dipl.-Inform.) from the University of Kaiserslautern, Germany, in 1993. He is
currently applying for his PhD. He is a member of the IEEE Computer Society, GI,
and ACM.

Dr. Wolfgang Mueller is leading technology transfer projects at the Fraunhofer
Institute for Experimental Software Engineering (Fraunhofer IESE) in Kaiserslautern,
Germany. His work areas are experience-based improvement programs and
systematic knowledge management in the area of software development. Since April
1998 he is group leader in the department "Systematic Learning and Improvement"
at the Fraunhofer IESE. From 1990 to 1997 he worked as scientist at the Fraunhofer
Institute for Production Systems and Design Technology (IPK) in Berlin, mainly in the
area of business process redesign and development decentralized shop floor control

QWE2000 -- Conference Presentation Summary

http://www.soft.com/QualWeek/QWE2K/Papers/4M.html (2 of 3) [9/28/2000 11:08:38 AM]

systems.

Wolfgang Mueller has received a Ph.D. in engineering (Dr.-Ing.) from the Technical
University Berlin, Germany, in 1997. He is a member of the German Computer
Society (GI).

QWE2000 -- Conference Presentation Summary

http://www.soft.com/QualWeek/QWE2K/Papers/4M.html (3 of 3) [9/28/2000 11:08:38 AM]

1

Institut
Experimentelles
Software Engineering

Fraunhofer

IESE

Systematic Improvement ManagementSystematic Improvement Management

A Method for Defining and Controlling CustomizedA Method for Defining and Controlling Customized
Improvement ProgramsImprovement Programs

Andreas Birk
Wolfgang Müller

Fraunhofer IESE
Sauerwiesen 6

D - 67661 Kaiserslautern
Germany

Copyright © Fraunhofer IESE 2000

IESE Motivation

• Improvement has become an established practice in software engineeringImprovement has become an established practice in software engineering

• Established improvement methodsEstablished improvement methods
– Process assessments (CMM, ISO 15504, BOOTSTRAP, ...)Process assessments (CMM, ISO 15504, BOOTSTRAP, ...)
– Process modelling and process guidanceProcess modelling and process guidance
– Software and process measurement (GQM, PSM, ...)Software and process measurement (GQM, PSM, ...)
– Quality management systems / ISO 9000Quality management systems / ISO 9000
–

• However, still too many improvement programmes fail or perform badlyHowever, still too many improvement programmes fail or perform badly

• Systematic improvement: Consolidate and advance improvement practicesSystematic improvement: Consolidate and advance improvement practices
– Plan and manage improvement programmes systematicallyPlan and manage improvement programmes systematically
– Integrate improvement methods effectivelyIntegrate improvement methods effectively
– Tailor improvement strategies to the software organisationTailor improvement strategies to the software organisation

2

Copyright © Fraunhofer IESE 2000

IESE Principles of Systematic Improvement

• Improvement programmes must be driven by business-related goals

• Improvements must be attained rapidly and with little overhead effort

• Improvement strategies must be tailored to existing SE practices

• Improvement programmes must be planned and managed well

• The success of improvement programmes must be demonstrated

• Gradually, the software organisation capitalises on its own experience

Copyright © Fraunhofer IESE 2000

IESE Systematic Improvement

Example Improvement actions:Example Improvement actions:
• Enhanced requirements Enhanced requirements
 engineering practices engineering practices
• Systematic inspections Systematic inspections
• More efficient testing More efficient testing
•

ImprovementImprovement
goalsgoals

ImprovementImprovement
actionsactions

Analysis ofAnalysis of
given situationgiven situation

Experience andExperience and
technological technological

knowledgeknowledge
Experience BaseExperience Base

SystematicSystematic
improvementimprovement

planningplanning

3

Copyright © Fraunhofer IESE 2000

IESE Systematic Improvement

Phase I:
Improvement planning

Phase III:
Improvement
evaluation

Phase II:
Improvement programme
execution and control

Situation Goals Experience

Process
Assessments

Measurement QMS Knowledge
Management

Technology
Transfer

... ...

Copyright © Fraunhofer IESE 2000

IESE Strategic Improvement

SWSW
ProcessProcess

Tailored improvement processTailored improvement process

Phase I:Phase I:
ImprovementImprovement
planningplanning

Phase II:Phase II:
Improvement programmeImprovement programme
execution and controlexecution and control

Phase III:Phase III:
ImprovementImprovement
evaluationevaluation

Situation
Goals
Experience

Process
Assessments

Measurement

QMS
Knowledge

Management

Technology
Transfer ...

Systematic management of improvement programmesSystematic management of improvement programmes

4

Copyright © Fraunhofer IESE 2000

IESE Systematic Improvement Programmes

Phase I:Phase I:
Improvement planningImprovement planning

Phase II:Phase II:
ImprovementImprovement
programmeprogramme
execution and controlexecution and control

Phase III:Phase III:
ImprovementImprovement
evaluationevaluation

1. Analysis of the
given situation

2. Identification
and definition of
improvement goals

3. Planning and
adaptation of
improvement
strategy

4. Execution of the
improvement
programme

5. Monitoring and
control of the
improvement
programme

6. Analysis and
evaluation of the
improvement
programme

7. Packaging and
dissemination of the
gained experience

Copyright © Fraunhofer IESE 2000

IESE

ImprovementImprovement
ProgrammeProgramme

MeasurementMeasurement
EngineerEngineer

Data

Data

Results

Organisational Infrastructure for Improvement

Measurement SystemMeasurement System

MeasurementMeasurement
DatabaseDatabaseData

Results

ImprovementImprovement
ProgrammeProgramme

StaffStaff

Process AssessorProcess Assessor
Measurement EngineerMeasurement Engineer
......

DataResults

ImprovementImprovement
ProgrammeProgramme

SponsorSponsor

ImprovementImprovement
ProgrammeProgramme
CoordinatorCoordinator

SoftwareSoftware
EngineeringEngineering

StaffStaff

Results

Results

Information Flow

Roles and Information Flow for
Improvement Monitoring & Control

5

Copyright © Fraunhofer IESE 2000

IESE Example of a Systematic Improvement Programme

Goal
Setting

Process
Assessment Measurement Programme

Improvement
Planning

Improvement
Implementation

t

Copyright © Fraunhofer IESE 2000

IESE Example of Improvement Programme Effort

Duration of one product improvement cycle:
Possibly less than one year

Person Calendar
Months Weeks

Start up & goal setting 0.5 2
Process assessment 2.5 6
Measurement programme 2.5 40
Identification of PPDs 0.5 2
Improvement implementation 0.5 2

Total 6.5 52

6

Copyright © Fraunhofer IESE 2000

IESE Three Core Measures for Improvement Programmes

Measurement is a prerequisite for monitoring, controlling, and Measurement is a prerequisite for monitoring, controlling, and
evaluating improvement programmes.evaluating improvement programmes.

Effort ofEffort of
ImprovementImprovement
ProgrammeProgramme

Sponsor andSponsor and
StakeholderStakeholder
SatisfactionSatisfaction

CharacteristicsCharacteristics
of the Softwareof the Software

OrganisationOrganisation

Copyright © Fraunhofer IESE 2000

IESE When to measure and use which data?

timeImprovement
Programme

Effort continuously at
regular time
intervals

Satisfaction at major milestones
of project /
improvement
programme

Characteristics at the beginning,
the end, and major
milestones of the
improvement
programme

7

Copyright © Fraunhofer IESE 2000

IESE Applications of Systematic Improvement

Tailored Improvement Program

Process Modeling GQM-based
Measurement

Improvement
(local)

Process Modeling GQM-based
Measurement

Improvement
(local)

Process Modeling GQM-based
Measurement

Improvement
(local)

Collect Experience

Phase I

Phase II

Phase III

Copyright © Fraunhofer IESE 2000

IESE Applications of Systematic Improvement

Experiences from applying systematic improvement in the PROFES project:Experiences from applying systematic improvement in the PROFES project:
• DrägerDräger Medical Technology Medical Technology (Medical electronics)
• EricssonEricsson Finland Finland (Telecommunication)
• TokheimTokheim (Systems and services for gas stations)

Attained product quality goals:Attained product quality goals:

• Functionality

• Time-to-market

• Defect density

• Design quality

• Quality of the product
architcture

• Requirements traceability

• ...

Process improvementsProcess improvements:

• Process capability maturity improved
from below level 2 to nearly level 3

within 18 months

• Attained the ISO 9001 criteria

• More effective design inspections

• Software measurement established

• Improved defect management

• ...

Improvements were attained fast and with little overhead effort.Improvements were attained fast and with little overhead effort.

8

Copyright © Fraunhofer IESE 2000

IESE SEC: Experience Exchange about Improvement

Cross-Company
Consolidated

Experience Factory

Company A

Consolidated
Experience Factory

EF Organization

Project
Organization

Experience
Factory (EF)

EF Organization

Project
Organization

Experience
Factory (EF)

EF Organization

Project
Organization

Experience
Factory (EF)

Company A

Consolidated
Experience Factory

EF Organization

Project
Organization

Experience
Factory (EF)

EF Organization

Project
Organization

Experience
Factory (EF)

EF Organization

Project
Organization

Experience
Factory (EF)

Company A

Consolidated
Experience Factory

EF Organization

Project
Organization

Experience
Factory (EF)

EF Organization

Project
Organization

Experience
Factory (EF)

EF Organization

Project
Organization

Experience
Factory (EF)

SECTM = Software Experience Center

SEC Member
Organizations:
• ABB
• Boeing
• DaimlerChrysler
• Motorola
• Nokia
• Fraunhofer IESE
• Fraunhofer Center
 Maryland

Copyright © Fraunhofer IESE 2000

IESE Summary

• A systematic improvement method is needed for the effective guidance of
improvement programmes.

• Improvement processes must be tailored to the specific goals and
characteristics of a software organisation.

• Knowledge mangement is important for long-term benefit from
improvement programmes.

• Systematic management and control of improvement activities ensure the
success of systematic improvement programmes.

Copyright © Fraunhofer IESE, 2000 1

Systematic Improvement Management:
A Method for Defining and Controlling Customized

Improvement Programs

Andreas Birk, Wolfgang Müller

Fraunhofer Institut für Experimentelles Software Engineering (IESE)
Sauerwiesen 6, D-67661 Kaiserslautern

{Andreas.Birk, Wolfgang.Mueller}@iese.fhg.de

Abstract

Improvement has become an established practice in software engineering since the late
1980'ies. However, still too often improvement programs are cancelled or do not reach
their initial goals. In order to increase the success of improvement programs, they must
be planned and controlled systematically by specialized management functions. This
paper presents a method through which improvement programs can be customized to
the specific goals and characteristics of a software organization. The method also
covers the controlled execution of improvement programs and the evaluation of
improvement success. Three case reports of different improvement strategies for
different kinds of industrial software organizations illustrate the presented method.

Keywords: software engineering, process improvement, knowledge management

1 Systematic Improvement
Improvement has become an established practice in software engineering since the late 1980’ies.
Many different improvement approaches have been developed. Examples are process
assessments, software engineering measurement, and quality management systems.

However, still too often improvement programs are cancelled or do not reach their initial goals.
We argue that this is due to two main reasons: First, most improvement approaches have been
developed in isolation from each other. Each approach has its specific strengths and application
prerequisites. Only very little guidance is available for integrating different improvement
approaches so that they complement each other and leverage the effectiveness of improvement
programs. Second, appropriate management support for improvement programs is widely
lacking. As a consequence, improvement programs take too long and consume too many
resources. So improvement initiatives might even lose the support of their sponsors and the
software development teams.

Systematic improvement management can overcome these issues and ensure the success of
improvement programs. Improvement management must take care that the applied improvement
process is appropriate for the given goals and characteristics of the software organization. In
addition, it must monitor and control the improvement program during its execution and finally
demonstrate that the improvement goals have actually been attained.

Copyright © Fraunhofer IESE, 2000 2

This paper introduces an improvement method that places particular emphasis on systematic
improvement management and separates the management perspective from the technical aspects
of improvement programs. A tailored improvement process must be defined that depends on the
specific goals and characteristics of the software project and organization. It is built from
improvement methods such as process assessments, measurement, and technology transfer. These
basic elements of systematic improvement programs are introduced in the remainder of this
section. Section 2 defines a method for defining and controlling customized improvement
programs, which includes the managerial improvement tasks of systematic improvement. Section
3 reports two scenarios of tailored improvement processes from two European industrial software
organizations. The important role of knowledge management for systematic improvement is
discussed in Section 4.

1.1 The Elements of Systematic Improvement
The key elements of systematic improvement programs are shown in Figure 1. The systematic
management of an improvement program is performed in three phases: The first phase is
improvement planning. It designs the improvement process, which is tailored to the goals and
characteristics of the software organization. Depending on these goals and characteristics, the
improvement process applies a specific combination of improvement methods, such as process
assessments, measurement, quality management systems, knowledge management methods,
technology transfer techniques, etc. The second phase of improvement management is the
execution and control of the improvement process. In the third phase, the improvement program
is analyzed and evaluated. This evaluation provides lessons learned and experience that can be
useful for future improvement programs. It also shows to which extent the improvement program
has reached its goals and triggers the setting of new goals for a subsequent improvement cycle.

SWSW
ProcessProcess

Tailored improvement processTailored improvement process

Phase I:Phase I:
ImprovementImprovement
planningplanning

Phase II:Phase II:
Improvement programImprovement program
execution and controlexecution and control

Phase III:Phase III:
ImprovementImprovement
evaluationevaluation

Process
Assessments

Measurement

QMS
Knowledge

Management

Technology
Transfer ...

Systematic management of improvement programsSystematic management of improvement programs

Figure 1: Elements of strategic improvement.

Copyright © Fraunhofer IESE, 2000 3

1.2 Systematic Improvement Planning and Tailored Improvement Processes
A particularly important step of systematic improvement programs is improvement planning.
Figure 2 shows the basic principle of improvement planning: Improvement actions must be
identified based on (1) explicitly defined improvement goals, (2) an analysis of the given
situation (i.e., characteristics of the software project, the software organization, and their
environment), as well as (3) experience and technological knowledge about what improvement
actions are suited best to attain the improvement goals in the given situation.

Software engineering does not yet possess a particularly rich body of experience and knowledge
about the effectiveness of improvement actions. This is mostly due to the short history of the
discipline and its very dynamic nature. For this reason, particular efforts are required to obtain the
needed experience. A suitable approach for this is the Experience Factory (EF) introduced by
Basili et al. [2]. It guides software organizations through the process of accumulating and reusing
important software engineering experience. Benefits of the Experience Factory are demonstrated
by the success of the NASA Goddard Space Flight Center's Software Engineering Laboratory
(SEL) [4].

Improvement processes must be tailored to the specific goals and characteristics of a software
organization. Depending on these goals and characteristics, it focuses on different aspects of a
software process or product, and it deploys different improvement methods to prepare and
conduct the required process and product changes. Examples of improvement methods are:
process assessments, measurement, quality management systems, knowledge management
methods, and technology transfer techniques.

For implementing effective improvement processes, a software organization does usually need to
establish appropriate improvement methods for three different key tasks (or key practices) of
systematic improvement:

• Stabilization of work practices (e.g., through defined process models and software
development standards)

• Intellectual control of software development

• Sharing and reuse of relevant knowledge and experience

ImprovementImprovement
goalsgoals

ImprovementImprovement
actionsactions

Analysis ofAnalysis of
given situationgiven situation

Experience andExperience and
technologicaltechnological

knowledgeknowledge
Experience BaseExperience Base

SystematicSystematic
improvementimprovement

planningplanning

Figure 2: Experience-based improvement planning and experience accumulation

Copyright © Fraunhofer IESE, 2000 4

The most relevant improvement methods for the stabilization of work practices are modeling
techniques such as process modeling and object-oriented modeling. Intellectual control of
software development can be gained with the help of analytical techniques like process
assessments, measurement, and simulation, which increase the understanding of a software
organization's software development practices. Appropriate methods for sharing and reusing
relevant knowledge and experience are the Experience Factory approach and the various
techniques for knowledge management and organizational learning (cf. [1]).

1.3 An Organizational Infrastructure for Systematic Improvement Programs
The successful execution of an improvement program requires an appropriate organizational
infrastructure, which ensures that all tasks are conducted in an effective and efficient manner.
The typical organizational infrastructure of a systematic improvement program is shown in
Figure 3. The improvement program team establishes a bridge between the sponsors of an
improvement program (often higher-level management) and the software engineering staff of the
projects in which the improvement program is performed. This team consist of a co-ordinator,
technical staff for performing the relevant improvement techniques (e.g., process assessors,
measurement engineers, trainers, QMS experts), and measurement engineer responsible for
(meta-)measurement about the improvement program.

The organizational infrastructure should be complemented with an appropriate tool infrastructure.
The core element of the tool infrastructure is the measurement database for data about the
improvement process, which can be a database or spreadsheet application. This database is an
important tool for monitoring and controlling the improvement program. In addition, tools are
needed for data collection (e.g., paper forms or on-line questionnaires), for data analysis (again,
database or spreadsheet applications), for data presentation, and for storage of measurement
results (e.g., a document database or a web-based repository).

ImprovementImprovement
ProgrammeProgramme

SponsorSponsor

ImprovementImprovement
ProgrammeProgramme
CoordinatorCoordinator

ImprovementImprovement
ProgrammeProgramme

StaffStaff

ImprovementImprovement
ProgrammeProgramme

MeasurementMeasurement
EngineerEngineer

SoftwareSoftware
EngineeringEngineering

StaffStaff

Information Flow

Results

Data
Measurement SystemMeasurement System

MeasurementMeasurement
DatabaseDatabase

Process AssessorProcess Assessor
Measurement EngineerMeasurement Engineer
......

Data

Data

Results

Results

Results

Data

Results

Figure 3: The organizational infrastructure for systematic improvement programs.

Copyright © Fraunhofer IESE, 2000 5

2 A Method for Defining and Controlling Customized Improvement
Programs

Systematic improvement programs should be performed in three phases (cf. Figure 1):

1. Improvement planning

2. Improvement program execution and control

3. Improvement evaluation

The first phase, improvement planning, develops a tailored improvement process that is specific
to the goals and context situation of the given software organization. It deploys selected
improvement methods (e.g., process assessments, measurement, knowledge management etc.) so
that the specific improvement goals can be attained in an efficient manner. The second phase,
improvement program execution and control, applies this improvement process to one or more
software projects. Finally, in the third phase (improvement evaluation), the success of the
improvement program is evaluated and lessons learnt for future improvement programs are
identified. This can trigger a new iteration cycle of the improvement program for which new
goals are set or the improvement program is extended to other parts of the organization. An
explicit management perspective on the improvement program is important to ensure its
successful and efficient execution.

The following subsections explain each of the three phases of a systematic improvement
program.

2.1 Improvement Planning
An improvement program is usually triggered by some kind of problem with the software
organization's products or projects. This problem may have been perceived already or it may be
anticipated for the future. In order to react to or prevent the problem, an improvement process
needs to be planned in a three step procedure:

1. Analysis of the given situation

2. Identification and definition of improvement goals

3. Planning and adaptation of improvement process

The analysis of the given situation investigates the problem. The objective is to gain a first
understanding of both its root causes and effects. The analysis addresses the organization's
software development practices, relevant quality profiles of existing products, as well as
important market characteristics and technological trends. It is recommended to conduct this
analysis thoroughly but not at too much detail, because the improvement program has not really
started yet. In particular, there might not be sufficient resources available for elaborated
investigations. In the case that detailed analyses would be required, this need for information
should be noted and addressed later as one of the first activities of the improvement process.

Based on the understanding of the initial situation, one or more improvement goals should be
defined explicitly. They will from now on guide all subsequent steps of the improvement
program. It is important that not too many improvement goals are addressed at one point in time
in order to keep the improvement program focused. Improvement goals should refer to criteria
that can clearly be identified in order to assess the improvement program's status or success. In

Copyright © Fraunhofer IESE, 2000 6

addition, it should be possible to attain the improvement goals within about one year. If am
important improvement goals requires more time to be attained, it should be broken down into a
set of goals that can be tackled in subsequent iteration cycles of an improvement program.

The actual improvement planning step identifies and prepares the measures needed for attaining
the defined improvement goals. It defines an appropriate improvement process that integrates one
or more improvement methods such as process assessments, process modeling, measurement,
knowledge management, technology transfer, etc. These improvement methods can be
categorized into analytical and constructive measures. Analytical measures provide the
information needed for determining and implementing a change to the existing software
engineering practices. Examples are process assessment and software measurement programs.

The determination and actual implementation of the change (or improvement action) is subject to
the constructive measures of the improvement process. Examples of constructive improvement
methods are process modeling, knowledge modeling and dissemination techniques, and the
transfer of software engineering technology. Analytical measures can also be applied for
monitoring and assessing the progress of the improvement program (e.g., a measurement program
that monitors the intended effects of a newly introduced technology).

Additional tasks that must be accomplished during improvement planning are (1) gaining
management commitment for the improvement program (i.e., from the sponsors of the
improvement program), (2) the motivation of the project team members to support the
improvement program, (3) the establishment of the improvement infrastructure in terms of
organizational entities, personnel, and tool support, as well as (4) the detailed time and effort
planning.

From the viewpoint of improvement management, another important task is the planning of
checkpoints and measurement procedures for the improvement program. These checkpoints and
the measurement provide the information needed for controlling the improvement program and
for evaluating later whether it has been successful. An approach for the continuous measurement
of improvement programs has been presented in [7].

2.2 Improvement Program Execution and Control
The execution of the planned improvement process should be accompanied by the managerial
tasks of improvement program monitoring and control. So the second phase of the improvement
program should include the following two tasks:

4. Execution of the improvement program

5. Monitoring and control of the improvement program

The improvement program is executed according to the previously planned process. In charge of
the improvement program execution is the technical staff of the improvement team or external
coaches or consultants. Depending on the selected improvement methods, these can be the
process assessors, measurement engineers, technology transfer experts, etc.

The monitoring and control of the improvement program are under the responsibility of the
improvement program manager. Monitoring is performed according to the planned measurement
and assessment procedures. The measurement and assessment results are compared to the
predefined target profile. If the actual data deviates from the target, the improvement program
manager, together with the team, decide about possibly required corrective actions. If needed, the

Copyright © Fraunhofer IESE, 2000 7

improvement process must be redefined and, possibly, new commitment must be gained from the
sponsor of the improvement program. The measurement and assessment results as well as all
major decisions about the execution of the improvement program should be stored for the later
evaluation.

2.3 Improvement Evaluation
At the end of the improvement program, or at major milestones of the improvement process, the
improvement program should be evaluated. Experience gained through this evaluation should be
packaged and disseminated so that the entire organization and future improvement programs can
benefit from it. Improvement evaluation can be accomplished through the following two steps:

6. Analysis and evaluation of the improvement program

7. Packaging and dissemination of the gained experience

During the analysis and evaluation step, the tracked measurement and assessment data from
monitoring the improvement program are reviewed and investigated. It is also recommended to
perform a project post mortem review of the improvement program. Its participants should be the
entire improvement team and the major collaboration partners from the related software projects
(e.g., project managers, quality managers, senior engineers, etc.).

The analysis goals are: (1) Whether the improvement program was successful and the initially set
improvement goals have been reached, (2) whether there is potential for further enhancement of
the improvement program activities, and (3) which further improvement goals should be
addressed in future improvement activities. If the improvement goals have not been reached, then
the root causes should be analyzed and appropriate actions for actually attaining the goals should
be initiated. Further enhancement of the improvement process can, for instance, concern the way
in which the improvement team collaborated with the associated software projects. Other possible
enhancements can refer to the effort and time estimations for improvement activities as well as
the technical details or the integration of individual improvement methods (e.g., the integrated
application of process assessments and related measurement programs).

In the final step of the improvement program, the analysis and evaluation results should, first, be
put into action and, second, be packaged and made available to future improvement programs so
that these improvement programs can benefit from the experience. Appropriate means for
experience packaging are a company-specific improvement handbook, slide sets for the education
of improvement teams, or a specialized repository of lessons learnt about improvement programs.
In the long run, a software organization can benefit from the establishment of an experience base
about experience from and for improvement programs [2] [4] [7]. It will be the source for the
continued self-improvement of the organization's process improvement capabilities.

3 Scenarios of Tailored Improvement Processes
Many improvement programs are established to address a specific improvement need associated
with product quality or a similar project performance measure (e.g., time to market, development
cost, or productivity). An improvement program will be particularly successful and easy to
manage, if these initial product-related improvement goals are made explicit and steer the
activities of the improvement program (cf. the PROFES improvement method [13] [10]).

Copyright © Fraunhofer IESE, 2000 8

However, in larger companies improvement programs often need to be partitioned into smaller
improvement projects that together help achieving the overall improvement goal. Usually it is
hard to start with a large program that affects all development areas. The reason is that such a
large program will consume too much resources, has a high risk of failing when obstacles appear,
and project management will be difficult. As a consequence, after defining an overall
improvement goal and a long-term strategy, it is best to identify pilot areas that will act as test
beds for introducing improvement actions. Following the spirit of an experimental approach, such
smaller projects offer large possibilities to learn about the pitfalls of improvement actions in the
context of the given company. Using the knowledge gained in these experiments, the extension of
the improvement program to new areas will be much easier, with reduced risk and less effort.

The next two chapters will provide examples of different improvement scenarios. In the first
example, a company started with a small measurement program that was gradually extended to a
larger improvement and knowledge management program. In the second example, a company
decided to derive the improvement program from product-related improvement goals.

3.1 Corporate Improvement and Knowledge Management Program
In this chapter we present an example of a company with distributed software development that
decided to start the improvement small, with a measurement program in a selected department at
one location. The idea was to learn about the introduction of measurement, to collect the
experience, and to expand the measurement program stepwise until a level was reached that
would make it possible to run a full-scale improvement program. From the beginning it was clear
that the introduction of knowledge management would be an important step to secure the results
of the measurement program and support long-lasting improvement.

At start, a goal-oriented measurement program was set up following the Goal/Question/Metric
approach that involved only a few dozen developers at one development site. Some previous
attempts with measurement had failed and it took some significant effort to convince the
developers to participate in the new program. The development of GQM-plans and the definition
of the measurement process relied heavily on the participation of those people, and thus it was
possible to create a positive spirit. One central aspect of GQM-based measurement is the
interpretation of the measurement results in so called feedback sessions. Setting up such feedback
sessions requires not only effort for the preparation of measurement results, but also consumes
time, that is usually spent on project work. Convincing all involved persons that the time spent on
feedback session is not wasted, but helps to better guide the project and finally achieve
improvement took some time.

The initial goal of measurement was to understand the characteristics of the development process,
to gain insights, and to create a baseline to track improvement with future measurement results.

After about one year the measurement program seemed to be settled enough in this department to
start extending it to neighboring departments. Understanding as gained and it was possible to
observe first positive effects in the pilot department. Improvement was initiated and satisfaction
of all participants was rated high.

Moving to other departments required adapting the GQM-plans slightly. However, the experience
gained over one year with the pilot department helped not only to come up with appropriate
GQM-plans in a short time, but also reduced significantly the effort needed to establish the
measurement process. Knowledge was already available on how to conduct feedback sessions

Copyright © Fraunhofer IESE, 2000 9

and how to prepare measurement results for the discussion. Evaluation tools could be re-used
thus reducing further the effort for the extension of the measurement program.

The step-wise introduction of the measurement and improvement program required a set of role
definitions that allowed staffing the project according to the current needs. At start only two
members of a central department acted part-time as coordinators for the program, worked on the
definition of the GQM-plans and the introduction of measurement in the departments. The
Fraunhofer IESE provided additional methodological support. The introduction of feedback
sessions made it necessary to have people on site who could conduct the sessions, help
interpreting the measurement results, and act as interface between developers and project team.

Improvement
Planning

Improvement
Evaluation

Improvement Program Execution

Tailored Improvement Program

Process Modeling GQM-based
Measurement

Improvement
(local)

Process Modeling GQM-based
Measurement

Improvement
(local)

Process Modeling GQM-based
Measurement

Improvement
(local)

Collect Experience

Phase I

Phase II

Phase III

Monitoring, Continuous Risk Control, Organizational Learning
Characterization,
Goal Setting,
Identification and
Preparation of
Improvement
Actions

Evaluation of
Goal Achievement,

Experience
Packaging,

Planning for
Continuation

Figure 4: Tailored Improvement Program

After about 2.5 years the measurement program involves two product lines with several
departments at different locations. A lot of experience has been gained, not only about the
development process, but also about how to introduce goal-oriented measurement. As a result,
the next step, started this year, is the implementation of a so-called "Experience Factory" that will
collect the experience and make it available for future use.

At the time, processes for collecting, packaging, and storing experience are designed and will be
implemented during fall 2000. The packages in the experience base will be either Lessons
Learned, complementing the measurement results also available in the experience base, packages
about theoretical issues or so-called best practices.

The experience base, which will act as central repository for the different types of experience,
will be connected to the companies' Intranet, making access to packaged experience easy for all
employees.

We have attended the improvement program over the last three years, helping the company
setting up their improvement program, defining the measurement program, and extending the
measurement program gradually to the current extend. The path that we chose was directly
derived from our understanding of systematic improvement and the project helped us to better
understand many aspects of systematic improvement programs. One task that has not been
addressed so far in the project is the improvement evaluation. We are currently involved in
defining an evaluation framework that shall be used at the company in the future.

Copyright © Fraunhofer IESE, 2000 10

Important experience we could derive from this project is about tailoring systematic
improvement. It showed that having a concept for composing a company specific improvement
program from a set of alternatives eased the discussion with responsible managers and allowed
the company a more informed decision making.

3.2 Product Quality Driven Process Improvement
This section reports the example of a product quality driven improvement program. It has been
performed at an embedded systems developer that is specialized in a specific technical domain.
The improvement program was performed in a three years project that developed a new product
generation. The new product contained much more software-based functionality than the
previous ones.

The project was performed in three incremental phases. Already the first increment contained the
core functionality and was subject to field tests. The peek staff count of the project was about 60
persons, most of them located at the same development site. Part of the system functionality was
acquired from or developed by subcontractors.

In the first step of the improvement program, the improvement goals were defined. These were
(1) to attain high product reliability (i.e., low number of faults detected in the field) and (2) to
assure in-time delivery of the product increments. These goals were viewed important for the
successful launch of the new product generation. They also were interrelated with each other,
because if there were too many defects late in the project, the additional defect removal effort
would put the product delivery date at risk. Likewise, a too high time pressure throughout the
project might cause higher defect rates than normal.

All subsequent steps of the improvement program were to ensure that these two improvement
goals were attained. Therefore, the development process had to be designed appropriately and the
project status had to be monitored continuously with regard to these goals.

The second step of the improvement program was to establish software engineering practices that
helped ensuring the attainment of the improvement goals. The initially established process
changes were a strong emphasis on the system and software requirements analyses of the first
increment (i.e., dedicating much time and resources to the specification of the product), the
introduction of a formal inspections for requirements, architecture, and design inspections, the
definition of new test processes, as well as the installation of a new configuration system. These
initial process changes were followed later by additional change actions that resulted from the
measures of the improvement program.

After the initial process had been established, a process assessment was performed. It provided
baseline for the later evaluation of process improvements. It also recommended further process
changes. Most of them were implemented later in the improvement program. Examples are
additional defect management practices, subcontractor management processes, and a new
integration process.

As the third step a measurement program was set up following the Goal/Question/Metric (GQM)
method [3] [8][9] [15]. The GQM goals were defined so that the most central improvement
goal—i.e., the attainment of product reliability—could be monitored through the measurements.
In addition, the new inspection process was measured. It was supposed to be the most important
improvement action for ensuring low defect rates.

Copyright © Fraunhofer IESE, 2000 11

The measurement program actually increased the understanding of the inspections' effectiveness.
This created deeper trust into the new process at the management level and among the engineers.
It also assisted the further adjustment of the inspection processes to the project's needs. The
measurement of the workproducts' defect rates (i.e., related to the improvement goal reliability)
was used primarily by project management to estimate and control the product delivery date. It
later developed into the core of a new defect management process.

Already for the first product increment the improvement goals were attained. This could be
repeated also for the two other increments. Gradually, the capability maturity of the development
processes as well as the quality of the developed product were increasing. There was convincing
evidence that these effects were largely resulting from or facilitated by the various activities of
the improvement program.

After the first product increment had been delivered, an overall analysis of the measurements was
performed by the management and senior team members. In addition, a second process
assessment was conducted. These activities resulted in adjustments of the measurement program
(i.e., some measures were re-defined and additional ones included) and in the identification of
additional process changes for the next phase of the improvement program.

As the main actor of the improvement program, a senior engineer was working half-time
managing the improvement program. He was supported most of the time by one or two junior
engineers who were working between 50 to 100 per cent of their time for the improvement
programme. In addition, external consultants performed the process assessments and coached the
measurement program. Management support was very high, because the improvement program
was viewed a major means to ensure project success.

The GQM measurements and the process assessments did very well complement each other. The
process assessments provided the project team with a broad overview of the project's software
development capabilities. The measurement program deepened the understanding of the most
relevant product quality aspects and monitored the progress of selected process changes during
the time between two process assessments.

Particularly beneficial for the progress and the manageability of the improvement program were
the strong focus on explicitly defined product quality goals and the continued assessment of goal
achievement throughout the improvement program. It provided a clear rationale for the
improvement program both to management and the project team. The goals also made it easy to
select effective improvement actions. This reduced the overhead effort needed for improvement
and led to fast improvement results.

4 The Role of Knowledge Management in Systematic Improvement
We consider improvement as a systematic and continuous endeavor to reach a higher customer
satisfaction through delivery of products that meet given requirements. Understanding what
quality is and how it can be improved is a learning process that never ends [15]. Consequently the
experience made in this process should be collected, stored, and used for all upcoming activities.
The better a company can capitalize on the lessons it has learned from its operation, the higher
are potential benefits on the market (higher customer satisfaction, shorter reaction times, higher
savings, or better quality). In the light of this definition it should be clear that for us knowledge
management is a vital part of systematic improvement.

Copyright © Fraunhofer IESE, 2000 12

When talking about the relationship between knowledge management and systematic
improvement the following aspects should be clearly separated.

(1) The introduction of knowledge management can directly profit from systematic improvement
projects, because essential knowledge is revealed during the course of such projects. Process
modeling is a good example of an activity that is usually carried out in the early phases of an
improvement program, but hardly for knowledge management purposes only. The resulting
process models make knowledge about activities (practices) explicit.

(2) Closely related to the facilitation of knowledge management programs is the fact that
knowledge is needed for improvement. Understanding processes and products is the first step
in improvement and knowing how to act best in a given situation to achieve a goal makes the
difference between successful and unsuccessful improvement programs. This type of
knowledge helps a company to improve its software projects directly. It is knowledge not
only about problems and strategies developed to resolve them, but also experience about the
effectiveness of actions acquired when applying the strategies. Usually (without knowledge
management) this knowledge and experience is hardly recorded and preserved for future use,
thus getting lost after a short time.

(3) Finally, improvement itself consists of many projects. Consequently, there is also learning
about conducting better improvement projects. We call the knowledge gained in this context
knowledge about improvement. It helps to develop skills in improvement management and
allows apply learning also to this level of operation. This type of knowledge helps a company
to improve its software projects only indirectly, but is in our opinion as essential as the type
of knowledge mentioned above.

In any case the setting up of knowledge management means to create the infrastructure and the
spirit that helps collecting and sharing knowledge within and across (any type of) projects. This
task is part of the planning and execution of the improvement program and requires the same
thoughtful tailoring as the improvement process itself.

We would like to come back to the example we presented Section 3.1. In this case the
introduction of feedback sessions and the implementation of the Experience Factory are part of a
company-specific knowledge management initiative. While the feedback sessions help to
improve the direct sharing of (tacit) knowledge, the Experience Base will contain explicit
knowledge about the development process. The Experience Factory processes that will be
introduced aim at eliciting and packaging knowledge and distributing it to all potential users.

In Section 3 we have not presented an example strategy or scenario for learning about
improvement. But, as stated above, using knowledge about improvement will help a company to
»improve improvement«, i.e., initiate and conduct improvement projects more efficient and avoid
mistakes. The most severe problem in this case is, that it takes a significant time before a critical
mass of such knowledge is build up that really provides support for the different steps of an
improvement program. Consequently the Fraunhofer IESE together with the Fraunhofer Center
Maryland has initiated a project that brings together companies from the IT sector to share
knowledge about improvement across company boundaries.

The so-called Software Experience Center (SEC) is a consortium that started work in 1999 and
today brings together five companies from Europe and the US for the purpose of an open
experience exchange and for setting up and performing joint case studies. The main goal is to
promote the extension of Learning Organizations concepts to the software domain. The

Copyright © Fraunhofer IESE, 2000 13

international set-up is expected to create insight into Learning Organization issues across
different cultural environments.

Collection and dissemination of experience will be performed mainly by means of workshops,
reports, and an Experience Base, which will provide enough detailed information for the SEC
member companies to directly utilize this experience in their own organizations to:

§ significantly speed-up each company’s internal improvement activities

§ increase the speed of learning across the company

§ avoid costly technology transfer problems and other types of crucial mistakes

§ include technology advances in strategic planning

The Fraunhofer Institutes act as facilitators and bring added value to the SEC consortium. In
particular they:

§ plan, coordinate, and execute SEC workshops

§ contribute tutorials, technology presentations, and experience reports to the workshops

§ collect experience in the course of bilateral projects with members and document it for
dissemination within the consortium

§ maintain the SEC consortium's Experience Base, which makes the consortium's
experience assets accessible to the members

Experience from about 1.5 years of operation shows that there is a large interest in learning about
improvement, but that at the same time many obstacles are to overcome when experience shall be
shared among companies.

5 Summary
This paper has introduced a method for the systematic management of improvement programs. It
places particular emphasis on the definition and control of improvement programs that are
customized to the specific goals and characteristics of a software organization. The method is
illustrated and supported by scenarios of systematic improvement programs that have been
conducted at two industrial European software organizations. Knowledge management plays a
particularly important role for the long-term benefit and success of improvement initiatives.

An important experience from applying the described systematic improvement method is that an
improvement program should be started small with a few improvement goals and limited to a part
of the organization. This has several advantages. It is often much easier to get funding for smaller
programs that have no cross-departmental impact. Less coordination is needed and the chance of
finding sponsors for the improvement actions is much higher. The experience that we reported in
Section 3.1 underlined this thesis. Using a limited measurement program was beneficial when
convincing department heads to provide time and money. Several problems could be solved with
limited effort in small teams, using the results later when extending the measurement program.
The idea to collect, store, and reuse the knowledge that has been collected in the course of an
(stepwise extended) improvement program came as a natural effect, when all participants
recognized the value of the experience made in the last three years. At this point in time it was
much easier to convince people to invest in further activities and to capitalize on they knowledge.

Copyright © Fraunhofer IESE, 2000 14

However, it is essential to have a clear idea about the general context, provide visions of a
comprehensive improvement program and long-term goals. When tailoring improvement actions
for a specific company, our framework for systematic improvement programs provided us with
the guidance needed.

The importance of the systematic, goal-driven planning of improvement programs is supported
by the experiences from the PROFES project1 [13] [10] [6]. This European applied research and
technology transfer project has developed a product quality focused process improvement
method, which is a predecessor of the presented systematic improvement method. Experience
from three industrial software organizations in the embedded systems domain have shown that
goal-driven improvement programs can be particularly successful. For instance, relevant
improvement effects can be attained very fast and with little overhead effort for the related
software projects.

Future work at Fraunhofer IESE in the area of systematic improvement will focus on the further
support of improvement processes for specific types of software organizations (e.g., SMEs or
embedded software development) as well as on the accumulation and dissemination of
experience about systematic improvement [5]. The PROFES project has developed a repository
that contains effort models of improvement methods (e.g., process assessments and GQM
measurement) [12]. Another PROFES repository collects information about the effects and
application prerequisites of software engineering technology [11]. This information supports the
goal-driven selection of improvement actions during improvement planning. Both repositories
can be accessed through the internet. Also the Software Experience Center (SEC) described in
Section 4 is a major line of future activity. Results from the SEC will gradually be shared and
discussed with the public in order to develop a growing body of consolidated software
engineering experience.

6 References

[1] K.-D. Althoff and W. Müller. Proceedings of the 2nd Workshop on Learning Software
Organizations. Fraunhofer IESE, Kaiserslautern, Germany.
(http://www.iese.fhg.de/LSOworkshop2000)

[2] V.R. Basili, G. Caldiera, and H.D. Rombach. Experience Factory. In J.J. Marciniak, ed.,
Encycl. of SE, vol. 1, pp. 469–476. John Wiley & Sons, 1994.

[3] V.R. Basili, G. Caldiera, and H.D. Rombach. Goal Question Metric Paradigm. In J.J.
Marciniak, ed., Encycl. of SE, vol. 1, pp. 528–532. John Wiley & Sons, 1994.

[4] V. Basili, M. Zelkowitz, F. McGarry, J. Page, S. Waligora, and R. Pajerski. SEL’s sw
process-improvement program. IEEE SW, 12(6):83–87, Nov. 1995.

[5] A. Birk. A knowledge management infrastructure for systematic improvement in software
engineering. Doctoral dissertation, University of Kaiserslautern, Kaiserslautern, Germany,
2000. (to appear)

1 ESPRIT Project No. 23236, PROFES, has been supported by the CEC. The project results can be accessed at the
web site www.profes.org.

Copyright © Fraunhofer IESE, 2000 15

[6] A. Birk, P. Derks, M. Elf-Mattila, J. Hirvensalo, R. van Solingen. Product-focused software
process improvement: The PROFES methodology and experience from its industrial
application . Proceedings of the SQM'99, Cologne, 1999.

[7] A. Birk, D. Hamann, and S. Hartkopf. A framework for the continuous monitoring and
evaluation of improvement programmes. In: F. Bomarius, M. Oivo, Proceedings of the
Second International Conference on Product-Focused Software Process Improvement
(PROFES2000), Lecture Notes in Computer Science, Springer, Berlin, 2000.

[8] L.C. Briand, Ch. Differding, H.D. Rombach. Practical Guidelines for Measurement-Based
Process Improvement. Software Process Improvement and Practice 2 (4), pp. 253-280,
1996.

[9] F. van Latum, R. van Solingen, M. Oivo, B. Hoisl, D. Rombach, and G. Ruhe. Adopting
GQM-based measurement in an industrial environment. IEEE Software, 15(1):78–86, 1998.

[10] The PROFES Project. http://www.profes.org.

[11] The PROFES Consortium. The PROFES Repository of Product/Process Dependency
(PPD). http://www.iese.fhg.de/profes/PPDRepository.

[12] The PROFES Consortium. The PROFES Cost/Benefit Repository.
http://www.iese.fhg.de/profes/CBRepository

[13] The PROFES Consortium. PROFES User Manual. Fraunhofer IRB Verlag, Stuttgart,
Germany 2000.

[14] R. van Solingen, E. Berghout, The G/Q/M Method. McGraw-Hill. London, 1999.

[15] R. van Solingen, E. Berghout, R. Kusters, J. Trienekens. No Improvement without
Learning: Prerequisites for Learning the Relations between Process and Product Quality in
Practice. Proceedings of the PROFES 2000, Oulu (FIN), Springer LNCS 1840, pp. 36-47,
2000.

QWE2000 Vendor Technical
Presentation VT4

Hans Buwalda
(CMG)

TestFrame: Getting Testing and
Test Automation Under Control

Key Points

Point 1...●

Point 2...●

Point 3...●

Presentation Abstract

Abstract

About the Speaker

Hans Buwalda is project director at CMG, a leading European information technology
services group. He is responsible for new developments around the TestFrame
approach for testing and test automation of which he is the main architect. The
approach has been started by him in 1994. In 1996 he presented the main ideas for
the first time to an international audience in a speech called “Testing with Action
Words, abandoning record and playback”. Since then the method is being used in an
increasing number of countries and Hans has become a frequent speaker at industry
conferences, tutorials, and workshops.

QWE2000 -- Conference Presentation Summary

http://www.soft.com/QualWeek/QWE2K/Papers/VT4.html [9/28/2000 11:09:10 AM]

 Handout, 5 October, 2000 1

Getting testing under control

Hans Buwalda

TestFrame Research Centre

hans.buwalda@cmg.nl

Agenda

• managing testing and test
automation

• our approach to testing
• implementation
• application areas
• TestFrame and CMG

 Handout, 5 October, 2000 2

Why should we test?

• people expect us to do
• somebody wants want us to
• increasing certainty and control

showing absense of problems
• finding faults saves money

showing presence of problems

Why should we not test?

• it costs time and money
• you might find problems . . .
• we forgot to plan for it
• we need the resources for

development
• it is difficult
• and . . . it is hard to manage

 Handout, 5 October, 2000 3

specification development test

Testing under pressure

specification development test

Testing under pressure
Is the testing process so hard to manage?

develop tests in time:
• test design
• description of actions and checks
• ways of execution

(including automation if possible)

 Handout, 5 October, 2000 4

Why automate tests?

• it is more fun
• we don’t have to do it ourselves

then
• saves time and money
• reduces involvement of valuable

specialists
• it can consolidate a structured

way of working

TestFrame

• established in 1994
• large scale use
• in industry, government, finance,

telecommunication, publishing, ..
• continuous extensions

 Handout, 5 October, 2000 5

RE-USABLE TEST PRODUCTS

S
T
R
U
C
T
U
R
I
N
G

T
O
O
L
I
N
G

F
I
T
T
I
N
G

Quality-to-market
& Time-to-market

Re-usable test products in Testframe
test development

test execution

test cluster

navigation scheme

…
check balance
enter customer
…

 A B C D
. . .
transfer Houston Klein 210
check balance Klein 210
transfer Savy Klein 150
check balance Klein 360
. . .

 Handout, 5 October, 2000 6

CAST tool

navigation script

target
systemseparation

report

test design

• test conditions
• test lines

test clusters
(text file)

test plan

• actual results
• comparison with

expectations
• management

information

• input data
• expected outcomes
• documentation

management

system
development

QA/Auditors

end users

Demonstration

 Handout, 5 October, 2000 7

Examples of TestFrame products

• high level business oriented tests
• production acceptance tests

• functional tests
• technical tests

• low level functional tests
• technical tests

specifications

design

programming

high level
actions

intermediate
level actions

low level
actions

Test Execution

Division of efforts in TestFrame

Analysis

Navigation:
- logarithmic growth of action words
- multi level approach leads to lesser efforts per word

amount to test

ef
fo

rt
s

 Handout, 5 October, 2000 8

action
word

engine

action
word

action
word

action
word

action
word

action
word

target
system

interface layer

Lay out of the navigation

cluster Control
Test

report

Low level Action Layer

High-levelHigh-levelHigh-level

Application

Intermediate level Intermediate level
template driven

table driven
or automatic

Multi level implementation for the actions

 Handout, 5 October, 2000 9

General Technical Architecture

Engine action
navigation

Co-Engine
Result

Management

Test Run Management Problem
Management

Test Plan
Management

User extensions

Test Collection

Test Product
Management

Preparation

Navigation

Execution

Analysis

TestFrame Model

 Handout, 5 October, 2000 10

TestFrame Model
Preparation
• Plan of Approach
• Test Strategy
• Risc Analysis

Navigation
• Technical design
• Implementation

Action Words

Execution
• Findings
• Test Report
• Evaluation

Analysis
• Clusters
• Test conditions
• Test cases

Products

Management and control

• testing is a strategical issue
• testing improves control
• regard test automation as an

“amplifier”
• several issues need attention to

improve manageability of the
testing process itself

 Handout, 5 October, 2000 11

Ontwikkeling van clusters

• risico factors:
business risks
technical risks
project risks

• input from stake holders
• relate to the planning of system

development
• pay attention to issues in test

execution

The testing regime

• embedded in development and
maintenance processes

• re-usable well designed test
products

• stable test automation
• incremental development
• well managed test environments

 Handout, 5 October, 2000 12

Organisation and project level

activities at organisation level

activities at project level

activities at project level

activities at project level

Activities at organization level

• One or more pilots
• Training and handbooks
• Resourcing (pooling, hiring)
• Auditing and reviewing
• R&D
• Development of common

products
• ...

 Handout, 5 October, 2000 13

Proven benefits

• accessible and maintainable test
structure

• early start saves time at the end
of the project

• involvement of the expert users
needed only once

• better control over the test
process

Demonstration 2 (if time permits)

“Multicom”

 Handout, 5 October, 2000 14

Application areas

• Industry, Finance,
Telecommunications, Public
Sector, ...

• web, mainframe, C/S, ERP,
technical and embedded
software, infrastructure, ...

• not dependent on specific test
tools

Introducing TestFrame

• see it as an organizational change
• use pilots, training and coaching
• no standard recipe, depends on:

skills available
experience with testing and test
automation
time (and budget) constraints

• coaching and support is essential
(there are many lessons to learn)

 Handout, 5 October, 2000 15

TestFrame and CMG

• TestFrame is an open method
• more than 5 years experience in

over 150 projects available
• over 1000 people trained
• we provide TestFrame

consultancy, supported by tools,
together with our partners

Getting testing under controlQuestions?

www.testframe.com

QWE2000 Session 5T

Ruud Teunissen
(Gitek)

Improving Developer's Tests

Key Points

Why improving the developer's tests●

How to improve the developer's tests a practical approach●

Presentation Abstract

This paper discusses the reasons for improving the developers' tests. Next, a
practical approach is given for improving the quality of the developers' tests (i.e.
program test and integration test). The emphasis of the approach is on:

clear testing responsibilities;●

the idea that improvements come from within the development team;●

insight into the quality of the test object by using exit- and entry-criteria.●

The paper concludes with two case-stories.

Introduction

Testing theory states the importance of early testing. The developers perform one of
the earliest forms of testing. There is sufficient literature on how this kind of testing
should be performed, including a lot of techniques and tools. However, there is a
large gap between theory and practice. In practice, developers often test based on
their intuition and in an unstructured way, in stead of using techniques, etc. Based on
our own experiences, this paper gives reasons why better developer testing is
important and how improvements can be implemented. The paper concludes with
two case-stories. Our experiences originate from the world of administrative
automation (financial institutions, government, industry), and "new media" projects
(such as internet, knowledge management, data ware housing).

Characteristics of developers' tests

Typical developers' tests are the program test and the integration test. Some
characteristics of these tests (and differences with other types of tests) are:

The finder of a defect is also (often) the solver of the defect. This means
communication overhead can be kept to a minimum;

●

(In principle) all defects found should be repaired before the product is●

QWE2000 -- Conference Presentation Summary

http://www.soft.com/QualWeek/QWE2K/Papers/5T.html (1 of 4) [9/28/2000 11:09:36 AM]

handed over. Therefore, the amount of reporting is limited;
A developer differs in attitude from a professional tester; the former wants to
demonstrate that the product works, the latter wants to demonstrate the
inverse. Time-consuming and thorough testing conflicts with the developer's
attitude;

●

The tests are an integral part of the development process;●

At the time these tests start, most defects are in the product: this requires
cheap and fast repair of defects.

●

Should developers' tests be improved?

When asking the developers whether their ways of testing need improvement,
frequent answers are:

Not enough time, too expensive;
Only if given more time and money, better testing is possible. However,
development is always short of time and money. But when the project leader
is asked for more time and money, that person responds something like: "If I
give the developers more time and money, they'll certainly spend it. The big
question is, on what?")

●

Faith in current way of working, in current product quality;
It is common knowledge that 100% defect free software is impossible to
achieve. Apart from that, developers are proud of the products they develop.

●

A good (better) test follows.
Test professionals perform later, better tests. These people are trained in
testing and they typically find a lot of defects. And what's more important, they
like testing. Because for most developers à

●

Testing is boring!●

There are of course a number of reasons for improving developer testing:
Defects one finds oneself are easier to analyse than defects found by other
parties;

●

Early rework is cheaper, since knowledge is still fresh and all relevant parties
are still there;

●

Earlier feedback prevents similar errors;●

White-box techniques used in developers' tests find different defects from
black-box techniques used in later tests.

●

Because higher quality products are delivered, fewer defects are found in
later tests (and in production). As a consequence, developers can spend less
time reworking products and more time creating products;

●

One of the most uncertain planning factors is the amount of time and
resources necessary for rework activities. More certainty about product
quality therefore results in better project planning;

●

For the same reason, the project lead-time is shortened.●

These arguments sound good enough, but in practice seldom win from the

QWE2000 -- Conference Presentation Summary

http://www.soft.com/QualWeek/QWE2K/Papers/5T.html (2 of 4) [9/28/2000 11:09:36 AM]

arguments given against improvement. However, there is a new development adding
arguments in favour of improving. This important development is the increasing
strategic use of software, i.e. supporting the primary business of an organisation,
directly dealing with the customers and readily adaptable to new challenges. This
means a different kind of customer than the traditional IT department, demanding
quality software delivered in time. Improving only system and acceptance testing will
result in failing to meet these "in time" demands. Improving developers' tests is an
important step towards meeting the demands.

How to improve? An approach

Below, a practical approach on how to improve developers' tests is described. The
approach has the following key aspects:

organisation●

use of test design techniques●

use of a test life-cycle model●

Organisation

Perhaps the most important aspect of the approach is that an Application
Integrator (AI) will be made responsible for the progress of integration and for the
quality of the outgoing product. The AI negotiates with the project manager or the
development team leader what level of quality is required: under what conditions can
the system be released to the next phase (exit-criteria). The AI also demands insight
in the quality of incoming modules or programs (entry-criteria). A module or program
is only accepted into the integration process if it meets the entry-criteria. In order to
prevent mixing interests, the AI should not be development team leader. This creates
a deliberate tension between the AI, who is responsible for quality, and the
development team leader, who tends to focus on functionality and the amount of
time and resources spent. Since the AI is a member of the development team, this
generates far less resistance from the developers against improving their testing
than other test approaches would do and considerably raises the awareness of
quality within the development team. For test specific expertise, test professionals
(outside of the project) support the AI. The AI communicates with the customer on
quality issues. Because communication is essential, it is very important for the AI to
have good social skills.

Use of test design techniques

The approach does not prescribe 100% use of formal test design techniques, as this
will (in our experience) generate too much resistance. Instead, the AI, program
testers and project manager or development team leader negotiate: important parts
of the system will be tested using formal test design techniques, less important parts
will be tested using informal techniques or even in the old-fashioned, undocumented
way of testing without use of any techniques. A good balance has to be found, for
which several aspects play a role:

risks for the organisation / importance of the system;●

QWE2000 -- Conference Presentation Summary

http://www.soft.com/QualWeek/QWE2K/Papers/5T.html (3 of 4) [9/28/2000 11:09:36 AM]

desired quality of the product;●

progress of the project;●

test maturity of the development team;●

test coverage;●

test evidence;●

resource consumption (of using the test design technique).●

Popular techniques often applied in our projects are checklists and marking test
situations in the functional specifications. Only test situations too complex to be
tested directly from these markings are detailed further into specific test cases.
Although definitely not watertight, the marked up documents supplied with the
tester's initials serve as test evidence.

Use of a test life-cycle model

Exit- and entry-criteria and other agreements are laid down in a test plan (phase 1),
test cases are prepared (phase 2) and executed (phase 3). Again, practical use
prevails: writing documentation such as a test plan is not a target in itself, but serves
as a means of communication between project leader, AI and customer, and should
be kept as minimal as possible.

About the Speaker

Since 1989, Ruud Teunissen is employed in the testing world. He has been involved
in a large number of ICT projects and has performed several functions within the
testing organization: tester, test specialist, test advisor, test manager, etc.

Based on his experience, Ruud participated in the development of the structured
testing methodology TMap and is co-author of several books on structured testing.
The last years Ruud is involved in implementing structured testing within
organizations on the Belgian and Dutch market.

At this moment Ruud is working in Belgium for Gitek n.v. as Manager Testen. Ruud
is frequently speaking in Benelux and Great Britain.

QWE2000 -- Conference Presentation Summary

http://www.soft.com/QualWeek/QWE2K/Papers/5T.html (4 of 4) [9/28/2000 11:09:36 AM]

mailto:rt@gitek.be
http://www.gitek.be/

Improving developers' test November 2000

QWE 2000 - Gitek nv 1

Improving developer’s tests

Ruud Teunissen
Gitek n.v. interaction through software

http://www.gitek.be
e-mail: rt@gitek.be

Agenda

• What are developer’s tests
• Why improve?
• How to improve?

Improving developers' test November 2000

QWE 2000 - Gitek nv 2

Agenda

What are developer’s tests
• Why improve?
• How to improve?

Characteristics

Description
• Low-level tests: unit test, integration test, mostly

performed by developers

Differences
• Defect finder = defect solver
• All defects should be repaired (no risk reporting)
• Attitude developer versus attitude tester
• Tests integral part of development process
• Most defects in product: fast & cheap repair

Improving developers' test November 2000

QWE 2000 - Gitek nv 3

Agenda

• What are developer’s tests
Why improve?

• How to improve?

No improvement necessary!

• Good enough as it is
• Not enough time, too expensive
• A good (better) test follows!

“Not my job”

Improving developers' test November 2000

QWE 2000 - Gitek nv 4

Benefits

Benefits to developer:
• Easier and cheaper repair
• Prevention of (similar) defects
• Less rework later
• Better planning
• Shortened lead time
• More certainty about product quality
• Better product quality

Benefits to total project:
 1 + 1 = 3

Improvement is necessary

Customer demands:

QUALITY software

IN TIME!

Improving developers' test November 2000

QWE 2000 - Gitek nv 5

Case

• Large bank
• Telebanking application
• Second try
• Clean start
• Team: 7 developers
• Duration: 8 months
• Size: 900 function points

Case results

• Defects from acceptance testing:
– First try: 341 defects in 1 week

0

100

200

300

400

1 2 3 4

– Improved dev. testing: 130 defects in 4 weeks

• Severity category: serious cosmetic
– First try: 10% 15% 30% 45%
– Improved dev. testing: 0% 10% 50% 40%

Improving developers' test November 2000

QWE 2000 - Gitek nv 6

Agenda

• What are developer’s tests
• Why improve?

How to improve?

Traditional organisation

Project
Management

Acceptance
Test

Development
projectleader

D

Staff

D DD D = Developers

Improving developers' test November 2000

QWE 2000 - Gitek nv 7

Role: Application integrator

Application Integrator

Project
Management

Acceptance
Test

Development
projectleader

D

Staff

D DD

Quality and integration

Entry-criteria ?

Exit-criteria ?

Integration

Programs or
modules

(Sub)system

Testing
required

Application
integrator

Developers

Customer

Improving developers' test November 2000

QWE 2000 - Gitek nv 8

Test strategy

• Be practical!
• “Right quality”
• Important functions:

– better test coverage
– more test evidence

• Important quality characteristics: the same
• Popular “techniques”:

– Checklists
– Marked up functional specifications
– Only specification of test cases if necessary

Incremental integration

Increment
 1

Increment
 ...

Increment
2

Increment
n

next
phase

Improving developers' test November 2000

QWE 2000 - Gitek nv 9

Use of a life-cycle model

• Test planning phase
– agreements
– strategy
– ...

• Test specification phase
– identify test situations, according to strategy
– (if necessary) prepare test cases
– ...

• Test execution phase
– execute tests
– analysis
– reporting
– conserve required evidence
– ...

Summary

• Improving developers’ tests is necessary:
– Better product quality
– Insight
– Customer satisfaction & confidence
– Quality awareness developers

• How to improve:
– Application Integrator
– Practical
– Improvement from within development team, supported by

professional testers

IT WORKS!!!
IT WORKS!!!

YOUR CHALLENGE!!YOUR CHALLENGE!!

Improving developers' test November 2000

QWE 2000 - Gitek nv 10

Questions?

or email:

rt@gitek.be

Please ask !

QWE2000 Session 5A

Dr. Erik P. vanVeenendaal

[Netherlands]

(Improve Quality Services BV) "GQM Based
Inspection"

Key Points

Inspections●

GQM●

Measurement programme●

Feedback sessions●

Practical results●

Presentation Abstract

Inspections are generally accepted as a means to improve the quality of software
products in an effective and efficient way. However, inspections are not a standard
practice in a great number of software projects and software organisations.
Introducing and implementing inspections is often a tedious and difficult task,
because software engineers must be personally convinced of the effectiveness of
new methods before they will consistently use them.

Collecting relevant data during inspections is a way to overcome these difficulties.
Such data collection for software inspections is termed measurement. Measurement
is a powerful aid to implement and improve the inspection process. Showing real-life
data is often convincing for both the software engineers and their managers. A
well-known and popular software measurement approach is the
Goal/Question/Metric method (GQM). Applying GQM to the inspection process helps
to focus the data gathering process, and support the interpretation process. An
important part of the measurement programme and thus inspection implementation
and improvement process are the so-called feedback sessions. Feed back sessions
are meetings involving members of the project team and the measurement team. It is
an essential tool for analysis and interpretation of the measurement results.

The background to this paper is the implementation of inspections in a number of
Dutch organizations using the GQM approach as a main vehicle. Practical examples
are provided of the measurement goals, metrics and feedback sessions.

About the Speaker

QWE2000 -- Conference Presentation Summary

http://www.soft.com/QualWeek/QWE2K/Papers/5A.html (1 of 2) [9/28/2000 11:09:46 AM]

Dr. Erik P.W.M. van Veenendaal CISA has been working in as a practitioner and
manager within the area of software quality for a great number of years carrying out
assignments in the field of quality management, EDP-auditing, software testing and
inspections. Within this area he specializes in software testing and is the author of a
number of books, e.g. Structured testing; an introduction to TMap and Software
quality from a business perspective.

As a test manager and consultant he has been involved in a great number and
variety of projects, has implemented structured testing and carried out process
improvements activities in a large number of organisations. He is a regular speaker
both at national and international testing conferences and a leading international
trainer in the field of software quality. Erik van Veenendaal is the founder and
managing director of Improve Quality Services, a company that provides services in
the area of quality management, testing and inspections.

At the Eindhoven University of Technology, Faculty of Technology Management, Erik
is part-time involved in lecturing and research activities. He is on the Dutch
standards institute committee for software quality.

QWE2000 -- Conference Presentation Summary

http://www.soft.com/QualWeek/QWE2K/Papers/5A.html (2 of 2) [9/28/2000 11:09:46 AM]

 - 1 -

GQM based Inspection

Erik van Veenendaal / Mark van der Zwan

Abstract
Inspections are generally accepted as a means to improve the quality of software products

in an effective and efficient way. However, inspections are not a standard practice in a great
number of software projects or organisations. Introducing and implementing inspections is
often a tedious and difficult task, because software engineers must be personally convinced of
the effectiveness of new methods before they will consistently use them.

Collecting relevant data during inspections is a way to overcome these difficulties. Such
data collection for software inspections is termed measurement. Measurement is a powerful
aid to implement and improve the inspection process. Showing real-life data is often
convincing for both the software engineers and their managers. A well-known and popular
software measurement approach is the Goal/Question/Metric method (GQM). Applying GQM
to the inspection process helps to focus the data gathering process, and support the
interpretation process. An important part of the measurement programme and thus inspection
implementation and improvement process are the so-called feedback sessions. Feedback
sessions are meetings involving members of the project team and the measurement team. It is
an essential tool for analysis and interpretation of the measurement results.

The background to this paper is the implementation of inspections in a number of Dutch
organizations using the GQM approach as a main vehicle. Practical examples are provided
of the measurement goals, metrics and feedback sessions.

1. Software Inspections
In every software development phase defects are introduced, found and rework is being

carried out. However, often most defects are only found when the software product is almost
finished, e.g. during the system and acceptance testing phase, or even during operation.
Defects found during the testing phase have the disadvantage that their rework on the almost
finished software product is very time consuming. It would have saved the development
organisation a lot of time if these defects where found during an earlier development phase.

Inspections are an effective and efficient quality technique that can be introduced to
improve the quality of the products at an early stage [2]. Besides finding a defect at the
earliest possible moment, the prevention of defects is the important issue. Inspections can
also be used as a means for defect prevention. Based on an analysis of the defects that were
found, the software development processes can be adapted and optimised to prevent these
defects from occurring in the future (as far as possible). Engineers that are involved in the
inspection process can learn from their defects or the defects that were made by someone else.
Inspections can be defined as a structured review of an engineers’ software work product
carried out by his colleagues to find defects and to enable the engineer to improve the quality
of the product [1].

While the importance and benefits of inspections for software projects is well understood
within the software industry, only few engineers apply the inspection technique to their
personal work. Even when statistic evidence from other organizations and projects exists [4]
[7], the introduction of improved software methods, e.g. inspections, is often slow because
software engineers must be personally convinced of the effectiveness of new methods before
they will consistently use them. In software this is particularly true because [3]:

 - 2 -

• software engineers’ methods are largely private and not obvious from the products they
will produce. Thus, if they do not use proper methods, it is unlikely that anyone else will
know;

• software engineers are generally not trained to follow the planning and measurement
disciplines needed to rigorously evaluate the methods they use;

• even when software groups have a common set of defined practices, these practices are not
consistently followed;

• the current industrial environments do not as a prerequisite require the use of the best-
known software engineering methods.

A principal issue, therefor, is how to motivate and implement inspections within a
software project or organisation. The authors argue that metrics should play a major role in
convincing both the software engineers and their management and tuning the inspection
process. In fact metrics are a critical success factor to successful inspection implementation.
Metrics are not optional, they are a requirement.

2. Goal/Question/Metrics approach
A well-known and popular software measurement approach is the Goal/Question/Metric

approach [5] [6]. GQM represents a systematic approach to tailor and integrate goals with
software process and products models. It is based on the specific needs of a project and
organisation. Within GQM measurement goals are derived from high-level corporate goals,
and further refined into measurable values (metrics). GQM defines a certain goal, refines this
goal into questions, and defines metrics that must provide the information to answer these
questions. The GQM paradigm provides a method for top-down metric definition and bottom-
up data interpretation (figure 1).

Implicit Models

Q1 Q2 Q3 Q4

GOAL

M1 M2 M3 M4 M5 M6 M7

D
ef

in
iti

on
Interpretation

Influencing
factors

Quality
models

Figure 1 : The Goal Question Metric paradigm

A number of steps can be distinguished with the GQM process. The steps to take are

applicable when introducing (inspection) measurement in practice. Figure 2 shows these
steps.

Step 1: Organisation and project characterisation. Defining measurement programmes
starts with a characterisation of the organisation and the project. The results of the
characterisation are used in the definition, ranking and selection of the goals and also in
establishing the GQM-plan.

 - 3 -

Step 2: Goal definition. The second step in the GQM process is defining measurement
goals. Goals can directly reflect business goals, but also specific project goals or personal
goals. Measurement goals must be carefully selected, based on selection criteria such as:
priority to the project or organisation, risk, time in which a goal can be reached.

Characterization
of organization

and projects

Goal Definition

Structured
Interviews,

GQM, Measurement
and Analysis Plan

Execution of
the measurement

program

Feedback
sessions

Package

Figure 2 : The steps for goal-oriented measurement

Step 3: Developing the measurement programme. The major activity when developing a

measurement programme is refining the selected goals into questions and metrics. It is
important to check whether metrics answer questions, and that answers to such questions
provide a contribution towards reaching the defined goals.

Step 4: Execution of the measurement programme. In the execution step of the
measurement programme, the measurement data is collected according to the procedures
defined in the measurement plan and the feedback material is prepared as described by the
analysis plan.

Step 5: Feedback sessions. Feedback sessions are meetings involving members of the
project team and the measurement team. It is an essential tool for analysis and interpretation
of the measurement results A more detailed description of Feedback session is provided
hereafter.

Step 6: Packaging of measurement results. To re-use measurement results and experiences,
the results of the measurement programmes must be packaged. Packaging must be done in
such a way that future projects, or other parties from the organisation, are able to use the
measurement results.

Application of GQM measurement by means of the described process divides the
improvement cycle in two parts. The first part consists of the definition process, during which
goals, questions, metrics and additional procedures are defined (step 1, 2, and 3). The second
part consists of the interpretation process, during which the collected data is being analysed,
improvements are identified, and experiences are described (step 4, 5, and 6). For motivating
and convincing software engineers the interpretation process, and especially the feedback
sessions are the most important step.

 - 4 -

3. Interpretation and feedback session

3.1 Interpretation process
Based on the gathered data, an analysis can be performed aimed at answering questions,

and reaching goals. This is the “interpretation process”. Research has shown that interpreting
measurement data is a learning process within a software team. Interpreting measurement
data in a solid way can be done according to the three principles of goal-oriented
measurement:
• Software measurement must reflect the interest of the data providers and must be based on

the knowledge of the development team.
• Only the software developers that provide the data, can interpret that data validity. They

are the only ones who know all the details, also the ones that were not measured, and
therefore are the only ones allowed to really interpret feedback material.

• Because of the limited amount of time of software developers (caused by their
commitments to project planning), conflicts of interest may occur when the development
team performs all measurement tasks. Therefore separate staffing must be available that
support the collection and analysis of the measurement data, by performing all activities
that do not necessarily have to be carried out by the development team. In the context of
inspections these activities should be carried out by the inspection implementation team.

To get the most out of measurement, the interpretation must be emphasised to close the
feedback loop. The main objective of software measurement is to evaluate current processes
and identify improvement opportunities. Depending on the results immediate changes and
adjustments on both the software development process and the measurement process can be
suggested. Through defining conclusions and action points during the interpretation process,
software process improvement is started at the project and engineering level. The motivation
for software developers to participate in software measurement is mainly determined by the
way the interpretation process is carried out. The most critical part of the interpretation
process are feedback sessions.

3.2 Feedback sessions
Feedback sessions are meetings during which data is analysed by the development team

based on the procedures defined in the GQM plan. These sessions are important to keep
interest and motivation for the measurement programme. This is one of the reasons why they
should be done often. On the other hand, there should be enough time between feedback
sessions to ensure there is enough new measurement data and the effort spent is being
optimised. This is a kind of paradox: on the one hand, feedback must be done often; on the
other hand, this is not feasible. In practice, a balance is achieved by running feedback sessions
every six to eight weeks, depending on the project specific goals. Generally feedback sessions
last between two and three hours. A feedback session needs a high degree of concentration of
the attendees. As an effect, a maximum number of 15 slides presenting measurement results
can be discussed. Decisions have to made on the issues to discuss in a feedback session. In
the first sessions of a measurement programme, it might be necessary to discuss all available
material.

During a inspection feedback session also a changes to the inspection process can be
given, new rules or checklists can be introduced. It may also be used to do a survey on the
engineers’ opinion regarding some aspect of inspection. At one organization feedback session
were used to get quantitative data on the logging meeting by asking participant to score

 - 5 -

statements such as “In the logging meeting we learn how to specify” and “In the logging
meeting a common understanding reached”.

 Step:

1. Freeze Database with measurement data
2. Create Basic-set of analysis slides
3. Create Additional-set with new analysis
4. Select Feedback-material
5. Distribute Feedback-material
6. Analyse Feedback-material in the session
7. Draw conclusions, answer questions, and define action points
8. Evaluate with project team
9. Report

Figure 3 : 9 Steps for Feedback Sessions

Feedback sessions consist of the steps shown in figure 3. The first step is to freeze the

database in which the collected measurements are stored. With this data-set it is possible to
update the basic set of slides to discuss during the feedback session. Extra slides can also be
created to study the specific issues raised by the project team. For instance feedback was
asked on average preparation, rework and throughput time. This data wasn’t present in the
initial set of slides, but was requested by project members to improve their planning. Often
the total set of slides is by then already too large. Therefore step 4 must be carried out, during
which a selection is made on the subjects for the feedback session. This selection is done in
co-operation with the representatives from the project. The slides are always preferably
distributed to the attendees of a feedback session one or two days in advance, to offer the
opportunity for preparation. Figure 4 shows an example of a slides from an inspection
feedback session.

Figure 4 : Example of Inspection feedback session slide

After the individual preparations, the feedback session can take place. During a feedback

session, a representative from the inspection implementation team guides the discussion..
He/she explains which data is included in a presentation slide, explains the axes of a chart,
and if a relationship is visible from a slide, points at that relationship. After this explanation,

15

Kick-off effect

Kick-off optional? No kick-off
(n=62)

Kick-off
(n=16)

C/M per
preparation hour 4,1 5,7 (+ 39%)

C/M per page
(per participant) 0,3 0,4 (+ 33%)

 - 6 -

the development team is asked to interpret. Mostly the first interpretation already results in a
group discussion, which is finished with an overall interpretation. At the end of the sessions a
discussion takes place to identify two or three concrete inspection improvement points. The
project team makes a group decision on the improvements to be made. The conclusions are
recorded, and the action points are assigned among the participants of the feedback session. A
feedback session is finalised by an evaluation with all participants involved. The results,
conclusions and inspections improvement actions are reported by the inspection
implementation team, including possible improvements for the measurement programme. The
feedback process then comes to its end, but since it is a continuous process, measurement on
inspection improvement actions are carried out and the next feedback session is already
planned……………

References
[1] Fagan, M.E. (1986), Advances in software inspections, in: IEEE Transactions on Software

Engineering, vol. 12, no. 7, July 1986
[2] Gilb, T and D. Graham (1993), Software Inspections, Addison Wesley
[3] Humprey, W.S. (1995), A discipline for software engineering, Addison Wesley
[4] Rooijmans, J., H. Aerts and M. van Genuchten (1996), Software Quality in Consumer Electronic

Products, in: IEEE Software, January 1996
[5] Solingen, R. van, and E.P.W.M. van Veenendaal (1997), Achieving software quality by GQM

measurement, in: E. van Veenendaal and J. McMullan (eds.), Achieving Software Product
Quality, Tutein Nolthenius, ‘s Hertogenbosch, The Netherlands

[6] Solingen, R. van, and E. Berghout (1999), The Goal Question Metrics method, McGrawHill
[7] Van Veenendaal, E.P.W.M (1999), Practical Quality Assurance for Embedded Software, in:

Software Quality Professional, Vol. 1, no. 3, June 1999

The Authors

Erik van Veenendaal
Improve Quality Services BV
Eindhoven University of Technology
The Netherlands
e-mail : eve@improveqs.nl

Mark van der Zwan
Improve Quality Services BV
The Netherlands
e-mail : mzw@improveqs.nl

© 1999 Improve Quality Services 1.1

1

GQM based InspectionsGQM based Inspections

Erik vanErik van VeenendaalVeenendaal
Mark vanMark van der Zwander Zwan

www.improveqs.nlwww.improveqs.nl

Do you have numbers ?
Watts Humphrey

Do you have numbers ?
Watts Humphrey

2

InspectionsInspections

�� Structured peer reviewStructured peer review
�� Initially developed at IBM by M.E. FaganInitially developed at IBM by M.E. Fagan

–– enhanced by Tomenhanced by Tom GilbGilb / Dorothy Graham/ Dorothy Graham

�� Objective:Objective:
notnot just to find defects,just to find defects,
but also,but also,
to find defects to find defects earlierearlier in the life cycle and to in the life cycle and to
remove the remove the causescauses from the processfrom the process

© 1999 Improve Quality Services 1.2

3

Why inspections ?Why inspections ?

�� 60% of the defects have already been made before 60% of the defects have already been made before
coding/implementation has startedcoding/implementation has started

(50% reported by(50% reported by FreimutFreimut et al, 2000et al, 2000))
(51% “requirements related” reported by(51% “requirements related” reported by VinterVinter, 1998, 1998))

�� Early defects are often the most importantEarly defects are often the most important
–– defects have the characteristic to multiply defects have the characteristic to multiply
 themselves topthemselves top--downdown
–– cost of rework rise exponentiallycost of rework rise exponentially

�� ““EgolessEgoless engineering”engineering”
–– WeinbergWeinberg

req gd dd impl test oper

4

The great contraditionThe great contradition

�� Lots of proof availableLots of proof available
»» 9.3 to 1 (Philips 9.3 to 1 (Philips -- UK), UK), source: Tomsource: Tom GilbGilb

»» 7.7 to 1 (Raytheon 7.7 to 1 (Raytheon -- USA), USA), source: IEEEsource: IEEE

»» 2.1 to 1 (Philips Semiconductors 2.1 to 1 (Philips Semiconductors -- NL), NL), source: SQPsource: SQP

»» 13 to 1 (13 to 1 (DatastreamDatastream -- USA), USA), source: SQPsource: SQP

»» ……..……..

�� SEI Research 20% are doing inspectionsSEI Research 20% are doing inspections
�� Personal experience: Personal experience: 10%10% as a maximum !!as a maximum !!

Do people
really understand ??
Do people
really understand ??

© 1999 Improve Quality Services 1.3

5

What to do ??What to do ??

�� Raise organizational and management awarenessRaise organizational and management awareness
�� Train engineers on real inspectionsTrain engineers on real inspections
�� Pick some documents that really countPick some documents that really count
�� …….…….
➨➨ Convince them by using Convince them by using theirtheir metricsmetrics

“measurement must be focused, based upon goals “measurement must be focused, based upon goals
and models” and models” VictorVictor BasiliBasili

“easy to get ‘numbers’, what is hard is to know they “easy to get ‘numbers’, what is hard is to know they
are right and understand what they mean” are right and understand what they mean” BillBill HetzelHetzel

6

The GQM methodThe GQM method

Goal

Question

Metric Measurement

Answer

Goal Attainment

Collected Data

Planning

Definition Interpretation

Data collection

Pr
oj

ec
t P

la
n

WWW.GQM.NLWWW.GQM.NL

© 1999 Improve Quality Services 1.4

7

Focusing: GQMFocusing: GQM

�� GoalGoal--QuestionQuestion--MetricMetric management
goals or needs

GoalsGoals

QuestionsQuestions

MetricsMetrics

�� Development of goalsDevelopment of goals
�� Generation of questions that Generation of questions that

define the goaldefine the goal
–– a list of questions that a list of questions that

need answers in order to need answers in order to
know whether the goals know whether the goals
have been methave been met

�� Identification of metrics that Identification of metrics that
answer the questionanswer the question

8

Measurement (sub)goalsMeasurement (sub)goals

�� Tune the review/inspection processTune the review/inspection process
–– what are the influences factors ?what are the influences factors ?
–– which criteria should be defined ?which criteria should be defined ?

�� Insight in implementation statusInsight in implementation status
–– are we doing inspections ? are we doing inspections ?
–– how many engineers are trained ?how many engineers are trained ?

�� Insight in the quality of the processInsight in the quality of the process
–– are we getting better ?are we getting better ?

�� Insight in (quantitative) resultsInsight in (quantitative) results
–– how many defects have been found ?how many defects have been found ?
–– what is the Return On Investment ?what is the Return On Investment ?

© 1999 Improve Quality Services 1.5

9

Metric definitionsMetric definitions

�� Name & definition Name & definition
»» measurement formula’smeasurement formula’s
»» unambigiousunambigious (as far as possible)(as far as possible)
»» explaining & examplesexplaining & examples
»» e.g. what is a major defect?e.g. what is a major defect?

�� HypothesisHypothesis
»» influencing factorsinfluencing factors

�� Process form as result !!Process form as result !!

�� Data gathering procedures Data gathering procedures (check the data)(check the data)
�� ResponsibilitiesResponsibilities

10

Common pitfallsCommon pitfalls

�� Definition of major versus minorDefinition of major versus minor
–– definitions including defect typedefinitions including defect type

�� Measurement on number of pagesMeasurement on number of pages
–– e.g. diagrams, LOC versus pages, document typee.g. diagrams, LOC versus pages, document type
–– table of contents, front page etc.table of contents, front page etc.

�� What is included in the various phases ?What is included in the various phases ?
–– e.g. preparation as one activity, reworke.g. preparation as one activity, rework

➨➨ Moderator sessions to discuss interpretation and Moderator sessions to discuss interpretation and
refine definition refine definition

© 1999 Improve Quality Services 1.6

11

Interpretation: FeedbackInterpretation: Feedback

�� Feedback sessionsFeedback sessions
–– interpretation: discussion on metricsinterpretation: discussion on metrics
–– present metrics not results !!present metrics not results !!
–– “QA doesn’t know”“QA doesn’t know”
–– Beware your level 1…………..Beware your level 1…………..
–– Let someone play the criticLet someone play the critic

�� Create basic setCreate basic set
�� Short feedback cycles (e.g. 10 inspections)Short feedback cycles (e.g. 10 inspections)
�� Open to “everyone”Open to “everyone”

12

Tune the process Tune the process -- KickKick--off effect off effect

KickKick--off effectoff effect No kickNo kick--offoff
(n=38)(n=38)

KickKick--offoff
(n=107)(n=107)

C/M perC/M per
preparation hourpreparation hour 4,374,37 5,67 (+ 30%)5,67 (+ 30%)

C/M per pageC/M per page
(per participant)(per participant) 0,260,26 0,46 (+ 73%)0,46 (+ 73%)

© 1999 Improve Quality Services 1.7

13

Tune the process Tune the process -- Checking rateChecking rate
Checking effectiveness

0,0

0,5

1,0

1,5

2,0

2,5

3,0

3,5

4,0

4,5

5,0

0 5 10 15 20 25 30 35

of pages
checked per hour

of pages
checked per hour

C/M defects
per page

C/M defects
per page

Average CR: 18,6Average CR: 18,6

14

Another pitfall…….Another pitfall…….
Individual Checking Rate

0

100

200

300

400

500

1 7 13 19 25 31 37 43 49 55 61 67 73 79

LO
C

/H
r

Individual Checking Rate

0

100

200

300

400

500

1 7 13 19 25 31 37 43 49 55 61 67 73 79

LO
C

/H
r

© 1999 Improve Quality Services 1.8

15

Implementation statusImplementation status

0
5

10
15
20
25
30
35
40
45

98-04 99-01 99-02 99-03 99-04 00-01

0
10
20
30
40
50
60
70
80
90

98-04 99-01 99-02 99-03 99-04 00-01

of inspections
carried out

of inspections
carried out

of engineers
trained

of engineers
trained

16

Quality of processQuality of process

0

10

20

30

40

50

60

70

98-04 99-01 99-02 99-03 99-04 00-01

0
0,2
0,4
0,6
0,8

1
1,2
1,4
1,6
1,8

98-04 99-01 99-02 99-03 99-04 00-01

Percentage
kick-off usage

Percentage
kick-off usage

Average C/M
defects per page

Average C/M
defects per page

0
0,1
0,2
0,3
0,4
0,5
0,6
0,7
0,8
0,9

98-04 99-01 99-02 99-03 99-04 00-01

Average logging rateAverage logging rate

© 1999 Improve Quality Services 1.9

17

Results Results -- TimeTime saved saved

�� Number of inspection defects (Criticals)Number of inspection defects (Criticals) (X1)(X1)
�� Number of inspection defects (Majors)Number of inspection defects (Majors) (X2)(X2)
�� Average rework time in testing (historical)Average rework time in testing (historical) (Y)(Y)
�� Potential “additional” rework effortPotential “additional” rework effort (X * Y)(X * Y)
�� Time spent on inspectionsTime spent on inspections (Z)(Z)

–– including rework, followincluding rework, follow--up & administrationup & administration

�� Time saved = ((X1 + (X2 x 0.3)) * Y) Time saved = ((X1 + (X2 x 0.3)) * Y) -- ZZ
➨➨ ((467((467 + + (1896(1896 x 0,3)) * 2x 0,3)) * 2,75,75 h) h) -- 21622162 h = h = 686686 hh

Field defects… !!??Field defects… !!??

18

Other feedback aspects….Other feedback aspects….

�� Get additional information (engineers’ opinion)Get additional information (engineers’ opinion)
–– e.g. effect of the logging meetinge.g. effect of the logging meeting
–– CMM compliancy (quickCMM compliancy (quick--scan)scan)

�� Changes on the processChanges on the process
–– new guidelinenew guideline
–– changes process formchanges process form
–– etc...etc...

�� Agree on improvementsAgree on improvements
–– they choose !!they choose !!

© 1999 Improve Quality Services 1.10

19

Results Results -- Engineers’ opinionEngineers’ opinion

�� Quality of the products is improvedQuality of the products is improved 8,28,2
�� The software process is improvedThe software process is improved 7,67,6
�� Efficiency of development is improvedEfficiency of development is improved 7,37,3
�� Learn how to specifyLearn how to specify 7,37,3
�� Our project is better controlledOur project is better controlled 7,27,2
�� A common understanding is reachedA common understanding is reached 7,27,2

➨➨ also look at the standard deviation !!also look at the standard deviation !!

20

Improvement possibilitiesImprovement possibilities

�� Improve checking rate / logging rateImprove checking rate / logging rate
–– quantifyquantify

�� Document inspection strategyDocument inspection strategy
�� Train new engineersTrain new engineers
�� Average number of pagesAverage number of pages

–– quantifyquantify

�� Apply chuncking / samplingApply chuncking / sampling
�� Carry out kickCarry out kick--off meetingsoff meetings
�� …...…...

© 1999 Improve Quality Services 1.11

21

The GQM based approachThe GQM based approach

�� PLANPLAN
–– define processdefine process

�� DODO
–– JUST DO IT !!JUST DO IT !!

�� CHECKCHECK
–– GQM GQM

measurementsmeasurements
�� ACTACT

–– bottombottom--up up
improvementsimprovements

22

Summary pitfallsSummary pitfalls

�� Fail to Fail to collectcollect datadata
�� Failure to Failure to useuse data and give data and give feedbackfeedback
�� When participants / moderators are not trained When participants / moderators are not trained

–– amateurs will find ways to screw it upamateurs will find ways to screw it up

�� Everyone is a moderatorEveryone is a moderator
�� Not following the rules, which usually workNot following the rules, which usually work

–– until you know why (until you know why (metricsmetrics !!) and how to modify !!) and how to modify
themthem

�� Not improving the inspection (and metrics!!) Not improving the inspection (and metrics!!)
process using the ideas from participantsprocess using the ideas from participants

How to screw up in spite of a good method

© 1999 Improve Quality Services 1.12

23

Finally ...Finally ...

Inspections work !Inspections work !

Thank you

It’s easy but not simpleIt’s easy but not simple !!

QWE2000
Session

5I

Mr. Rakesh
Agarwal,
Bhaskar
Ghosh,
Santanu

Banerjee &
Soumyendu
Pal [India]

(Infosys
Technologies

Ltd)

"Challenges
And

Experiences
In

Establishing
WebSite

Quality (5I)"

Key Points

Architecture●

Web Testing●

Simulatioin●

Quality Software●

Presentation Abstract

Web technology has matured rapidly over the last few years. Previous web
benchmarking focused merely on the number of ôhitsö that a web site could handle
within any given time period. Now that the Internet is mainstream, and literally millions of
people utilize the technology, organizations need more meaningful metrics to accurately
evaluate technology implementation Businesses looking to capitalize on Internet
technology require benchmarks that provide statistics based upon realistic end-user
experiences. Statistics of importance include: average wait time for a dynamically
generated HTML page to be delivered to an end user under heavy server loads;
scalability of a provided web application solution when additional servers are
incorporated into an existing server cluster; and maintenance support if a catastrophic
server failure occurs. Website testing has much in common with the testing of standard

QWE2000 -- Conference Presentation Summary

http://www.soft.com/QualWeek/QWE2K/Papers/5I.html (1 of 2) [9/28/2000 11:09:58 AM]

client/server applications. However, there are unique considerations that can affect the
focus of testing strategy. In this paper we will discuss some of the factors that determine
what to test in a Web site, the special considerations of database-driven Web sites, and
how new Web test tools can help.

About the Speaker

Rakesh Agarwal is working with Infosys Technologies Limited, India, in the Education
and Research Department for the past 3 years. He has published more than 60 papers
in leading conferences and Journals.

Bhaskar Ghosh is working as Associate Vice President in Infosys Technologies Limited,
India for the past 4 years. He has lead many projects in his carrier and Heads one of the
Development Centers of Infosys.

Santanu Banerjee is a project leaders at Infosys Technologies Limited, India. He has
been working on various web projects and currently involved in the design and
development of a complete investment portal.

Soumyendu Kishore Pal is working in Infosys Technologies Limited, India. He has
worked on number of leading projects and has interest in Web based testing.

QWE2000 -- Conference Presentation Summary

http://www.soft.com/QualWeek/QWE2K/Papers/5I.html (2 of 2) [9/28/2000 11:09:58 AM]

 1

Challenges and Experiences in establishing WebSite Quality

Rakesh Agarwal, Bhaskar Ghosh, Santanu Banerjee and Soumyendu Kishore Pal
Infosys Technologies Ltd., Near Planetarium, N.H.5,

Bhubaneswar - 751013, India, rakesh_a@inf.com

Abstract
Web technology has matured rapidly over the last few years. Previous web benchmarking
focused merely on the number of “hits” that a web site could handle within any given time
period. Now that the Internet is mainstream, and literally millions of people utilize the
technology, organizations need more meaningful metrics to accurately evaluate
technology implementation Businesses looking to capitalize on Internet technology
require benchmarks that provide statistics based upon realistic end-user experiences.
Statistics of importance include: average wait time for a dynamically generated HTML
page to be delivered to an end user under heavy server loads; scalability of a provided web
application solution when additional servers are incorporated into an existing server
cluster; and maintenance support if a catastrophic server failure occurs.

Website testing has much in common with the testing of standard client/server
applications. However, there are unique considerations that can affect the focus of testing
strategy. In this paper we will discuss some of the factors that determine what to test in a
Web site, the special considerations of database-driven Web sites, and how new Web test
tools can help.

1. Introduction

The Internet has raised consumers' expectations to new highs. Whether you sell goods or
services, alternatives are likely to be only a click away. The users are not willing to wait
more than a few seconds for pages to come when they're clicking around your site. How
do we make sure your Web site delivers top performance during peak demand periods?
How do we build in the flexibility to deal with a sudden spike in traffic when we launch a
new product? How do you handle an attack from vandals intent on flooding out the
legitimate traffic?

This answer is high availability: building your Web site infrastructure such that
regardless of an assault, no single part ever gets so overloaded that it fails or slows the
site to a crawl. The basic elements of a high-availability Web site are equipment,
connections, and skill[1][2].

Within minutes of going live, a WWW application can have many thousands more users
than a conventional, non-WWW application[3][4]. The immediacy of the WWW creates
an immediate expectation of quality and rapid application delivery, but the technical
complexities of a WebSite and variances in the browser make testing and quality control
more difficult, and in some ways, more subtle. Testing of WebSites is both an
opportunity and a challenge. A WebSite can be complex, and that complexity -- which is
what provides the power, of course -- can be an impediment in assuring WebSite

 2

Quality[5][6]. Some of the major components of WebSites as seen from a Quality
perspective are:

Browser: The browser is the viewer of a WebSite and there are so many different
browsers and browser options that a well-done WebSite is probably designed [7][1][6]to
look good on as many browsers as possible. This imposes a kind of de facto standard: the
WebSite must use only those constructs that work with the majority of browsers. But this
still leaves room for a lot of creativity, and a range of technical difficulties.

Database Access: In E-commerce, applications[8][9] either the data is build up or retrieve
from a database. How does that interaction perform in real world use? If a "correct" or
"specified" input is given does the result produce the expected output?
Some access to information from the database may be appropriate depending on the
application, but this is typically found by other means.

Multi-Media: What about streaming video, audio, online chats? How is quality assessed
here? What are the validation mechanisms? How do we know if the presentation is right?

Navigation. Users move to and from pages, click on links, click on images (thumbnails),
etc. Navigation in a WebSite often is complex and has to be quick and error free.

Object Mode: The display changes dynamically; the only constants are the "objects" that
make up the display. These aren't real objects in the Object Oriented sense; but they have
to be treated that way. So, the quality test tools have to be able to handle URL links,
forms, tables, anchors, buttons of all types in an "object like" manner so that validations
are independent of representation.

Server Response: How fast the WebSite host responds influences whether a user (i.e.
someone on the browser) moves on or continues. Obviously, InterNet loading affects this
too, but this factor is often outside the Webmaster's control at least in terms of how the
WebSite is written. Instead, it seems to be more an issue of server hardware capacity and
throughput. Yet, if a WebSite becomes very popular loading and tuning are real issues.

Interaction and Feedback: For passive content-only sites the only issue is availability,
but for a WebSite that interacts with the user, how fast and how reliable that interaction is
can be a big factor.

Concurrent Users: Do multiple users interact on a WebSite? Can they get in each others'
way? While WebSites often resemble client/server structures, with multiple users at
multiple locations a WebSite can be much different, and much more complex, than
complex applications. WebSite's quality and reliability [10][1][11]are crucial. The very
special nature of the WWW and WebSites pose unique software testing challenges.
Webmasters, WWW applications developers, and WebSite quality assurance manages
need tools and methods that can match up to the new needs[12[13]. Mechanized testing
via special purpose WWW testing software offers the potential to meet these challenges.

 3

2. Process for testing the WebSite

There are certain procedural steps that need to be followed in order to avail a good
WebSite that adheres to the standards[14[15] of any quality system [1][6]. The steps in
website testing are:

!"Define the purpose of WebSite testing effort.

!"Develop test plan/scenarios.

!"Running and evaluating the test plans/scenarios.

!"Continuos testing and measurement.

Figure 1 shows the process for testing the WebSites.

Define the purpose of
WebSite testing effort

Developing test
plan/scenarios

how to
maintain
scripts

how it's going
to be done

what's to
be tested

what are expected
benefits

what are
expected

costs

Running and evaluating
the test plans/scenarios

Continuos testing and
measurement

Figure 1: Phases in testing WebSite

2.1 Define the purpose of WebSite testing
There are several categories of testing each with its own purpose[3][16]. Identifying what
needs to be tested. A WebSite is like any piece of software: no single quality measure
applies, and even multiple quality metrics may not apply. Yet, verifying user-critical
impressions of "quality" and "reliability" is a big task for WebSites. There are many

 4

dimensions of quality, and each measure will pertain to a particular WebSite in varying
degrees.
Time: WebSites change often and rapidly? How much has a WebSite changed since the
last upgrade? How do we highlight the components that have been changed?

Structural: How well do all of the parts of the WebSite hold together. Are all links inside
and outside the WebSite working? Do all of the images work? Are there parts of the
WebSite that are not connected?

Content: Does the content of critical pages match what is supposed to be there? Do key
phrases exist continually in highly-changeable pages? Do critical pages maintain quality
content from version to version? What about dynamically generated HTML pages?

Accuracy and Consistency: Are today's copies of the pages downloaded the same as
yesterday's? Is it close enough? Is the data presented accurate enough?

2.2 Develop test plan/scenarios.
This is very important in mapping out what's to be tested[7][8], how it's going to be done,
how the scripts will be maintained and what the expected costs and benefits. Structurally
every testing effort should have a testing strategy, or test plan, so should there be a plan
built for WebSite testing.

Response Time and Latency: Does the WebSite server respond to a browser request
within certain parameters? In an E-commerce context, how is the end-to-end response
time after a SUBMIT button is pressed? Are there parts of a site that are so slow the user
declines to continue working on it?

Performance: Is the Browser-Web-WebSite-Web-Browser connection quick enough?
How does the performance vary by time of day, by load and usage? Is performance
adequate for E-commerce applications? Taking 10 minutes to respond to an E-commerce
purchase is clearly not acceptable!

Impact of Quality. Quality is in the mind of the user. A poor-quality WebSite, one with
many broken pages and faulty images, with CGI-Bin error messages, etc. may cost in
poor customer relations, lost corporate image, and even in lost sales revenue. Very
complex WebSites can sometimes overload the user.

The combination of WebSite complexity and low quality is potentially lethal. Unhappy
users will quickly depart for a different site! And they won't leave with any good
impressions

2.3 Running and evaluating the test plans/scenarios.
The entire process of testing should be treated as a software development effort[3][4]6].
This includes defining what should be automated, (the requirements phase), designing
test automation, writing the scripts, testing the scripts, etc. The scripts need to be
maintained over the life of the product just as any program would require maintenance.

 5

Other components of software development[17][18], such as configuration management
also apply. By simulating the test plan in iterative manner, we will get the quantitative
outputs.

2.4 Continuos testing and measurement.
The effort of testing is an investment. Sufficient time and resources are needed in order to
obtain the benefits. Definitely, some scripts can be created which will provide immediate
payoff, but this is not much of benefit. The benefit comes from running these automated
tests every subsequent release[19][20]. Therefore, ensuring that the scripts can be easily
maintained becomes very important[7].

3. Assuring WebSite quality

Assuring WebSite quality requires conducting sets of tests, automatically and repeatable,
that demonstrate required properties and behaviors. Some required elements of tools that
aim to do this are:

Browser Independent: Tests should be realistic, but not be dependent on a particular
browser, whose biases and characteristics might mask a WebSite's problems.

No Buffering, Caching: Local caching and buffering -- often a way to improve apparent
performance -- should be disabled so that timed experiments are a true measure of the
Browser-Web-WebSite-Web-Browser response time.

Fonts and Preferences: Most browsers support a wide range of fonts and presentation
preferences, and these should not affect how quality on a WebSite is assessed or assured.

Object Mode: Edit fields, push buttons, radio buttons, check boxes, etc. All should be
treatable in object mode, i.e. independent of the fonts and preferences. Object mode
operation is essential to protect an investment in tests and to assure tests' continued
operation when WebSite pages change. When buttons and form entries change location -
- as they often do -- the tests should still work.
When a button or other object is/are deleted, that error should be sensed! Adding objects
to a page clearly implies re-making the test.

Tables and Forms: Even when the layout of a table or form varies in the browser's view,
tests of it should continue independent of these factors.

Frames: Windows with multiple frames ought to be processed simply, i.e. as if they were
multiple single-page frames.

Test Context. Tests need to operate from the browser level for two reasons: (1) this is
where users see a WebSite, so tests based in browser operation are the most realistic; and
(2) tests based in browsers can be run locally or across the Web equally well. Local
execution is fine for quality control, but not for performance measurement work, where
response time including Web-variable delays reflective of real-world usage is essential.

 6

4. Website validation processes

Confirming validity of what is tested is the key to assuring WebSite quality -- and is the
most difficult challenge of all. There are five essential areas where test automation will
have a significant impact.

4.1 Operational Testing
Individual test steps may involve a variety of checks on individual pages in the WebSite:

!"Page Quality: Is the entire page identical with a prior version? Are key parts of the

text the same or different?
!"Table, Form Quality: Are all of the parts of a table or form present? Correctly laid

out? Can it be confirmed that selected texts are in the "right place".
!"Page Relationships: Are all of the links a page mentions the same as before? Are

there new or missing links?
!"Performance, Response Times: Is the response time for a user action the same as it

was (within a range)?

4.2 Test Suites
Typically there are dozens or hundreds (or thousands?) of tests, and we may wish to run
tests in a variety of modes:

!"Unattended Testing: Individual and/or groups of tests should be executable singly or

in parallel from one or many workstations.
!"Background Testing: Tests should be executable from multiple browsers running "in

the background" [on an appropriately equipped workstation].
!"Distributed Testing: Independent parts of a test suite should be executable from

separate workstations without conflict.
!"Performance Testing: Timing in performance tests should be resolved to 1

millisecond levels; this gives a strong basis for averaging data.
!"Random Testing: There should be a capability for randomizing certain parts of tests.
!"Error Recovery: While browser failure due to user inputs is rare, test suites should

have the capability of re-synchronizing after an error.

4.3 Content Validation
Apart from how a WebSite responds dynamically, the content should be checkable either exactly
or approximately. Some of the ways are:

!"Structural: All of the links and anchors match with prior "baseline" data. Images

should be characterizable by byte-count and/or file type or other file properties.
!"Checkpoints, Exact Reproduction: One or more text elements -- or even all text

elements -- in a page should be markable as "required to match".
!"Gross Statistics: Page statistics (e.g. line, word, byte-count, checksum, etc.).
!"Selected Images/Fragments: The tester should have the option to rubber band

sections of an image and require that the selection image match later during a

 7

subsequent rendition of it. This ought to be possible for several images or image
fragments.

4.4 Load Simulation
Load analysis needs to proceed by having a special purpose browser act like a human
user. This assures that the performance checking experiment indicates true performance -
- not performance on simulated but unrealistic conditions.

Sessions should be recorded live or edited from live recordings to assure faithful timing. There
should be adjustable speed up and slow down ratios and intervals. Load generation should
proceed from:

!"Single Browser: One session played on a browser with one or multiple responses.

Timing data should be put in a file for separate analysis.
!"Multiple Independent Browsers: Multiple sessions played on multiple browsers with

one or multiple responses. Timing data should be put in a file for separate analysis.
Multivariate statistical methods may be needed for a complex but general
performance model.

!"Multiple Coordinated Browsers: This is the most-complex form -- two or more
browsers behaving in a coordinated fashion. Special synchronization and control
capabilities have to be available to support this.

5. How do you impose load on a website ?

The main goal of creating an artificial load on a WebSite is to permit the load to emulate
one or a dozen or a hundred or thousands of users actually using the WebSite. There are
two main ways to do this. Caveats: First one on the Web, this may be quite difficult.
Other on the LAN this is easier, but may require a 100Mbps LAN to saturate the servers.
Hope: At some point the capacity will scale linearly: 2X machines means 2X capacity.

HTTP Protocol Based -- No matter what a user does on a WebSite the HTTP protocol
prevails, so it is natural enough to start thinking about imposing load by finding a way to
simulate the HTTP protocol. You can relatively easily create or record HTTP requests by
a browser to the candidate WebSite. There are many tools that can do the get URL page
[a simple command/action] -- and do this under user control. A simple enough can be a
PERL script.

While relatively easy to use to generate basic retrievals of pages, this approach suffers
from the fact that all of the URLs associate with a page have to be included if the
simulation is to be a realistic one. The disadvantage is that you could easily create a test
scenario that fails to include important load factors such as download times for images
and other slow-to-respond page components.

Browser Based Playback Simulations --. In this approach, the test scenarios are scripts
that control a test browser and, working through the browser, emulate the typical users
actions, responses and timings. This method has the advantage of reality, but may involve

 8

more work in deciding on a scenario and making sure that the scenario plays back
realistically.

6. Web Capacity Testing

We all have had the exasperating experience of waiting too long for a page to arrive at
our Web browser. Ultimately, if the response time is too long, we "click away" and do
something else.

Even when the Web is heavily saturated with requests, if you are patient enough every
page you request will -- ultimately -- be delivered to your browser. But that's not good
enough. Too slow response times turn users away, or, worse yet, because the user has
moved on to another page or context, important session data could be lost.

How slow is "too slow"? In other words, the Web Site sever is configured properly and
effectively when it has "enough capacity to meet the customer demands".

Good engineering practice suggests that Web server machines have a Safety Factor of 2
or more. This means, that, when serving the design load, the Web servers ought to be
running at about 50% of maximum capacity.

Another way to look at this is to look for the reverse information: when is the server
delivering a request too slowly? While you may never really know what the peak
deliverable capacity of the server is, you might be able to tell fairly accurately when the
imposed server load (i.e. the queue of incoming requests) is not being served within a
specified time limit, say 10 seconds. Then you surely will know when there is NOT
enough capacity -- when this limit is exceeded.

But if the WebSite involves a two-tier or three-tier structure -- which is increasingly
common for e-commerce sites -- then measuring one machine may lead to false
conclusions. For example, all three machines in a three-tier structure could be achieving
their performance goals -- that is, not setting off alarms -- but the overall cummulative
application could still be "too slow" to satisfy users.

6.1 Can we measure response time from a typical users' perspective?
It may be simpler to measure response time at the client side of the picture, i.e. from the
browser. If you can pre-establish a multi-case scenario that is typical of what users do,
then it is possible to engineer series of experiments that measure WebSite performance
against that specific scenario.

Even though it is relatively easy to measure if such tests run slower than a threshold -- for
example, the 10 second overall response time limit -- this approach has a fundamental
limit: it is only as good as the set of scenarios that you develop to emulate actual WebSite
use.

 9

6.2 What Affects WebSite Performance?
Many factors affect how fast a WebSite appears to a user. There are many, many stages
between a RETURN typed on a browser and a completed [or complete enough] page
being rendered on the client.

1. Client Machine Speed and LAN Factors. Before the request is delivered to the Web
by the client machine it may have to work its way through the local LAN and enter
the Web, where the connect speed and local saturation affects performance.

2. The Outbound Request to the Server - Before the request gets to the server the Web
routing and other technical overhead produces delays.

3. The Server Response Time -- After the request gets to the server the response speed
is affected by the current request backlog, where the request is in a multi-layer
queue, and how long-running the last-tier request (typically some kind of database
access) takes.

4. The Inbound Delivery to the Client. After the response is delivered by the server
the reverse of the above sequence takes over: the delivered pages have to wend
their way through the Web back to the client.

5. The Client Response Time. After the data arrives at the client access point client

machine speed and local LAN factors come into play again.

6. The Client Rendering. The browser now has all the parts it needs; it is a matter of
how long it takes the browser to render the page/image -- or at least a minimal part
of it -- so that the user can take action

Note: An apology is due for the simplifications we assumed here here. In fact, the
sequence is rather more complex because all of the machines along the way between a
request by a browser and a response seen in the browser involve, typically, multi-
programming, multi-threaded executions that dynamically adapt to changing Web
conditions that are at least in part adjusting to the actual requests that are being discussed.
Left out are such technologies as threading requests via different routs, packet re-
transmits and asynchronous arrivals, and much LAN protocol complexity.

Still, the bottom line is clear: elapsed time perceived by the user actually occurs, as they
say, in true real time.

7. Case study using the WebLoad tool

WebLoad tests[21] Web applications by generating Virtual Clients that simulate real-
world loads. Users create JavaScript-based test scripts that define the behavior of the
Virtual Clients and WebLoad executes these test scripts monitoring the application
response graphically and statistically, and presenting the test results in real-time.

 10

WebLoad incorporates functional testing into the scalability testing process allowing to
accurately verify the scalability and integrity of Web applications at the per-client, per-
transaction, per-instance level under defined load conditions. WebLoad saves the test
results including data from the Load Generators (described in the paragraphs that follow)
and the hosting hardware’s performance monitor. We can view all or part of the data in
real time or after the test Session is complete in tabular format or in graphical format.

The following diagram illustrates the configuration for a typical WebLoad Load Session.
Each component in the Load Session is labeled (1-4).

Figure 2: Configuration of typical Webload Load Session

!"The Console sets up, runs and controls a test Session. At the Console, we can:

!"Define the hosts participating in the Load Session
!"Specify a program that the Load Session executes
!"Schedule tests

!"The Load Machines are hosts, which run Load Generator software simulating
multiple Virtual Clients. One Load Machine can run multiple Load Generators. Load
Generators execute tests that “bombard” the application being tested with a large
load, to enable complete scalability and stress testing. The tests consist of multiple
simultaneous HTTP protocol requests. These requests are made from Virtual Clients
(which emulate Web browsers) to Web servers. The Load Machines can run multiple
threads and testing returns average values.

!"The Application Being Tested is where the Web application being tested resides. The
Application Being Tested (ABT) does not require that WebLoad software be installed
on it.

!"The Probing Client Machines are also hosts running Probing Client software, acting
as a single Virtual Client and run at the same time as Load Machines – to further
measure the performance of the Application Being Tested. WebLoad generates exact
values for Probing Client performance. WebLoad uses a network agent, TestTalk to
facilitate communication between the Console and hosts – either Load Machines or
Probing Client Machines. TestTalk must be installed on both the Console and hosts.

 11

We have used the tool in order to test some of the projects. Some of the results are
illustrated below:

 ------ Load Size (A)
------ Transactions per second (B)
------ Throughput(Bytes per second) (C)

X: Axis – Session running time.
Y-Axis - Value in percentage

7.1 STRESS TESTING

7.1.1 12 Users simultaneously logged in

A

B
C

7.1.2 1 User logged in.

 12

7.2 Connectivity with 12 Users logged in –

7.2.1 1.5 MBPS link

7.2.2 56kbps

7.3 Performance with 12 users with no cache…..

A
B
C

 13

8. Observations from the project

We learned several valuable experience during the web based testing:
!"Before building a first web-based application system, a pilot project (or an

experimental project) must be implemented to get the valuable experience and lessons
from the first practice. Through this pilot project, we can find various issues,
alternative solutions to these problems,

!"A team is needed to perform different feasibility and experimental study, high-level
as well low-level designs, and implement some reusable and important components.
Their major tasks are: 1) to identify the problems (including potential problems), 2) to
find good and appropriate mechanisms (or solutions) to these problems, 3) to set up
well-defined interfaces between components/sub-systems as well as client/server
interface, 4) to create a set of good design patterns and implementation models, 5) to
define well-structured code templates.

!"Hypertext designs and implementations for a data-centered application system should
be designed based on database schema and its data hierarchy structure.

!"To simplify database accesses and the related communications between clients and
the server, each database related hypertext form/template should be self-contained
and consists of necessary data items, which can be easily used to perform database
transactions and queries.

The weakness of most web methodologies lies in their approach. But testing large
WebSite requires an approach. We presented a novel approach for testing WebSites. The
proposed ideas are the result of many years of research mainly in the area of enterprise
modeling[6[20]. They are currently being implemented and tested in a modeling
environment. They proved to be very effective in handling complex models, in particular
modeling a number of business processes. Further study will be devoted to operational
issues deriving from the real use of tools. Such issues will provide the basis for new
extensions to mainstream testing methodologies[18].

This is just a beginning of the battle for the WebSite testing. Many vendors are updating
the existing architecture and some more new architectures possible[17][18]. Taking this
work as base one may study about new extensions or easily understand the new
architecture[17][18].

9. References

[1] James A. Whittaker, “What is Software Testing? And Why is it so hard”, IEEE

Software, January/February 2000, pp. 70-79.
[2] Jerry Gao, Cris Chen, Yasufumi Toyoshima, and David Leung Developing an

Integrated Testing Environment Using the World Wide Web Technology in
Proceedings of the COMPSAC '97 - 21st International Computer Software and
Applications Conference, 1997.

[3] Ji-Tzay Yang, Jiun-Long Huang, Feng-Jian Wang William. C. Chu. An Object-
Oriented Architecture Supporting Web Application Testing in the Proceedings of

 14

the Twenty-Third Annual International Computer Software and Applications
Conference, 1999.

[4] Bruno, G., Agarwal, R. Torchiano, M. Static, dynamic and run-time modeling of
compound classes, ACM SIGPLAN Notices, 31, 11, November 1996, 49-55.

[5] Infosys technical reference repository.
[6] Bruno, G. Agarwal, R. Modeling the Enterprise Engineering Environment, IEEE

Transactions on Engineering Management, 44, 1, February 1997, 20-30.
[7] Catherine C. Marshall and Frank M. Shipman III, “Spatial Hypertext: Designing for

Change,” Communication of The ACM, Vol. 38, No. 8, August 1996, pp. 88-97.
[8] Daniel E. O’Leary, “The Internet, Intranets, and the AI Renaissance”, IEEE

Computer, January 1997, pp. 71-78.
[9] Hanafy Meleis and Racal Data Group, “Toward the Information Network”, IEEE

Software, October 1996, pp. 59-67.
[10] Lance N. Ulanoff, et al., “Build Your Own WebSite, ”PC MAGAZINE, September

10, 1996, pp. 101-111.
[11] Michael Bieber and Fabio Vitali, “Toward Support for Hypermedia on the World

Wide Web”, IEEE Computer, January 1997, pp. 62-70.
[12] Randall J. Atkinson, “Toward a More Secure Internet”, IEEE Computer, January

1997, pp. 57-61.
[13] Steven J. Vaughan-Nichols, “Switching to a Faster Internet”, IEEE Computer,

January 1997, pp. 31-32.
[14] Tim Berners-Lee, “WWW: Past, Present, and Future,”IEEE Software, October

1996, pp. 69-77.
[15] Charles W. Krueger, “Software Reuse”, ACM Computer Surveys, page 131-183,

June 1992.
[16] Debra J. Richardson, “TAOS: Testing with Analysis and Oracle Support”,

International Symposium on Software Testing and Analysis, page 138-153, March
1994.

[17] R. Agarwal, G. Bruno and M. Torchiano, Domain Specific Software Architecture
for Modeling and Simulating, presented at the Workshop on Object-Oriented
Software Architecture, European Conference on Object-Oriented Programming
(ECOOP) Brussels, Belgium, 20-24 July 1998.

[18] R. Agarwal, G. Bruno and M. Torchiano, Object-Oriented Architectural Support for
Developing Complex Systems, presented at the IEEE Computer Software and
Applications Conference, Phoenix, Arizona, Oct 27-29 1999.

[19] R. Agarwal, B. Ghosh, and A. Sarangi, Designing reliable software using DAF," in
Proc. of FastAbstracts and Industrial Practices, 10th IEEE International Symposium
on Software Reliability Engineering, Boca Raton, Florida, November 2-5 1999.

[20] R. Agarwal, G. Bruno and M. Torchiano, An Operational Approach to the Design of
Workflow Systems in the Journal of Information and Software Technology
published by Elsevier Science, Volume 42, Issue 8, pages 547-555, May 2000.

[21] The WEBLOAD user's guide, RadView Software.

Infosys Technologies Ltd

Software Testing 1

Challenges and Experiences in
establishing WebSite Quality

Rakesh Agarwal, Bhaskar Ghosh,
Santanu Banerjee and Soumyendu
Kishore Pal
Infosys Technologies Limited

Infosys Technologies LtdQuality Week 2000 2

Web Applications
Extensive user interaction
Extensive use of session state
Layered architecture with diff. set of
contents at different layers for ex.
➨User Interface layer
➨Business Logic Layer
➨Database layer

Infosys Technologies Ltd

Software Testing 2

Infosys Technologies LtdQuality Week 2000 3

Testing Web Applications
GUI intensive
Database intensive
Page execution order affects session
state
Rapid and continual change
➨Testing methodology must keep up
➨There may be no standard releases

Infosys Technologies LtdQuality Week 2000 4

Users in an web application
Demography of users in a traditional app are
generally known in advance. Their login
pattern, usage pattern, general behavior, etc
are known in advance. Generally, users on
an intranet are reasonably predictable.

Profile of users in an app exposed to the
Internet is not known.
➨ They could be genuine buyers, hackers, frivolous

people, frauds, or people all out to have some fun.
➨ Transaction rate is not known upfront; could vary

by time of the day (or night!); there could be
sudden peaks and troughs

Infosys Technologies Ltd

Software Testing 3

Infosys Technologies LtdQuality Week 2000 5

Phases in testing WebSite
D efine the pu rpose of
W ebSite testing effo rt

D ev elop ing test
p lan /scenarios

how to
m ain tain

scrip ts

how it's go in g
to be done

w hat's to
be tested

w hat are ex pected
benefits

w hat are
ex pected

costs

R unn ing and evaluating
the test p lans/scenarios

C on tinuos testing and
m easurem en t

Infosys Technologies LtdQuality Week 2000 6

Process for testing the WebSite
Define the purpose of WebSite testing
effort.
Develop test plan/scenarios.
Running and evaluating the test
plans/scenarios.
Continuos testing and measurement.

Infosys Technologies Ltd

Software Testing 4

Infosys Technologies LtdQuality Week 2000 7

Define the purpose of WebSite testing
Time
➨ WebSites change often and rapidly.

Structural
➨ How well do all of the parts of the WebSite hold

together ?
Content
➨ Does the content of critical pages match what is

supposed to be there?
Accuracy and Consistency
➨ Are today's copies of the pages downloaded the

same as yesterday's?

Infosys Technologies LtdQuality Week 2000 8

Develop test plan/scenarios.
Response Time and Latency
➨ Does the WebSite server respond to a browser

request within certain pre-planned parameters?
Performance
➨ Is the Browser-Web-WebSite-Web-Browser

connection quick enough?
Impact of Quality
➨ Quality is in the mind of the user

Infosys Technologies Ltd

Software Testing 5

Infosys Technologies LtdQuality Week 2000 9

Running and evaluating the test
plans/scenarios

The entire process of testing should be
treated as a software development effort.
This includes defining what should be
automated, (the requirements phase),
designing test automation, writing the scripts,
testing the scripts, etc.
The scripts need to be maintained over the
life of the product just as any program would
require maintenance.

Infosys Technologies LtdQuality Week 2000 10

Continuos testing and measurement
The effort of testing is an investment.
Sufficient time and resources are needed in
order to obtain the benefits.
Definitely, some scripts can be created which
will provide immediate payoff, but this is not
much of benefit.
The benefit comes from running these
automated tests every subsequent release.
➨ Therefore ensuring that the scripts can be easily

maintained becomes very important.

Infosys Technologies Ltd

Software Testing 6

Infosys Technologies LtdQuality Week 2000 11

Assuring Website quality
Browser Independent
No Buffering, Caching
Fonts and Preferences
Object Mode
Tables and Forms
Frames
Test Context

Infosys Technologies LtdQuality Week 2000 12

Website Validation Processes:
Operational Testing

Page Quality
➨ Is the entire page identical with a prior version?

Table, Form Quality
➨ Are all of the parts of a table or form present?

Page Relationship
➨ Are all of the links a page mentions the same as

before?
Performance, Response Times
➨ Is the response time for a user action the same as

it was (within a range)?

Infosys Technologies Ltd

Software Testing 7

Infosys Technologies LtdQuality Week 2000 13

Website Validation Processes
Test Suites
➨Unattended Testing
➨Background Testing
➨Distributed Testing
➨Performance Testing
➨Random Testing
➨Error Recovery

Infosys Technologies LtdQuality Week 2000 14

Website Validation Processes

Content Validation
➨Structural

All of the links and anchors match with prior "baseline" data

➨Checkpoints, Exact Reproduction
One or more text elements -- or even all text elements -- in a
page should be markable as "required to match".

➨Gross Statistics
Page statistics (e.g. line, word, byte-count, checksum, etc.).

➨Selected Images/Fragments
The tester should have the option to rubber band sections of
an image and require that the selection image match later
during a subsequent rendition of it.

Infosys Technologies Ltd

Software Testing 8

Infosys Technologies LtdQuality Week 2000 15

Website Validation Processes
Load Simulation
➨Single Browser
➨Multiple Independent Browsers
➨Multiple Coordinated Browsers

Infosys Technologies LtdQuality Week 2000 16

Web Testing Theory
Use existing test tools
➨Don’t reinvent the wheel

Use database technology
➨Store, analyze, report test results

Create a web testing website
➨Manage the testing effort, make it visible

Think first – Automate second

Infosys Technologies Ltd

Software Testing 9

Infosys Technologies LtdQuality Week 2000 17

Web Application Tests
Links
Forms
Spelling
Scripts
Usability
Performance

Infosys Technologies LtdQuality Week 2000 18

Link Testing
Internal link errors
External link errors
“Page Not Found” errors
“Host Not Found” errors

Infosys Technologies Ltd

Software Testing 10

Infosys Technologies LtdQuality Week 2000 19

Link Testing
Use the Forms Testing Checklists
➨Function Testing
➨Usability Testing

Log User-Form Mistakes

Infosys Technologies LtdQuality Week 2000 20

Spell Checking
Development tool spell checkers miss:
➨Server script generated text
➨Text from databases
➨Meta description and keywords text
➨Client script generated text

Must spell check client rendered text

Infosys Technologies Ltd

Software Testing 11

Infosys Technologies LtdQuality Week 2000 21

Scripts Testing
Check web application specific scripts
“White-box” script testing
Check script vulnerabilities
➨Complex functions
➨Browser type specific code -- Netscape , IE

etc
➨Browser version specific code
➨Date manipulation code

Infosys Technologies LtdQuality Week 2000 22

Usability Evaluation
“Test by looking around”
Create and test “Use Scenarios”
Check for “zero training” capability
Monitor web application session paths

Infosys Technologies Ltd

Software Testing 12

Infosys Technologies LtdQuality Week 2000 23

Performance Monitoring
Web hosting infrastructure
➨Capacity modeling and planning
➨Load balancing
➨Monitor web application subsystems

Test for slow web pages
Conduct Load/Stress testing

Infosys Technologies LtdQuality Week 2000 24

Representative Web Testing Products,
Services (1)

Website Testing Suites
➨Rational Suite Test Studio (Rational.com)
➨eConfidence (Segue.com)
Tests e-business functions on the

website
Available on NT and Windows
Price range $5500

Infosys Technologies Ltd

Software Testing 13

Infosys Technologies LtdQuality Week 2000 25

Representative Web Testing Products,
Services(2)

Load/Stress Testing Suites
➨ Active Test (merc-int.com)
➨ Webload 3.5.1 (radview..com)
➨ Rational Suite Performance Studio (rational.com)
Stress, performance testing; uses document

object model for virtual client ; Capacity
Testing
Available on NT ,Windows, Solaris
Price range $15K- $35K

Infosys Technologies LtdQuality Week 2000 26

Representative Web Testing Products,
Services (3)

Performance analysis and Monitoring Suites
➨ Perspective (keynote.com)
➨ Topaz(merc-init.com)
➨ Response Center (responsenetworks.com)
Web application performance management
product
Available on NT and Windows
Price range $3750/5 transactions per month

Infosys Technologies Ltd

Software Testing 14

Infosys Technologies LtdQuality Week 2000 27

How to use a Web Stress Testing Tool like
WebLoad

Webload 3.5.1 simulates real world loads by
generating virtual loads
➨ Users create Java script based test scripts that

define the virtual clients
➨ Webload executes these test scripts and

represents the results graphically in real time
Webload has a console which can run a test
session at console one can --
➨ Define hosts participating in load session
➨ specify a program that load session executes
➨ Schedule tests

Infosys Technologies LtdQuality Week 2000 28

How to use a Web Stress Testing Tool like
WebLoad

The load machines are hosts which run the Load
Generator software simulating multiple virtual
clients
➨ One load machine can run multiple load generators
➨ The application being tested is where the web

application being tested resides . Does not require a
Webload installation

The probing client machines are running Probing
Client software acting as single Virtual Client and
run at the same time as Load machines to further
measure the performance .
Webload uses Test talk -- to communicate
between hosts and console

Infosys Technologies Ltd

Software Testing 15

Thanks

QWE2000 Session 5M

Mr. Oliver Niese, Tiziana Margaria,
Markus Nagelmann, Bernhard

Steffen, Georg Brune & Hans-Dieter
Ide

(META Frame Technologies GmbH)

An Open Environment for
Automated Integration Testing

Key Points

Automated, Integrated, Distributed Testing●

Testing Environments●

Test Management●

Presentation Abstract

The increasing complexity of today's testing scenarios demands for an integrated,
open, and flexible approach to test definition, evaluation, and management. Systems
under test become integrated (e.g. include Computer Telephony Integrated platform
aspects), embedded (e.g. with hardware/software codesign), and run on distributed
architectures (e.g. client/server architectures). In addition, it is increasingly unrealistic
to restrict the consideration to single units, since complex subsystems affect each
other, and require scalable, integrated test methodologies.

In our approach, we add a Test Coordination layer driving the generation, execution,
evaluation, and management of the system-level tests in the highly heterogeneous
landscape. The coordination layer introduces the required flexibilization of the overall
architecture of the test environment: it is a modular and open environment, so that
diverse tools and units under test can be added at need. Through a
CORBA/RMI-based implementation of the communication layer we are able to
address and encapsulate a wide range of commercial test tools: this increases over
time the reach and the capabilities of the resulting environment.

About the Speaker

Oliver Niese

Born 31.8.70, received the Diplom in Computer Science from the University of
Dortmund (Germany) in February 1999. He is currently a Ph.D. candidate at the
University of Dortmund and is working at METAFrame Technologies GmbH as a

QWE2000 -- Conference Presentation Summary

http://www.soft.com/QualWeek/QWE2K/Papers/5M.html (1 of 3) [9/28/2000 11:10:05 AM]

consultant. He has experiences in large OO-projects with UML and Java as well as
in formal verification methods. Within the ITE project, he is the technical leader at
METAFrame.

Tiziana Margaria

Born 14.10.64, she holds a Laurea in Ingegneria Elettronica from the Politecnico di
Torino (Italy) (1988) and a Ph.D. in Computer and Systems Engineering from the
same institution (1993). She held assistant positions in Computer Science at the
Technical University of Aachen and at the University of Passau. 1999 she was
Visiting Professor at the Department of Computer Systems in Uppsala (S). Since
June 1998 she is Senior Researcher at the University of Dortmund (D). She
co-founded METAFrame Technologies GmbH in 1997, and serves since then as the
company's CEO. Within the ITE project, Dr.Margaria in particular consults for formal
verification methods.

Markus Nagelmann

Born 24.6.68, received the Diplom in Computer Science from the University of
Dortmund (Germany) in April 2000. He is working at METAFrame Technologies
GmbH as a consultant and gained experiences in computer telephony integration
(CORBA, web based management) in projects with the business telephone switching
division of Siemens ICN (Witten, Germany). Within the ITE project he is a member of
the technical engineering team of the ITE project.

Bernhard Steffen

Born 31.5.58, he holds a Diplom in Mathematics (1983) and a Ph.D. in Computer
Science (1987) from the University of Kiel (Germany). After holding research
positions at the University of Edinburgh, UK (1988-89) and at the University of
Aarhus, DK (1990) he was tenured Associate Professor at the Technical University
of Aachen, D (1990-93) and held the Chair of Programming Systems at the
University of Passau, D (1993-97). Since August 1997 he holds the Chair of
Programming Systems at the University of Dortmund, D, where he heads the
METAFrame project, concerning the development of a flexible environment for
reliable definition and custom configuration of complex workflows. He co-founded
METAFrame Technologies GmbH in 1997.

Georg Brune

Born 7.7.53, he holds a Diplom (1980) and a Ph.D. in Electrical Engineering (1985)
from the University of Dortmund (Germany). After years of activity in hardware
development (1985 û 1998), Dr.Brune heads since 1998 the CTI application
development group within Siemens' Information and Communication Networks
division (ICN EN HO SE 5). Dr.Brune heads the ITE project.

Hans-Dieter Ide

Born 18.7.52, he holds a Diplom (1979) and a Ph.D. in Electrical Engineering (1985)
from the University of Dortmund (Germany). Since 1986 he works for Siemens AG.

QWE2000 -- Conference Presentation Summary

http://www.soft.com/QualWeek/QWE2K/Papers/5M.html (2 of 3) [9/28/2000 11:10:05 AM]

Currently he leads the coordination and process development group within Siemens'
Information and Communication Networks division (ICN EN HO SE 1).

QWE2000 -- Conference Presentation Summary

http://www.soft.com/QualWeek/QWE2K/Papers/5M.html (3 of 3) [9/28/2000 11:10:05 AM]

�

� ��� � ��� 	
 �� � � � � � � � � � � � � ���� ��� �! " # $% & ' ()�* + ,.- / 01 2�3 4 5 6 7 8 9 : ;�< = >�? @ A BC D E F G�H I J KL M N O P�Q R S.T U VW X Y Z [.\] ^ _�`�a bdc e f g h i j�k l m.n o p

qsrutwvyx{z}|�~������{�������{���������
�s���.���������{�}���� �¡{¢¤£{¥�¦�§{¨ª©¬«{¯®�° ±�²

³µ´·¶�¸ ¹dº�»�¼ ½¯¾¤¿·ÀsÁ�Â�Ã�Ä�Å Æ ÇdÈ É·ÊÌË�ÍÏÎ·Ð¯Ñ·Ò ÓÕÔ�Ö�×ÙØ Ú
ÛyÜdÝßÞ à·á â ã·ä�å�æ¯çµè·éëê ìîí�ï·ð�ñóòµô õ öµ÷dø ù�ú·û

ü ý þ ÿ � � � � � � � � � 	
 � � � � � � � � � � � � � � � � � � � � !

"$#&%('*),+.-0/21436587:9<;<=?> @BA0C D8EGFIH2J<K

L*M?NPORQTS:U8VPW X Y[Z[\G](^:_ ` a:b(cBdfe g8h i[jlk
m,npo[q r s[tvu wlxlyvz.{
|~}?�f� � �v� � �T�l�.�T� �f� ���
�6� � �

�*���P� �P�[�:���&�8�8 ¡l¢f£ ¤ ¥:¦
§©¨ ªP« ¬� ® ¯ °f±T²P³l´[µT¶ ·¹¸vº »,¼ ½T¾ ¿fÀ ÁvÂpÃPÄ�Å Æ ÇPÈ É Ê ËvÌ
ÍÎ ÏÑÐ�Ò Ó Ô Õ.Ö~×vØ8Ù Ú.Û ÜTÝ[ÞTß[à ávâ©ã ä[å æ ç�èêéRëvì í8î ï ðfñ:òóÑô�õ ö ÷ ø.ù~úvû8ü ý.þ ÿ�������� ���
	 ��� ��������� ��� � �����

�

 ! " # $ % & ' () * + , - . / 0 1 2 3 4 5 6 7 8 9 : ; < = > ? @ A B C D E

FHGJIJKMLONQP

RHS TVU W X�Y�Z�[]\ ^ _�`
aHb cVd egfgh�i�j k�lnmpo�q�r s tvu
wHxpy�z�{ |~}��v�]���]�����V�
�H�p�����J� �V� �~�]� � ���
�H�����]� � ����� ¡�¢
£¥¤§¦�¨�©�ª «¬�® ¯�°g± ²J³�´ µ ¶v·�¸º¹¼»V½ ¾

¿ À Á Â Ã Ä Å Æ Ç È É Ê Ë Ì Í Î Ï Ð Ñ Ò Ó Ô Õ Ö × Ø Ù Ú Û Ü Ý Þ ß à á â ã ä

å]æMç�è�éJêpëMì�í�î ïJð

ñHò ó�ô õgög÷�ø�ù ú]û
üHý�þ ÿ����������

	�
��� ����� ����������� � �������� �!�"�#�$&% ' (

)�*�+�, -�.�/ 0�1�2�3�4�5 6 7�8�9�: ;�<>=�?A@ B C

DFE�G H�I J K L�M�N O�PRQ
SUT�V�W XZY [�\^]�_�`^aRbdc�e fZg h i�j kAl

m

n o p q r s t u v w x y z { | } ~ �

������� �����d� ��¡�¢ £¥¤^¦ §

¨ © ª «

¬ ® ¯

° ±�² ³ ´ µ

¶ · ¸ ¹ º » ¼ ½ ¾ ¿ À Á Â Ã Ä Å Æ Ç È É Ê Ë Ì Í Î Ï Ð Ñ Ò Ó Ô Õ Ö × Ø Ù Ú Û

ÜÞÝ�ß à�á^âäã å æ�ç�è�é¥ê^ë ì

í îðï

ñ ò ó ôõ�ö ÷ ø�ù ú û

ü ý�þ ÿ � �
��� � � � � 	
 � �
� � � � � �

��� � � � � � � � � � � !#" $

%

& ' () * + , - . / 0 1 2 3 4 5 6 7 8 9 : ; < = > ? @ A B C D E F G H I J K

LNMPO#QSRUTWVYX#Z\[^]`_\aNb#c dfe

g h i j
k#l m n o p q r s t u

v w x y z{ | } ~ � � � � � �� � � � �

� � � � � � � � � � � � ���

� � � � � � � ¢¡ £ ¤ ¥ ¦ § ¨ © ªN«

¬ ®

¯ ° ± ²´³ µ ¶�·\¸�¹#º » ¼#½

¾#¿ÁÀ

Â´Ã Ä Å�ÆÈÇ#É�Ê Ë�Ì Í�Î Ï Ð Ñ�Ò

Ó Ô Õ Ö × Ø Ù Ú Û Ü Ý Þ ß à á â ã ä å æ ç è é ê ë ì í î ï ð ñ ò ó ô õ ö ÷ ø

ù`úSûNü#ýÿþ����������
	����

��
�������������������!
"$#&%!')(�*!+

,- .0/�1325476�8:9!;=<�>�?@0A�B3C5D7E�F:G!H=I�J�K

L$MONQP�RTS7UWVYX

Z

[\] ^ _ ` a b c d e f g h i j k l m n o p q r s t u v w x y z { | } ~ � �

����������� �����T� ���

���Q�=�=��� ���$�=����� �=���¡ �¢�£Y¤ ¥�¦ §)¨ª©¡« ¬= ®=¯�°Y±�²�³�´�µ ¶
·�¸Y¹ ºW»T¼ ½�¾ ¿ À Á�Â�ÃÅÄ=Æ Ç ÈÅÉYÊ ËªÌ Í ÎÅÏ)Ð Ñ Ò Ó ÔÅÕ ÖÅ×=Ø�ÙTÚYÛ3ÜTÝYÞ ßªà á âÅã

ä�å!æ�ç�è é ê)ë�ìTíÅî ï ð�ñ7òôóYõ�ö=÷Wø=ùôú=ûWü
ý�þ�ÿ ������� ����	
������� ����� �

����� ��� ��!�" # $&% ')(+*�,�-�. /�021 3 4 5)6+7 8:9�; <)=�> ?2@�A B+C D2E�F G�H I J+K

L M N O P Q R S T U V W X Y Z [\] ^ _ ` a b c d e f g h i j k l m n o p q r

sut�v�w x�y

z|{~} ����� ���������������2� ��������� �����������2���
��� ��� �¡ ¢ £ ¤�¥§¦©¨+ª�«2¬ ® ¯�°²±+³�´ µ+¶ ·�¸+¹ º » ¼
½©¾À¿�Á Â�Ã�Ä�Å�Æ Ç È É�Ê Ë Ì+Í&Î�Ï�Ð+Ñ�Ò Ó)Ô�Õ+ÖÀ× Ø)Ù+Ú�Û Ü Ý)Þ

ß|à~á�â+ã ä�å2æ ç
è:é+ê ë�ì í î ï ð�ñ�ò2ó²ô)õ�ö2÷)ø�ù�ú+û�ü ý þ ÿ ���������
	 � ���� � ���

������� ��� ��! " #%$'&�(�)
*,+�- . /�021'354 687�9�:8;�<,=8>
?�@BA,CED,F G�H I J�KML�N'OEPRQTS U�V W8X�Y�Z [
\

]T^�_
` a b
c d e'f2g�hji�k�l m�n o p�qsr t8u�v�w8x�y,z8{

|

} ~ � ¡ ¢ £

¤¦¥5§�¨�©Bª «B¬�,® ¯�°

± ²´³'µ�¶ ·�¸ ¹�º
» ¼ ½'¾2¿�À5Á�Â�Ã Ä�Å Æ�Ç'È�É�Ê�ËÍÌÏÎ Ð8Ñ�ÒÍÓ Ô'Õ'Ö ×
Ø�Ù Ú�Û Ü Ý Þ,ß à á�â�ã ä å�æ
çMè�éEê,ë,ìEí î ï�ð
ñMòBó8ô,õ ö�÷ ø ù
úMû´ü�ýRþ�ÿ������ � � � 	�

� � � � � � � � � � � � � � � � � � � ! " # $ % & ' () * + , - . / 0 1 2

3547698 :<;>= ?

@BADC E FHGJILK>M N>O>P Q RLSUT>VLWYX[Z \�]H^L_a`cb d
e5fhgaikj lamcnpo[qUr�sut�v w�x>y>zu{ |�}L~�� → �[� �L��[�[�L���>�������k� �U�L�>� �>� � �
�5�h�>� �>� � � �¡Y¢ £[¤�¥[¦�§>¨ © ªL«Y¬Ua®�¯a°a±³²[´aµ�¶c· ¸a¹ º

»

¼ ½ ¾ ¿ À Á Â Ã Ä Å Æ Ç È É Ê Ë Ì Í Î Ï Ð Ñ Ò Ó Ô Õ Ö × Ø Ù Ú Û Ü Ý Þ ß à á â

ãåäLæ>çcè�éëêHìîí9ï ð ñ>ò

óõô5öY÷ùøûú�üHýÿþ��������	��
���
����������������� �"!�#%$�&%'�(*)

+*,.-%/�0�13254�6�798;:=<

> ? @ A B C D E F G H I J K L M N O P Q R S T U V W X Y Z [\] ^ _ ` a b c d

egf h�ikjml npoqsrutwv�xzy { |

}w~%� � ��� �;��� � ���
��� � � � � �

� � � � � �

�

� � � � � � � ¡ ¢ £ ¤ ¥ ¦ § ¨ © ª « ¬ ® ¯ ° ± ² ³ ´ µ ¶ · ¸ ¹ º » ¼ ½ ¾ ¿

ÀuÁwÂÄÃzÅ�Æ�Ç�ÈÊÉ�Ë Ì ÍÄÎ

Ï�ÐÑ ÒwÓkÔ ÕkÖØ×;Ù�ÚzÛ Ü"Ý Þkßkàâá ã äkåkæÄç è é ê ë�ì í î�ïâð
ñ"òâózô�õzö ÷ ø9ù úÄûÄü�ýwþ ÿ � ����� � �	��
 �	 ����� ��� ��� ������� � ���! "
#%$�&�' (�)�*�+-,�.-/10�2�3	4 5�6 7�8 9�: ;�<�= > ?A@�B�C D E�FHG-I�JLK�M N1OQP1R S

TVUXW!Y[Z�\]�^H_a`�b-c d�e fAg!h�i j k!l�m�n o p q r�sut vxw y�zL{ |
}%~�� � ����� �	�-�����	� � � � ���
�����	� �-� � ���u���	��� � ����� ¡	¢

£ ¤ ¥ ¦ § ¨ © ª « ¬ ® ¯ ° ± ² ³ ´ µ ¶ · ¸ ¹ º » ¼ ½ ¾ ¿ À Á Â Ã Ä Å Æ Ç È É

ÊxË!Ì�Í�ÎÐÏÒÑ�Ó!ÔÖÕ ×ÙØ�Ú1ÛÒÜ

Ý�Þ-ß à-á�â!ã-ä å æ ç è1é�ê�ë ì-í î ï

ð ñ ò ó ô õ ö	÷ ø ù ú û ü ý þ
ÿ � � � � � � � � �

	�
 � � �
� � � � � � � � �
� � � � � � �

! " # $ % & ' () * + , - . / 0 1 2 3 4 5 6 7 8 9 : ; < = > ? @ A B C D E F G

HJILKNMPORQTSPU V WYX ZP[]_^a`Ybdcfe

gihkjmlNnpo q rtsvuxw yfz { |a}�~��p�a�m�x�m���m�x�L�f�f��� �m�
�i�t�����N�f� ���p�a�Y�a ¡ ¢x£
¤J¥§¦f¨�© ªf«d¬ ¯®±°p²p³f´pµN¶ ·d¸º¹
»t¼ ½ ¾p¿ À�Á Â Ã�ÄÆÅpÇNÈ�ÉËÊxÌ Í Î Ï�Ð ÑpÒ Ó
ÔkÕ�Öp× ØËÙ§Ú Û Ü ÝYÞpßdà á â ã ä�å�æ ç èËé
êkë�ìpí îËï§ð ñ ò óYôdõ ö ÷Ëøfù úËû�ü�ý þ ÿ��

� � � � � � � 	
 � � � � � � � � � � � � � � � � � � � � ! " # $ % & ' (

)+*-,/.10325416 7 8:9 ;1<>=@?BA:CEDGF

H I

J K L M N O P Q R S T U V W X Y Z [\] ^ _ ` a b c d e f g h i j k l m n o p

qsr1tEu/vxwzy|{E} ~|���|�3�E�B�s�����|�|� �

� � � � � � � � � � � �� � � � � � ¡ ¢ £ ¤ ¥ ¦ §

¨ © ª « ¬ ® ¯ °

± ² ³ ´ µ ¶ · ¸ ¹ º » ¼ ½ ¾ ¿ À Á Â Ã Ä Å Æ Ç È É Ê Ë Ì Í Î
ÏÑÐ Ò Ó Ô
Õ�Ö × Ø Ù Ú Û Ü
ÝsÞ ß à á â

ã ä å æ ç è é ê ë ì í î ï ð ñ

ò ó ô õ ö ÷ ø ù ú û ü ý þ
ÿ � � � � � � � � � 	
 � � � � �

� � � � � �� � � � � � � � � ! " # $% & ' () * + , - . /0 1 2 3 4 5 6 7 8

9;:=<?>A@CBEDGF HJI KMLON PGQ

R S T U V W X Y Z

[\] ^ _ ` a b cd e f g h i j k l

mEn o pGq r s

t u v w x y z { | } ~ �� � � � � � � � � � � � � �

� � � � � � � � �

� � � � � � � � � ¡ ¢ £ ¤ ¥ ¦ § ¨ © ª « ¬ ® ¯ ° ± ² ³ ´ µ ¶ · ¸ ¹ º » ¼ ½

¾G¿ÁÀÃÂ ÄMÅÁÆMÇÉÈ?ÊCË?Ì ÍCÎÐÏCÑ
ÒÔÓÖÕØ×ÚÙÜÛÖÝÔÞàßÖáãâ äEåÃæ?çéèJê?ëCìAí

îðïàñ ò óGôGõ÷ö øúùAû üEýÿþ���� ��� � �
	
���� ���������������

����� "!�# $&%�')(
* +),�-�.
/0�1 2�3�4�5 687�9 :
;"<�=?> @ A�B CED F G�H

IKJ"L�M?N�OEP�Q R�S&T�U�VEW
X�Y[Z)\]
^�_8`�a
bdc e�f g�h i�j�k l"m�n o p�q r)s t�uwv�x y{zE|�}�~�� �
������ ��� ���E�
� ��� �����)��� ������� �)� �d��� ��������
¡"¢?£"¤�¥[¦?§)¨�©?ª�« ¬ �® ¯�° ± ²E³�´

µ�¶

· ¸ ¹ º » ¼ ½ ¾ ¿ À Á Â Ã Ä Å Æ Ç È É Ê Ë Ì Í Î Ï Ð Ñ Ò Ó Ô Õ Ö × Ø Ù Ú Û Ü Ý

Þàß�á{â)ã äæå�ç è�éëêæìîí
ï�ðæñóò

ôKõ÷ö
ø
ù�ú�û
ü"ý þ
ÿ�� ��� �����
	�� ����
���
� ����� � �������� !#"
$ % &�'
(*),+ -�. /�0 132�46587 9 :<;,= >�?<@�A�BDC�E�F G H�IKJ L#MDN3O�P3Q�R
SKT
U�V3W3X�Y�Z3[

*],^ _�` a�b c3d�e8f
g�h3ikjml�n
oKp�q r s#t�u�v w�x�y�z�{
|~}���� ����� ���
��� � �K��� ��� �3�����3�3� �3� ���K� � �3�

� ¡ ¢ £ ¤ ¥ ¦ § ¨ © ª « ¬ ® ¯ ° ± ² ³ ´ µ ¶ · ¸ ¹ º » ¼ ½ ¾ ¿ À Á Â Ã Ä Å

Æ�ÇÉÈËÊ�Ì ÍDÎ�Ï ÐÉÑÓÒ�ÔÖÕD×ÙØ ÚÉÛÉÜ

Ý*Þ6ß
à�áKâ�ã ä#åKæ ç è�é
êìëËí�î�ï ð ñ�ò�ó ô õ ö ÷�ø�ù6ú
û#üþýKÿ��������

�	��
 � 	� ��� � ��� ����������� ��!#" $&% ' (

)+*-,�.0/�1 2�3 4 506

7	8:9�; <�=-> ? @ ACB�D&E�F�G H#I J K L&M�N O�P Q R S T U V�W

XZY\[^]�_ `^a�b c

d	egf h i&j^k�l�m n�o�p q r&s�t u v#w�x y�z { |

An Open Environment for
Automated Integrated Testing

Oliver Niese 1 , Tiziana Margaria 1 , Markus Nagelmann 1 ,
Bernhard Ste_en 2 , Georg Brune 3 and Hans-Dieter Ide 3

1 METAFrame Technologies GmbH, Dortmund, Germany
{ONiese, TMargaria, MNagelmann} @METAFrame.de

2 Chair of Programming Systems, University of Dortmund, Germany

Steffen@cs.uni-dortmund.de

3 Siemens AG, Witten

{Georg.Brune, Hans-Dieter.Ide}@wit.siemens.de
Keywords:
Automated, Integrated, Distributed Testing; Testing Environments; Test Manage-
Ment

Abstract:
The increasing complexity of today's testing scenarios demands for an integrated, open
and exible approach to support the management of the overall test
process. Furthermore systems under test become composite (e.g. including Computer
Telephony Integrated platform aspects), embedded (e.g. with hardware/software codesign)
and run on distributed architectures (e.g. client/server architectures). In addition, it is
increasingly unrealistic to restrict the consideration of the testing activities to single units,
since complex subsystems a_ect each other and require scalable, integrated test
methodologies. In this paper, we present a test management layer driving the generation,
execution and evaluation of system-level tests in a highly heterogeneous landscape. The
management layer introduces the required exibilization of the overall architecture of the
test environment: it is a modular and open environment, so that several tools and units
under test can be added at need. By means of a CORBA/RMI-based implementation of the
external interfaces of the management layer, we are able to address and encapsulate a
wide range of commercial test tools. This increases over time the reach and the
capabilities of the resulting environment.

1 Introduction

The increasing complexity of today’s testing scenarios demands for an integrated,
open and flexible approach to support the management of the overall test process,
e.g. specification of tests, execution of tests and analysis of test results. Furthermore,
systems under test (SUT) become composite (e.g. including Computer Telephony In-
tegrated (CTI) platform aspects), embedded (e.g. with hardware/software codesign)
and run on distributed architectures (e.g. client/server architectures). In addition,
it is increasingly unrealistic to restrict the consideration of the testing activities to
single units of the systems, since complex subsystems affect each other and require
scalable, integrated test methodologies.

Fig. 1. Example of an integrated CTI platform

As an example for an integrated CTI platform, fig. 1 shows a telephone switch and
its environment. The switch is connected to the ISDN telephone network, or more
generally to the public telephone network (PSTN) and acts as a ”normal” telephone
switch to the phones. Additionally, it communicates directly via a LAN or indirectly
via an application server with CTI applications that are executed on PCs. The CTI
applications are also active components, like the phones. So it is possible for an
application to control the switch (e.g. initiate a call) and vice versa (e.g. notification
of an incoming call). In a system test, it is important to investigate the interaction
between the subsystems.

More generally speaking, in our context a typical system under test is composed of
several independent subsystems communicating with each other. To test this kind
of composite systems we need to resort to specific test tools for each participating
subsystem. Thus, we must be able to coordinate heterogenous test tools in a context
of heterogenous platforms, a task exceeding the capabilities of today’s commercial
test management tools.

2 Overview

Fig. 2. Architectural Overview of the Test Environment

Figure 2 shows the general architecture of the test environment. The system under
test (SUT) is composed out of several subsystems communicating with and affecting
each other. The subsystems can be hardware or software components, often also
including and driving external applications or devices. Each of the components can
also be used in completely different configurations in other scenarios. In general
each subsystem has to be tested using its specific test tool or at least using its own
instance of a test tool. To coordinate the different control and inspection activities
of an integrated test a test management layer is mandatory. This test management
layer, called Test Coordinator in fig. 2, communicates with the test tools by means
of Common Object Request Broker Architecture (CORBA) [3] or Remote Method
Invocation (RMI) [4].

However, when testing composite systems it is not sufficient to support the aspect
of coordinating test tools only, but the whole process, from test specification to the
analysis of test results. Therefore, the following aspects of the test process have to
be supported by an integrated test environment:

1. Organization of test relevant data
2. Design of test cases and composition of test suites
3. Coordination of test execution
4. Analysis of test execution results

2.1 Organization

The organizational aspects of the test process are among others:

Version control Beside the test cases itself many other files have to be organized
throughout the test process, e.g. configuration files or test documentation. Be-
cause of changes throughout the test process it is important to capture the history
of changes and dependencies between versions.

Configuration management It is mandatory, especially when considering inte-
grated tests, that the system under test is in a well defined state before executing
tests. This is a non-trivial task because we treat complex systems, where the ini-
tialization of one component can affect the state of other components. Moreover,
it is also important to document the versions of the subsystems and test tools
and to ensure that they are correctly working together.

Structuring of tests Tests have to be structured to
– provide a simple mechanism to build test suites out of the set of test cases

via criteria, e.g. regression test or feature test
– eliminate redundant test cases which may dramatically reduce the whole test

execution time.

2.2 Design

The design of test cases, i.e. specifying which control or inspection activities have to
be performed and in which order, should be possible without any expertise of how
to apply a specific test tool. Therefore, the design should be intuitive but reliable
concerning executability and other frame conditions.

Design Test cases are specified on the level of SUT-usage and are formulated in a
graphical way. Hierarchical design, i.e. the usage of a macro mechanism should
be possible.

Analysis Consistency checks of tests cases at design time to ensure the correct
specification of the test cases.

Automatic generation Beside the manual design of test cases, automatic deriva-
tion of new test cases out of the system specification should be possible.

Variation The automatic variation of existing test cases should be possible by
means of parameter variation.

2.3 Coordination

The whole test execution process must be supported, including:

Initialization of the whole test scenario (SUT components, test tools)
Execution of the test cases, i.e. instructing the test tools
Analysis of the results of test runs
Documentation of the test runs and their results

2.4 Analysis

The analysis of the results of test runs for the error detection and diagnosis is an
essential feature of every test environment. It must be possible to analyse results
on an abstract level, in order to hide unnecessary details. However, if required an
inspection of the details must be possible.

3 Test formalism

When providing such a wide support for test management an adequate formalism for
the description of tests is mandatory. Since we are considering system-level tests, we
are in fact performing black-box testing. Thus we are abstracting from the internals
of the system and take only external observable ”inputs” and ”outputs” of the
system into account, cf. fig. 3.

Fig. 3. Black-box testing

In order to specify test cases at this abstract level, i.e. to allow a flexible test mod-
elling, we build test cases out of generic basic functionalities. Such a basic function-
ality can be either a single stimulus for the system (input) or a single check point
which checks the status of the system (output). In the context of testing an applica-
tion these basic functionalities may be e.g. ”pressing a specific button on the GUI”
or the check ”is a specific button enabled?”.

� ��������� 	�
�������� � ��������

��� �"!$#&%('*)(+-,/.10325476
8�9;:7<>=@?BADC;E@F

GHI J
KML

NO P
QR S
T U
V WX
Y Z[\

Fig. 4. Test coordinator as instance of the Agent Building Center

4 Realisation

The heart of the test management environment is the Test Coordinator, built on
top of METAFrame’s Agent Building Center (ABC) [1,2], which is a generic and
flexible workflow management system. In this application, we view system-level test
cases as executable workflows within the integrated test environment (which plays
the role of an extended runtime environment). Building on the ABC’s capabilities,
test cases can be graphically designed from palettes of subsystem-specific, generic
test components or basic functionalities. Test cases are combinations of these basic
functionalities, which are connected through edges to describe the control flow, see
fig. 5.

The main portion of the test coordinator is the ABC itself, cf. fig. 4. Basically,
it offers the functionalities necessary to cover the organizational and the design
related aspects. Some extensions are needed before the ABC can be used as a test
coordinator:

Testing specific extensions Among others communication with specific test tools
must be integrated into the ABC.

Basic functionalities Stimuli and check points which are necessary to test a SUT’s
functionality must be provided as basic functionalities. They will be implemented
using the specific commands provided by the relative test tool.

While the basic functionalities are developed by experts of the particular system,
the test cases can be designed graphically at an intuitive level by testers.

The test coordinator uses the capabilities of the ABC e.g. for the design and analysis
of the test cases.

Figure 5 shows how test cases can be designed within the ABC. On the left hand
side is the editor, which allows the design of test cases. On the other side is a
browser for the available basic functionalities which are structured into classes1. In
this example there are three classes of basic functionalities: GuiCommon, Phone and
SimplyPhone.

The class GuiCommon provides generic functionalities for the usage of a Graphical
User Interface, e.g. checkWindow checks whether a specific window is visible on the
desktop or not. The class Phone provides input-actions (e.g. hookOff) and output-
actions (e.g. checkConnectState) which allows the tester to control a ”real” phone,
whereas the class SimplyPhone can be used to test a specific application called
SimplyPhone which is a CTI-Application that simulates a phone.

The analysis methods of the ABC are based on formal verification methods (model
checking). In particular,

– libraries of constraints capture the essence of the test designers’ expertise about
do’s and dont’s of test definition. Automatically accessed by the model checker
during the verification, they express vital properties concerning the interplay
between the components of a test as global correctness and consistency conditions
of the test logic.

– automatic verification of test-dependent frame conditions (from the constraint
library) allows designers to verify that the test is consistent before executing it,

– automatic error location delivers the exact portions of the test where violations
of frame conditions occur. This eliminates the manual search for the erroneous
segments in the test. This can be used either at design time (see above) or at
runtime, when analysing erroneous test runs.

5 Integration of test tools

To communicate with different test tools the test environment offers a general
CORBA interface: ToolAccess, cf. fig. 6. This interface comprises basic methods
(e.g. getName, getVersion) which all test tools have to support. Special features
(e.g. input and output commands for testing a special SUT component) can be
added by extending the ToolAccess interface. From the basic functionality execu-
tion environment the special methods of the test tool are accessible for the tester
via a test tool specific adapter.

The extension of the ABC environment through the integration of adapters is the
key to our approach.

1 Note that each class is represented by its own icon, so that they can be distinguished easily in the
graphical notation.

Fig. 5. Example of a test case

The integration process consists of two main activities:

1. Integration of the interface provided by the test tool into the test coordinator
and

2. Implementation of the interface functionality by the test tool.

When the ToolAccess interface is not already implemented in the test tool by the
vendor, there are different ways to implement it:

Plug-in approach If the test tool supports customisation via loading plugins or
libraries, the ToolAccess interface can be integrated by implementing such a
plugin including the CORBA object request broker.

Separated server process If a test tool offers remote access via an interface of its
own (e.g. COM, DCOM or CORBA) a separate server process can communicate
via this interface with the test tool, cf. fig. 6. Then, the special server implements
the interface or its derivation and communicates with the test coordinator, i.e.
it can be seen as a relay between the test coordinator and the test tool.

Fig. 6. Integration of test tools

6 Conclusion

To test composite systems in an integrated way, we have added a test management
layer responsible for the generation, execution and evaluation of system-level tests

in a highly heterogeneous landscape. The management layer introduces the required
flexibilization of the overall architecture of the test environment: it is a modular
and open environment, so that several tools and units under test can be added at
need. By means of a CORBA/RMI-based implementation of the communication
layer we are able to address and encapsulate a wide range of commercial test tools:
this increases over time the reach and the capabilities of the resulting environment.

Beside the test tool coordination described in this paper, we will support all other
important aspects of the test process in a more comprehensive way in the near
future:

1. Organization of test relevant data
2. Design of test cases and building of test suites
3. Analysis of test execution results

Together with Siemens ICN an integrated test environment has been developed
to test the interaction between a medium-range telephone switching system and a
variety of computer-telephony applications to prove the concept.

Acknowledgements

We would like to thank the whole ITE-Team, especially Andreas Hagerer for helpful
comments and criticism on draft copies.

References

1. B. Steffen, T. Margaria: METAFrame in Practice: Intelligent Network Service Design, In Correct
System Design – Issues, Methods and Perspectives, E.-R. Olderog and B. Steffen (eds.), LNCS 1710,
Springer Verlag, 1999, pp.390-415.

2. B. Steffen, T. Margaria: Coarse-grain Component Based Software Development: The METAFrame
Approach, invited to the 3. Fachkongress “Smalltalk und Java in Industrie und Ausbildung” (STJA’97),
10.-11. September 1997, Erfurt.

3. The Common Object Request Broker: Architecture and Specification, Revision 2.3, Object Management
Group, 1999.

4. Java(TM) Remote Method Invocation, Sun, http://java.sun.com/products/jdk/rmi.

QWE2000 Vendor Technical
Presentation VT5

Mr. Alexander Malshakov & Mr.
George St. Clare

(Amphora Quality Technologies)

Optimizing Iteration Testing

Key Points

How to use efficiently modern object oriented SQA techniques●

Optimum using of Test Outsourcing●

Flexible management under challenging testing●

Presentation Abstract

Since the dawn of the Internet and e-business era software developers have been
facing the problem of time pressure and human resources shortage. Traditionally a
software product testing is conducted just before delivering to the customer so
Testing departments of software development companies suffer the greatest stress.
After all it considerably downgrades software quality. The employment of modern
object-oriented SQA methodologies introducing software-testing phase at an earlier
development stages improves software quality. In contrast to the standard “waterfall”
process this class of methodologies is based on iterative approach to testing process
with gradual widening of Test Cases range. However, large number of iterations
creates counter problems: the necessity of additional personnel training, lack of
automation and inflexibility of management. SQA Outsourcing is a good solution to
this case that allows a software development company to make use of a highly
professional SQA team and advanced automation tools. But test outsourcing
procedure should meet the internal development cycle requirements and test
iteration optimization is the key to outsourcing efficiency.

About the Speaker

Alexander Malshakov is co-founder and Managing director of Amphora Quality
Technologies, the very first Russian private company that has become leading
Russian SQA services provider since last year. Within 7 years he made career from
a system programmer to General Development Manager of a bank automation
system. Working for Diasoft Ltd. he was responsible for development of the most
popular Russian bank automation system, that has had more then 600 installations
by now. He has a number of publications devoted to software development process.
Perceptions of necessity of profound approach to testing and quality assurance led

QWE2000 -- Conference Presentation Summary

http://www.soft.com/QualWeek/QWE2K/Papers/VT5.html (1 of 2) [10/23/2000 3:51:32 PM]

him to the foundation of AQT Company. Alexander’s high weight among Russian
software development community allowed him to team up highly professional and
skilful specialists and managers. AQT is recognized as a reliable partner not only in
Russia but also in the UK and the USA.

QWE2000 -- Conference Presentation Summary

http://www.soft.com/QualWeek/QWE2K/Papers/VT5.html (2 of 2) [10/23/2000 3:51:32 PM]

AQT Services

AQT Services

Amphora Quality Technologies © 2000 2

Introduction.. 3
Application domains .. 3
Consulting and Quality Assurance.. 3
Software Testing .. 4
Tests & investigations .. 4

Web Site and Internet Application testing... 4
WAP testing... 6
Functionality analysis... 6
Performance & Load Analysis.. 7
Reliability testing ... 7
Security analysis... 8
Middleware server/component Testing ... 8
Communication and Integration Analysis ... 8
Usability testing ... 9

Cause analysis and test results interpretation .. 10
Regression Testing ... 11

AQT Services

Amphora Quality Technologies © 2000 3

Introduction

Amphora Quality Technologies believes that quality has strategic meaning for any business. With AQT
as your partner in Software Validation and Verification, you can improve product quality, free up
technical and intellectual resources, lower overall development costs and develop your products faster
than ever before.

AQT is able to offer a well-established service which encompasses the entire project lifecycle and
which allows the delivery of a competitive product to customers. Specialized company divisions –
Web, Functionality and Performance Labs as well as a Research Department - provide comprehensive
Quality Assurance and Testing services to Software Developers and Corporations worldwide.

Application domains

Amphora Quality Technologies has particular expertise in QA and Testing of the applications of the
following types:

• Intranet/Extranet Information Systems;
• e-Business solutions;
• Corporate Web Sites;
• Banking and Finance solutions;
• Client-Server business applications;
• Electronic document management and Workflow;
• Data Warehousing solutions;
• Application servers & Middleware’s;
• Networking solutions;
• Geo Information System (GIS) - based solutions;
• Multimedia applications;
• Object Oriented development tools

Consulting and Quality Assurance

The provision of software quality assurance is a complex process, requiring highly qualified personnel,
a well-run development system and an understanding of prioritization. However, this is all just part
and parcel of success in this field. It is enough to competently utilize the rules of the selected
development methodologies and control quality.

Amphora Quality Technologies provides comprehensive assistance and consultation in respect of
organization of processes resulting in high-quality software. AQT analysts are very well-versed in the
object-oriented engineering methodologies of the Rational Unified Process software at the topmost
professional level. They are experienced in providing quality in the biggest software projects. Our
research department personnel carry out their own scientific studies directed towards development of
methods of analysis and forecasting according to research test results.

The development of high quality systems requires a series of special measures to be initiated right at
the beginning of the development cycle. AQT’s analysts will either develop a quality assurance strategy
for you, or help you create this strategy independently. We would be happy to implement proven
software analysis, design, development and testing methodologies for your organization.

AQT analysts will perform an appraisal of project documentation and system architecture. Our
experienced consultants will propose recommendations and specialized program tools for the

AQT Services

Amphora Quality Technologies © 2000 4

organization of project database, management configuration and the performance of automated testing.
AQT will assist in the effective organization of information exchange between your team members and
will oversee correspondence between UML model documentation and RUP requirements. Company
experts will develop and train your personnel in the use of metrics. This will result in the best methods
for determining your software characteristics and forecasting their change dynamics.

If necessary, we are prepared to take on test investigations and organize regression testing, along with
test results interpretation and analysis of problems detected. In close cooperation with your specialists,
AQT’s experienced consultants will develop an individual software testing program. By taking into
account technical project characteristics and priority requirements in respect of the software, our testing
experts will help you to determine exactly which tests and investigations must be performed for
effective localization and elimination of problems.

Software Testing

Amphora Quality Technologies performs a full spectrum of tests and investigations directed towards
the measurement and evaluation of various software quality characteristics. It does not matter if your
system is ready for delivery to the client or you have just started work on a prototype. We will provide
exhaustive and reliable reports regarding project requirements, performance and reliability, along with
many other quality parameters. In addition to testing, AQT performs architectural and technical
solution analysis, plus project documentation.

Contact us and AQT analysts will develop an integrated testing and quality assurance strategy for your
IT project. They will also help you evaluate and refine measures you have already taken.

Tests & investigations

Software quality evaluation by AQT specialists means analysis of project materials, requirements and
priorities, planning and performance of test investigations and appraisal of the results obtained. All
project stages are accompanied by appropriate Rational Unified Process and Unified Modeling
Language model documentation, systematizing the information into a convenient format.

Upon test conclusion, investigation results are summarized and presented as a formal report. This
report contains a detailed description of work performed and a list of problems detected. For easy
comprehension, unrefined test results are presented with graphics and diagrams, which clearly
demonstrate the characteristics obtained at a glance. Apart from this, the report contains an expert
evaluation of software quality prepared by AQT analysts. If necessary, comparative analysis of system
characteristics is performed with previous versions or selected standards.

Test process organization and quality assurance by our company is described in detail in the QA &
Testing process section.

Below is a list of tests and investigations performed by AQT’s Web, Functionality and Performance
Laboratories.

Web Site and Internet Application testing

Building industrial e-Business solutions involves a greater variety of technologies and tools than other
software application development projects. Naturally, analysis and software quality assurance for the
Internet require the application of new methodologies and means of automation.

AQT Services

Amphora Quality Technologies © 2000 5

AQT’s specialized division – the Web Laboratory – has all the essential resources for performance of
integrated quality analysis of a broad spectrum of on-line solutions. Tried and tested technology for the
performance of test investigations provides for reliable results, which, in conjunction with highly-
qualified lab experts, allows comprehensive cause analysis of problems detected. The use of Rational
Unified Process methodologies and broad-band methods of test automation allow us to work quickly
and effectively.

AQT offers a full range of Internet oriented QA & Testing services:

• Functionality and Interface Testing - Validation of the entire site/application, ensuring
that there are no invalid content, functionality or application errors; Checking of visual
design in accordance with corporate standards (if requested); Checks may be performed
from release to release (Regression testing);

• Website Integrity Testing - Detection of broken links and orphaned pages, verification of
accessibility of dynamically formed data;

• Active Content Verification – Identification and examination of HTML forms, Java
applets, Scripts, plug-ins, Active-X controls and others active elements of a Web site;

• Performance, Load and Stress Testing – Determination of application performance
characteristics by means of simulation of a large number of users carrying out real-life
transactions in a Web application or surfing the Website; AQT’s specialized Performance
Lab conducts a wide range of investigations, allowing for the provision of exhaustive and
reliable information on the performance parameters of the Internet solution;

• Availability and Reliability Testing - Continuous, comprehensive testing and monitoring
of Web sites while they are in use, twenty four hours a day, seven days a week;

• Compatibility testing – Verification of Software operation across the range of hardware
and software configuration (Operating systems, Browsers) for which it was designed; There
are over 150 possible combinations of different widely used client-side operating systems
and various versions of Netscape, Internet Explorer and other browsers. It is important to
test across a large number of these to ensure that users with diverse configurations don’t
experience problems when using your Web site or application.

• Database operations analysis – Monitoring of database activity, checking all queries and
transactions between a Web application and SQL Server; identifying where and why
transactions may be performing poorly;

• Server Side Testing – Analysis and Monitoring of Functionality and Performance
parameters of software components, functionality within the framework of a Web-server,
server applications, database transaction monitoring. Examples of server side testing
include checking database integrity on the database server itself, verifying that Active
Server Page (ASP) scripts are being executed correctly on the server and determining how
well a Web site functions when run on different types of Web server;

• Integration Analysis – Investigation of structure and filling of inter-component
information streams in multi-level Internet applications with the goal of discovering bottle-
necks and non-optimal solutions from the point of view of functionality, reliability and
performance. Examples of Integration Analysis include testing the interaction between a
Web and an application server, checking that the business-logic interfaces provide
appropriate performance and assessment of the efficacy of database access methods;

• Network Traffic Analysis – Capturing and monitoring Network traffic, analysis of
Communications Efficiency;

• Security and Vulnerability Testing - Active probing of the system Network and Server
components to identify potential vulnerabilities, which could damage an on-line database or
even the whole system. Checking of firewall configuration, set-up of network, servers, and
databases.

AQT Services

Amphora Quality Technologies © 2000 6

WAP testing

The popularity of WAP services is growing rapidly.

AQT’s Web Laboratory performs comprehensive testing of WAP-sites and applications for
compatibility and usability with different WAP browser models (each piece of apparatus has its own
browser, i.e. differing screen sizes and number of lines). We also perform other forms of testing for
WAP-sites such as performance testing. Today, your WAP site may not have many visitors, but the
number of WAP service users is growing exponentially and, tomorrow, your site may be unable to cope
with the number of visitors wishing to use it.

Functionality analysis

Software quality is a complex integrated indicator. Qualitative evaluation of quality is achieved
through the application of metrics connected with functionality, reliability, performance and many
other characteristics. However, the most important quality criterion, naturally, is functionality
correspondence between the system and project specifications. In other words, system adequacy with
respect to given requirements.

Analysis of system functionality and evaluation of correspondence to requirements is performed by
AQT’s Functionality Laboratory specialists. Functionality analysis means performance of the following
tests:

• Functionality Testing (black box testing) – Checks product operation against its functional
specification to ensure that operation is as designed. This test can be quite simple to ensure
primary functional operation, or as detailed as checking a variety of scenarios and validating
that all output meets specified expectations;

• Defect Analysis – Identifies any area of software operation which may reduce product
quality;

• Visual Interface Testing - Automated Testing of visual forms functionality and checking
design is in accordance with corporate standards (if requested);

• System Components Testing – Functionality Testing of individual Component operation,
including examination of DCOM, CORBA and Java RMI components as well as other
components present as Source Code;

• Compatibility and Portability Testing – A software product is tested across the range of
platforms, operating systems and hardware and software configurations for which it was
designed to ensure the system functions as intended; In particular, AQT performs
compatibility testing between applications in the Windows 2000 Application
Specification;

• Interoperability Testing – Investigations directed towards the evaluation of system
processes interaction with external components. To be more precise: specific hardware,
device drivers and second-party software, etc. As a rule, we are talking about testing
reliability and performance characteristics of inter-system gateways, and also evaluation of
effectiveness of architectural and technical solutions.

Cause analysis of discovered defects may be performed according to the results, as might statistical
analysis of the software’s qualitative quality characteristics. The use of the qualitative metrics method
of testing in conjunction with regression testing (release to release), allows us to determine the
dynamics of software quality changes and makes the software development process manageable and
foreseeable.

AQT Services

Amphora Quality Technologies © 2000 7

Performance & Load Analysis

Performance and throughput is one of the most important characteristics of modern information
systems. For multi-national corporations engaged in the world of e-commerce and on-line solutions,
where thousands of transactions are processed by the system in a few seconds, scalability and stability
of peak loads become essential elements for success.

AQT’s Performance Lab is a team of specialists highly experienced in software testing, analysis and
performance optimization. The leading lab specialists already have more than ten years experience in
precisely this sphere and are experts in performance optimization of large systems on diverse platforms
– from PC to IBM AS/400.

The main goal of the lab team is the detection and localization of “bottle-necks” and non-optimal
solutions in the system. AQT specialists analyze the architecture and technical solutions used by the
system developers, perform test experiments and also create temporary profiles and perform component
debugging.

AQT’s Performance Lab has unique experience in Internet and multi-level Client-Server architecture
performance optimization. Among our clients in this sphere are well-known software developers such
as Informix Software. The broad spectrum of basic tests performed by the lab and also the series of
specialized tests and measurements - Middleware server/component Testing, Communication and
Integration Analysis, White Box Testing & Source Code Analysis and Cause Analysis, plus test results
interpretation – allow us to reliably identify and appraise possible paths to performance optimization.

Software quality analysis from the performance standpoint includes the following tests:

• Benchmark testing - Tests that use a standard, reference workload to measure the
performance of a system and compare it to a known reference system (or measurement);

• Performance testing - Tests using a constant workload and varying system variables and
environment configuration to verify the acceptability of the target-of-test's performance
behavior and tune (or optimize) it. Measurements typically include the number of
transactions per minute, number of users, and size of the database being accessed;

• Load testing - Tests to verify and assess acceptability of the operational limits of a system
under varying workloads while the system-under-test remains constant. Measurements
include the characteristics of the workload and response time;

• Distribution and Load balancing Analysis - When systems incorporate distributed
architectures or load balancing, special tests are performed to ensure the distribution and
load balancing methods function appropriately;

• Contention Test - Verifies the system can acceptably handle multiple user demands on the
same resource (data records, memory, etc.);

• Volume Testing - Testing that focuses on the ability of the system to handle large amounts
of data, either as input and output or resident within the database;

• Stress Testing - Tests that focus on ensuring the system functions as intended when
abnormal conditions are encountered. Stresses on the system may include extreme
workloads, insufficient memory, unavailable services/hardware, or diminished shared
resources;

• Scalability Testing - Tests to measure and analyze speed of product operation on different
hardware/software platforms and database management systems.

Reliability testing

AQT Services

Amphora Quality Technologies © 2000 8

• Integrity Testing - Tests which focus on assessing the system's robustness (resistance to
failure) and technical compliance to language, syntax, and resource usage;

• Reliability Testing - Tests product operation within a continuous working period under
conditions of heavy loading and high volume.

Security analysis

• Security Testing – Checks database and communications security level and conducts
overall analysis of architecture and quality of product’s security sub-system;

• Vulnerability Testing – Tests focused on a search for potential Software Vulnerabilities
leading to unauthorized access to information or system faults.

Middleware server/component Testing

Middleware constitutes one of the most important components of contemporary information systems
and e-Business solutions. As a rule, business logic and specialized inter-component gateways function
within the Middleware framework, providing an effective interface between program layers. The
quality and performance of the server system at an intermediate level are largely determined by the
corresponding software characteristics as a whole.

AQT has extensive experience with development of Middleware test suites, particularly Transaction
monitors, Application servers and Component Object Request Brokers. One of our clients in this sphere
is Informix Software.

Middleware testing includes Functionality, Performance, Interoperability, Security and other tests. Test
subjects include the Middleware server itself, application business components and the communication
subsystem. Middleware testing is performed by professional developers, AQT’s Performance Lab’s
most experienced specialists. It involves the creation of specialized auxiliary software systems and
components allowing full information about server performance characteristics in different regimes to
be obtained, and also allows the construction of temporary component profiles.

This unique expertise makes AQT ideally qualified to design and implement tests for N-tier distributed
applications and middleware.

Communication and Integration Analysis

AQT has successfully completed a series of projects in respect of analysis and optimization of
performance of multi-level systems in client-server architecture. Quite often, “bottle-necks” are
discovered in the communication subsystem or at the point where software layers interface. AQT’s
team uses special equipment to analyze interaction performance between business components of
distributed systems.

Apart from load testing, AQT’s Performance Lab performs the following tests:

• Network Traffic Analysis – investigations directed towards the evaluation of network
exchange performance between distributed components of heterogeneous systems; this
analysis is subject to the architecture and technical solutions used upon creation of the
communications subsystem;

• Integration analysis – investigations of structure and filling of inter-component information
streams of multi-level object-oriented systems with the goal of detecting bottle-necks and

AQT Services

Amphora Quality Technologies © 2000 9

non-optimal solutions; Analysis subjects include system interface components, and also the
quality and constitution of messages/calls transferred.

The Functionality Lab performs additional experiments and analytical investigations in this sphere,
allowing the provision of great accuracy and reliability of investigation test results. Furthermore, this
allows cause analysis of problems detected.

Usability testing
• Usability Testing – Testing in a true end-user environment in order to check whether the

system is able to operate properly in accordance with the exact set of processes and steps
applied by the end-user, including user’s interface and system convenience estimation;

• Installation, Update and Configuration Facilities Testing – Determines how well and
how easily a product installs and updates on a variety of platforms, software configurations
and under different conditions (such as insufficient disk space or power interrupt);

Technical requirements analysis

• Compliance analysis - Checking the accuracy and completeness of technical requirements
set by developers to software operation environment;

• Requirements correctness testing – General Functionality, Performance and Reliability
analysis of system operation on various hardware and software platforms and in various
configurations regulated by technical requirements

White Box Testing & Source Code Analysis

The presence of source code and software technical specifications broadens the possibilities for a series
of test and analytical investigations, and also significantly increases their results reliability. Essentially,
this may be explained in that there is access to all information pertaining to the architecture and to the
actual way in which components were created. In conjunction with this, there is a series of specialized
investigations, whose execution, in principle, is not possible if the system is viewed as a black box.

AQT’s Functionality Lab experts perform a series of tests and investigations using information
available on the architecture and software source code. These are mainly directed towards attainment of
greater accuracy and checking the reliability of functionality and load test results, and also cause
analysis of problems detected during testing.

Some of the measures performed by AQT in this sphere are listed below:

• Evaluation of internal architecture and particularities of system creation – an investigation
directed towards a search for non-optimal architectural, technical and program solutions
used in project preparation and system development; Analysis presupposes a series of tests,
and also the manual study of system specifics and source code;

• Computation and analysis of code based metrics of software quality and test coverage –
correspondence of different system quality indicators and completeness of testing performed
with individual components, procedures and functions;

• Creation of timing profiles – precise measurement of time spent by different system
components to complete various functions; This investigation is an important part of
Performance & Load Testing, and also Communication & Interoperаbility analysis; In
certain cases, profiling may be performed in the absence of source code;

• Detailed analysis of reliability and stability – operability testing of different system
components whilst in continuous operation; The investigation presupposes full-scale
product functionality testing with fixation of source component faults and defects;

AQT Services

Amphora Quality Technologies © 2000 10

• Component testing – quality analysis of individual components or structural parts of the
system by means of integrated testing of their functionality and interfaces in an artificially
created environment; Very often, this investigation includes functionality and performance
testing; In many cases, component testing may be performed in the absence of source code;

• Correlation testing – an investigation directed towards the analysis of the mutual effect on
each other of different components or program layers; During the analysis process, a series
of system components may be replaced by stubs or subjected to independent testing; In
many cases, systems based on component architecture, may have correlation testing
performed in the absence of source code;

• Template testing – a comparative quality characteristics analysis of individual components
or system structural parts (most often performance characteristics) with analogous
characteristics to authoritative templates; A template, as a rule, is a simple component or
program performing largely analogous functions to the real component. However, it is built
into simple architecture and deprived of non-basic business logic, computation and input-
output functions, inevitably present in the system; Template characteristics may be obtained
by experimental or analytical means;

• Error and defect localization – an investigation directed towards the search of source
component problems, detected during software testing; As a rule, we are talking about
functionality and performance testing; However, this investigation is equally useful for
cause analysis of defects discovered as a result of other investigations; During the course of
the investigation, analysis of functionality correspondence between individual system
components is performed, as well as debugging of individual system components;

• Static Analysis of Source Code – checking of semantic and syntactical correspondence of
software source code according to defined rules; Essentially, this type of investigation is
performed in order to control correspondence of system source code to corporate standards,
or to detect cases of usage of “forbidden” constructions or functions. The latter, is essential
in performing system branch certification or in re-engineering large software systems.

Cause analysis and test results interpretation

AQT experts’ high qualifications and vast experience obtained in working on large SQA projects,
allows us to present our clients with turn-key solutions to the software quality assurance. As well as test
investigations, systematization and appraisal of results, we also perform cause analysis on the
appearance of various defects and problems.

Software quality is characterized by a multitude of parameters, the definition of which requires the
performance of a large number of tests and analytical results processing. Upon investigation
conclusion, AQT presents the client with full information on the characteristics of the product that
interest him in the format of a formal report. As well as raw data, the report contains detailed
descriptions of work performed, diagrams, graphics, computed metric significances and an experts
conclusion, essential for convenient information comprehension.

After this, the software developers face the task of localization and elimination of problems detected
during the investigations. Cause Analysis of defects detected and interpretation of measured
characteristics with the goal of optimization is a no less labor-intensive process than testing and
processing the results. It is essential to complete appraisal of the system architecture and source code,
perform debugging of individual program components, and also, possibly, perform additional test
investigations. To be at its most efficient, the given process should be completed with the participation
of the specialists that discovered the problems.

AQT proposes a more convenient and effective solution: cause analysis of the reasons for defect
appearance, test results interpretation and definition of possible methods of eliminating the problems by

AQT Services

Amphora Quality Technologies © 2000 11

our specialists. Irrespective of whether we are talking about product functionality, performance or
security characteristics, AQT will perform cause analysis on problems detected quickly and effectively.

Part of the AQT team consists of highly qualified professional programmers with a broad grasp of
contemporary technologies and development methods. In close cooperation with client specialists,
AQT experts will perform an exhaustive analysis of investigation results and present exact information
on the reasons for the appearance of problems detected and possible ways to solve them. During the
work process, apart from system architecture and source code analysis, as well as profiling and
debugging of program components, AQT will perform a series of specialized investigations,
significantly increasing the effectiveness of the cause analysis process and the reliability of conclusions
reached. Many of these measures are described in detail in White Box Testing & Source Code
Analysis.

Regression Testing

The Rational Unified Process Software Engineering Methodology regulates the iterative approach to
software development. All project stages, namely – planning, analysis, design, development and results
evaluation of work completed are performed repeatedly for each stage of work on the project. A full
production cycle is performed for practically each step.

The given approach provides a high degree of production systematization, increases the quality of
production and significantly decreases risk. The iterative approach is particularly attractive when we
are talking about software quality assurance.

On one hand, defects already detected must be corrected and this must be confirmed by corresponding
tests in the control process pertaining to the quality of the next software release. On the other hand, the
quality of each new release must be confirmed by comprehensive testing of its functionality and other
characteristics.

In this way, we have a set of essential tests already formulated, which are to be performed from release
to release, regularly controlling software quality. During the process of system development or
modification, the test set will change. However, the list of tests to be completed must always provide
comprehensive quality control over current system functionality and check correction of defects
discovered in previous iterations.

This iterative process is called regression testing. AQT has successful experience in the of IT project
quality assurance according to the tenets of this methodology, controlling it from the business process
modeling stage to the maintenance stage. The method we use to manage defect database management
provides the client with convenient access to information in real time and eases the task of report
preparation.

About the Speaker

Dr. Aigrain is Head of Sector "Software Technologies" in the unit
"Technologies and Engineering for Software, Systems and Services" of the
European Commission Information Society Technologies R&D Programme. He
was trained as a mathematician and theoretical computer scientist, and holds a
Doctorat and the Habilitation à Diriger les Recherches from University Paris 7.
From 1972 to 1981, he worked in software engineering research labs of
software companies. He was a research fellow at U.C. Berkeley in 1982. Since
then, and before joining the European Commission in 1996, he headed research
teams in the field of computer processing, indexing, retrieval and interaction for
audiovisual media (video, music, still images). He his the author of more than
60 technical papers, as well as of papers on the economy and sociology of
information exchanges.

QWE2000 Keynote Session K1-3

Dr. Phillipe Aigrain
(Head of "Software Technologies" Sector, EC, Brussels,

Belgium)

A Wider Look at Software Quality

Philippe Aigrain - A Wider Look at Software Quality - 01.00 - 2WCSQ Keynote speech summary - 06.09.00 Page 1

A wider look at software quality

Philippe Aigrain, IST Programme,
European Commission, DG Information Society

Summary:

The communication proposes to extend the vision of what software quality means,
and of possible ways to attain it, in comparison to what the specialised community
of software quality experts has usually focused on. It justifies this need by recent
trends in the nature and role of software, and difficulty for classical approaches to
deal with some important issues. It then describes how recent orientations in the
European IST research programme try to deal with these challenges.

Author's details:
Philippe Aigrain, European Commission, INFS0/E2, Office N105 3/54,
rue de la Loi, 200, B-1049 Brussels, Belgium
tel: +32.2.296.0365, fax: +32.2.296.7018, email: Philippe.Aigrain@cec.eu.int

1. Abstract

Several reasons strongly advocate for a re-definition of what software quality means, and how we can try
to attain it:
• The growing ubiquity of software in objects of everyday life (in contrast to previous situations in which

software was found mostly in professional environments),
• The related fact that software is often used for activities that are not clearly known at the time at which

it is designed, but on the contrary result from creative interactive usage of its functionality,
• The convergence between computing and telecommunications , and the resulting complexity, inter-

dependency and difficulty for the user to identify the sources of problems in behaviour and
performance,

• The fact that a given application or activity supported by software uses components coming from
different sources, often integrated at run-time only , with similar consequences for users,

• The emergence of free / open source software as a major enabler for new ways to attain quality by
bridging the gap between users and developers, by making the internals of software visible to a wide
population of critical eyes, and by making it possible for alternate developers to correct quality failures,

• The related fact that even for a single piece of software, development is done more and more often by
people distributed across different organisations and/or locations.

At a more technical level, Anthony Finkelstein and Jeff Kramer, in their introductory chapter to a book
published at the recent ICSE 2000 Conference, (Finkelstein and Kramer, 2000) have summarised the major
research challenges of software engineering in a way that takes in account the trends listed above. They
suggest to put emphasis on enabling compositionality, adaptation to change in requirements, modelling
non-functional properties, shifting to a service view of software, creating new structuring schemes making
it possible for software engineering to deal separately with various concerns, adapting to non-classical life-
cycles, making it possible to reason about software architectures, enabling user configuration and more
generally user development, and exploiting domain specificity.

To justify why these developments and perspectives call for a revised and extended definition of software

Philippe Aigrain - A Wider Look at Software Quality - 01.00 - 2WCSQ Keynote speech summary - 06.09.00 Page 2

quality, the communication first briefly reviews some of the classical approaches to reaching software
quality such as:
• Programming constructs and styles,
• Proven behaviour,
• Reliability, fault tolerance, and testing
• Quality from procedures and development processes,
• Capability maturation,
• User-centred design and requirement engineering,
Though the contribution of these approaches to the state-of-the-art must be acknowledged, one also has to
recognise their built-in limits in how they can address software quality.

Finally the communication illustrates how recent orientations in the Technologies and Engineering for
Software, Systems and Services part of the European Information Society Technologies research and
technology development programme (IST, 2000) aim at supporting research that extends the approach to
software quality, in order to deal with the new challenges of the information society. Recent and planned
action lines in our programme address challenges such as:
• Distributed software development
• Engineering of end-user services
• Interaction and functionality design
• Handling the specific needs of free / open source software development
• Models and management of software architecture

References

/ (Finkelstein & Kramer, 2000) Anthony Finkelstein and Jeff Kramer, "Software Engineering: A
Roadmap", Introductory chapter to "Future of the Software Engineering", ACM Press, 2000.

/ (IST, 2000) http://www.cordis.lu/ist

QWE2000 Keynote Session K2-1

Linda Crispin
(iFactor-e)

Stranger in a Strange Land: Bringing QA to a Web
Startup

Key Points

How to get buy-in from management, information systems, development and marketing in a
startup environment

●

How to educate yourself in testing Web applications●

How to remove the testing bottleneck in Web development●

Presentation Abstract

It perhaps goes without saying that a Web startup is not an environment in which
quality testing is typically found. Development is fast and loose. Many developers are
inexperienced. They're racing to be first to market. One might be tempted to label the
environment as chaotic.

When I accepted the opportunity of being the first test engineer at TRIP.com, only 25
people worked for the Web startup. The developers had produced some exciting
applications and felt they were ready to "grow up and play with the big boys." The
development team thought they were intellectually prepared to introduce standards
and procedures.

In reality, development was frenetic, and the developers didn't have a clue as to how
to stop and analyze their processes, much less how to impose discipline on them.

For my part, I was a complete stranger to Web development. For years I had been
testing databases, 4-GLs, and client/server software on UNIX, NT, and Windows
platforms. I spoke ODBC, but not JDBC. I knew my customers. In my experience, the
software development cycle had stretched on for months or even years-during which
your typical Web application has gone though numerous incarnations.

This is the story of how I learned about Web application development, preached the
quality gospel, and collaborated with the software and product developers and
marketing managers to implement development standards and project processes
that build quality into our applications. TRIP.com now employs 200 people, has three
million registered customers, and has introduced such cutting-edge products such as
intelliTRIP and companyTRIP.

About the Speaker

QWE2000 -- Conference Presentation Summary

http://www.soft.com/QualWeek/QWE2K/Papers/K21.html (1 of 2) [9/28/2000 11:10:25 AM]

I have eighteen years experience in the industry with the last nine in Testing and
Quality Assurance. I started out as a programmer and later worked in customer
support and QA for large software vendors. In March of 1998, I discovered the world
of Web startups, joining TRIP.com as the first test engineer. The challenge of
building quality into Web applications while meeting tight development cycles was
eye-opening. At TRIP.com, I built a QA department of seven test engineers testing
state-of-the-art, first-of-their-kind applications such as flightTracker and intelliTRIP. I
felt, however, that we never found a really good process that worked to produce
high-quality software in a short amount of time. Missed deadlines were common.
Still, we were proud of our accomplishments, as TRIP.com grew to one of the
highest-traffic travel Web sites, rated 4.5 out of 5 starts by BizRate and ranked near
the top of the Keynote Top 40 websites for performance.

Several developers from TRIP.com left to join a new startup, iFactor-e, devoted to
using eXtreme Programming to combine high quality and short time to market to
wow the customer. One of these developers loaned me Kent Beck's book. After I
read that, I was eager to try XP myself and was fortunate enough to be hired as the
first test engineer at iFactor-e in July of 2000. Since then, I have been racing to
establish a functional testing methodology that successfully applies the values of XP.

I have given successful presentations at both local and international user and QA
conferences to audiences of up to 60 people. I have many years experience training
both technical and end users.

QWE2000 -- Conference Presentation Summary

http://www.soft.com/QualWeek/QWE2K/Papers/K21.html (2 of 2) [9/28/2000 11:10:25 AM]

1

1

Stranger in a Strange Land:
Bringing QA to a Web

Startup

Lisa Crispin
Senior Test Engineer

iFactor-e

2

Bringing QA to a Web Startup

Frenetic pace
Lack of experience in process, standards
Little comprehension of quality and testing

What I found in the DotCom environment

2

3

Bringing QA to a Web Startup

No experience in web testing
Used to long development cycles
Used to a corporate environment with lots of
process

Who I was when I started at a DotCom

4

Bringing QA to a Web Startup

How to get buy-in
How to educate yourself
How to prevent a testing bottleneck
How to define a sane process
How to create documentation

This Presentation Will Give Tips On:

3

5

Bringing QA to a Web Startup

Identify a top manager to champion your cause
Who understands your mission
In leadership position, eg. VP of Development

Get Buy-In

6

Bringing QA to a Web Startup

Partner with someone outside of your group
Eg., project or operations manager
Educate them and garner their help

Get Buy-In

4

7

Bringing QA to a Web Startup

Educate everyone about software quality
assurance

Eg. - hold professional development session
What QA will do for them and the site
Meetings, face time

Get Buy-In

8

Bringing QA to a Web Startup

Support Information Systems
Don t bug them for what you can do yourself
Let them do their job
They hold the keys and are on your team

Get Buy-In

5

9

Bringing QA to a Web Startup

Listen to the developers
Try to understand their point of view
They may communicate differently
Quality Hero award

Get Buy-In

10

Bringing QA to a Web Startup

Brainstorm
Developers, Database IS, Marketing, Customer

Support
Potentially overlooked problems

Get Buy-In

6

11

Bringing QA to a Web Startup

Evaluate and select appropriate tools
Test, defect tracking, configuration mgmt
Vendors who can help you
Consider learning and implementation time
Doesn t have to be expensive or famous

Work Smart

12

Bringing QA to a Web Startup

Search the Web for resources
http://www.softwareqatest.com/index.html
http://www.kaner.com/writing.htm
http://www.crl.com/~zaller/testing.html#Kerryh
ttp://www.testingcraft.com/cgi-

bin/wiki.cgi?FrontPage

Work Smart

7

13

Bringing QA to a Web Startup

Hire good help
Senior, experienced testers
Or train your own - attitude is key
Spend the $

Work Smart

14

Bringing QA to a Web Startup

Get input about quality from everyone
Form a quality board
Hold quality review panels

Work Smart

Quality
Quality

Quality

8

15

Bringing QA to a Web Startup

Insist on a dedicated test environment
Looks like production
Can handle production level load test

Work Smart

Dev Test Prod

16

Bringing QA to a Web Startup

Learn about the development tools
Quality issues - version control, workflow
Configuration and performance issues
Ask questions

Work Smart

9

17

Bringing QA to a Web Startup

Get control of production environments
Lock developers out!
Work with Information Systems

Define Process

18

Bringing QA to a Web Startup

Get involved from the beginning
Review all documentation
Agree on one vision for each project
Define QA and Dev process
Hire a good tech writer

Define Process

10

19

Bringing QA to a Web Startup

Innovate!
New documentation formats
Consider alternatives such as Extreme

Programming

Define Process

Stranger in a Strange Land:
Bringing QA To a Web Startup

Lisa Crispin, Senior Test Engineer, iFactor-e

It perhaps goes without saying that a Web startup is not an environment in which quality testing is typically
found. Development is fast and loose. Many developers are inexperienced. Marketing is pushing to be first to
market. One might be tempted to label the environment as chaotic.

When I accepted the opportunity of being the first test engineer at TRIP.com, only 25 people worked for the
Web startup. The developers had produced some exciting applications and felt they were ready to "grow up and
play with the big boys." The development team thought they were intellectually prepared to introduce standards
and procedures.

In reality, development was frenetic, and the developers didn't have a clue as to how to stop and analyze their
processes, much less how to impose discipline on them.

For my part, I was a complete stranger to Web development. I truly felt lost in the wilderness without a map or
a compass. For years I had been testing databases, fourth-generation languages, and client/server software on
UNIX, NT, and Windows platforms. I spoke ODBC, but not JDBC. I knew my customers. In my experience,
the software development cycle had stretched on for months or even years-during which your typical Web
application has gone through numerous incarnations.

This is the story of how I learned about Web application development, preached the quality gospel, and
collaborated with the software and product developers and marketing managers to implement development
standards and project processes that build quality into our applications. TRIP.com now employs over two
hundred people, has over four million registered customers, and has introduced such cutting-edge products such
as FlightTracker and intelliTRIP. Myself, I've moved on to a new startup. Once again, I feel like a stranger -
this time in the strange land of eXtreme Programming. But that's another paper.

Any DotCom is a work in progress. Even once we had a successful project process at TRIP.com, we faced
continual challenges such as an inadequate test environment. Even when the whole company understands and
is committed to the importance of quality assurance testing, unexpected events lead to surprises. The key is to
keep plugging away at the following tasks:

•Get Buy-In
•Work Smart
•Define Processes

I. Get Buy-In

I won over my managers, developers, and marketing counterparts by following these tenets:

•Identify a top manager in your organization who believes in your cause and will champion it. In my case, it

was the Vice President of Web Development and Chief Cat Herder (yes, that really was her title). When I
was hired, this person did not believe that five developers could keep one tester busy full time. But, in time,
she became my biggest ally. She not only pushed the developers to work for quality, but she also lobbied the
management team for testing resources.

•Partner with someone outside of your organization, such as a project or operations manager. Educate your
ally to garner his or her help. We had a topnotch project manager who, once she understood what QA and

testing would do for the company, did much of my job for me. She enforced processes such as document review
and signoff, helped implement and police the defect tracking system, and tied up a million details involved
with every big production launch. She became the prime channel of communication between marketing and
development.

•Educate everyone you come into contact with at the company about software quality assurance: what it is and
what it will do for them and the site. Early on, I held a "Lunch 'n' learn" professional development seminar.
The company bought lunch, so attendance was good. I explained why testing is essential and what it
involves. Lots of meetings and one-on-one encounters are needed to get everyone on board and to establish
priorities.

•Support Information Systems, the group that administers the production site. These people will benefit from
not having their pager go off so much when applications are tested before being launched to production. The
Vice President of Technology and the IS director fully supported me and refused to launch any update that
had not been fully tested. This kept the rest of the organization from steamrolling over me, giving me a
chance to prove the value of testing. I don't bug IS for the things I can do myself, but I let them do their job.
For example, I installed Y2K patches on the test machines, but IS controlled all the UNIX and NT account
management.

•Understand the developers' point of view. You may have young, brilliant developers who don't communicate
in ways you are accustomed to. Our original developers were mostly very young and inexperienced. Some
had not finished high school!. Others weren't old enough to drink! The culture was anti-corporate, and they
said what was on their minds. I found that if I listened, I learned, and they in turn were willing to listen to
my ideas. I learned everything I now know about Web applications from the developers themselves. I
presented a "Quality Hero" award each month to a developer who took exceptional measures to prevent
defects and improve quality. The prize was just a Nerf gun and the developer's name appeared on the
Quality Hero Award plaque, but it raised the visibility of high quality process and techniques.

•Brainstorm with developers and others about problems that may not come out in testing. For example, I didn't
know that if you change a URL, search engines may not be able to find your site. When we implemented a
content management tool that required changing every URL, this was important information!

II. Work Smart

Here's my advice for making the testing organization lean and mean:

•Evaluate tools. Put as much time as you can into tool evaluation, such as those for automated testing,
defect tracking, and configuration management. Identify the vendors who can help you the most, and get
as much information from them as you can. Ask fellow testers for their recommendations and
experiences. Install new tools and try them out. Select tools that are appropriate for you and your
company. It doesn't do any good to buy a tool you don't have time to learn how to use, especially if your
testing team is small. I ended up choosing tools that are lesser known but stil meet our needs. For
example:
•For automated testing at TRIP.com (we use this at iFactor-e as well), we used WebART, an incredibly

inexpensive, easy-to-learn , but powerful tool sold by OCLC Inc. (a non-profit company). They gave
me invaluable advice and provided insights about Web testing. Pick everyone's brain including
vendors!

•For defect tracking at TRIP.com, we chose a Web-based tool, TeamTrack (now called TTrack), from a
startup company called TeamShare . It, also was far less expensive than its competitors, but it was
easy to implement and customize. At iFactor-e, which is a brand-new startup on a small budget, we
use the free Bugzilla and it is fine for our needs.

•For configuration management, we again turned to a smaller, innovative company which produces an
inexpensive, easy to implement and learn yet robust tool, Perforce. At iFactor-e, we use freeware,
CVS - it lacks some features, but the development team is small and can work around its drawbacks.

These tools won't necessarily meet your needs - just be open and creative when evaluating tools.
Investigate alternatives - for example, if you create unit tests to reproduce each bug you find in testing,
you may not even need a defect tracking system!

•Search the Web for resources. I would have quit TRIP.com after a week if I had not found an excellent
Web site that points to information about testing Web applications and lists of tools. These sites, in turn,
led me to more tools and information Here are some examples:

http://www.softwareqatest.com/index.html
Everything from basic definition and articles on how to test Web applications to comprehensive
lists of Web tools to links to other informative sites.
http://www.kaner.com/writing.htm
Articles by Cem Kaner
http://www.crl.com/~zallar/testing.html#Kerry
l
ong lists of associations, vendors, tools, training, reference information, conferences, interesting
papers.
http://www.testingcraft.com/cgi-bin/wiki.cgi?FrontPage
a Wiki forum for exchanging test techniques and the related
http://www.egroups.com/group/testingcraft-discuss

Of course, user conferences are invaluable for both information-gathering and networking.
•Hire good help. It proved impossible at first to find experienced test engineers in our area, so we at

TRIP.com hired bright but inexperienced people with the right qualities that make good test engineers:
enthusiasm, dedication to the end user, and determination. A caveat: inexperienced testers who have no
programming experience have a harder time learning a scripting language for an automated test tool.
However, by using a combination of outside classes, hiring consultants and patient, one-on-one training,
our testers learned UNIX, SQL, test scripting, HTML, configuration management, and other technical
skills. You're going to spend money either way - paying high salaries for experienced test engineers, or
training novice testers. Once you've turned them into pros, remember to keep them challenged, happy
and well-compensated so other companies don't poach them!

•Get input about quality from all departments in the company. I formed a quality board with members from
sales, marketing, customer support and travel to gather fresh ideas about error prevention and
prioritization of regression testing. Whenever major problems occured, we held a quality review panel
where representatives from development and information systems heard short presentations from the
people who experienced and fixed the problem. The panel studied the issues and recommended steps to
prevent such problems from recurring. This was a big effort and to be truthful, it was difficult to get
follow-through. But give it a try. We also held post-mortems after all major launches to see what
lessons could be learned. By employing these methods, we learned some valuable lessons!

•Insist on a test environment that is exact replica of, but is entirely independent from, production. You
can't emulate a production load without the equivalent of production hardware and software. Since the
production architecture is likely to change in response to increased traffic and other considerations, this
is a moving target. The test environment will need to be updated in synch with the production
environment. The architecture is key too. If the production servers are clustered, your testing had better
be done in a clustered environment. If part of an application runs on a stand-alone machine, it must do
so in your test environment. Establishing and keeping up development, test and production
environments was a huge challenge. Even when the entire company is sold on the idea of a proper test
environment, there are business and technical reasons (read: excuses) that get in the way of reproducing
the production environment in for testing . Don't be complacent, and never give up. Make sure you have
the best test environment you can get for each application going into production, and work actively with
your information systems team to get the environment you really need. Even small applications can
deceive you. For example, we launched a simple application, SantaTracker, on Christmas Eve so kiddies

could watch Santa's sleigh fly around the country. The test environment was broken, so we were not able to
test on the same architecture that it was to run in production, but we weren't concerned. After all, it
should have worked exactly like our regular FlightTracker application! Right? Wrong! It was a disaster!
In short: Dig your heels in and refuse to launch until some semblance of a test environment is
established. Remember, it is harder to get the test environment once the new application is in
production. Make it a requirement of release.

•Learn about the development tools. They present their own quality issues and offer some solutions, too.
For example, the first version of our content management tool did not have any version control. It took
more than a year to upgrade to the release that offered this capability, and even then it didn't enforce
version control. We had to constantly police the process to ensure that developers version their code.
The software on which our Java applications were based had complex configuration parameters we
didn't fully understand when we first put it into production. We had tested our intelliTRIP product with a
production load in terms of transactions per second, but never with a realistic number of concurrent
users. As a result, the servers kept crashing on the first day we put it in production. If we had understood
the configuration and the user session management parameters better in our Java-application
management tool better, we could have prevented this problem.

III. Define Processes

Collaborate with your counterparts to formalize your processes:

•Get control of the production environments. Work with your information systems team to create a
production update procedure. When I started, developers launched their own changes to production. It
was hard to wean them away from this bad habit. Even after we thought we had implemented good
production update procedures, we lacked the discipline to enforce it under pressure. For example, since
we did not have good configuration management, it became impossible to build baselines of intelliTRIP,
so developers would simply move new classes into production to fix problems. Only?after two years
did ?we begin to be able to require developers to build scripts and installation documentation before we
accepted any software from development for testing.

•Get involved from the beginning of each project. This is hard work. It forces you to juggle many tasks, but
it is essential. Participate in all documentation reviews: Those for requirements, functional
specifications, and design specifications. Make sure the documents are complete and clear. Look for
ambiguities, gaps, lack of detail. All parties, including marketing, development, test, customer support,
sales must agree on a vision for the product. This vision is a short phrase that describes the main thrust
of the product. With intelliTRIP, development and test were told to produce a server-side version of the
original client-side product as quickly as possible. Sales and marketing believed that the purpose of the
product was to quickly locate fares from airline Websites. Since development and test wasn't told that
part about quickly, we released the product even though we knew that is was sometimes slow to return
results. This type of disconnect can be prevented by including a vision statement in the requirements

•Define quality. Work with marketing and product development to define quality IS for each product.:
Should the priority be good, fast, or cheap? (You can only have two of the three!) Even if you choose
fast, don't sacrifice the process. At TRIP.com, we once implemented a promotion that marketing
believed to be simple and wanted to rush to production. Since the product manager did not hold
documentation reviews and get signoff, the HTML pages produced by the developers had to be changed
three times. This took much longer than a documentation review meeting. There is no need to get
bogged down in process either. If you find that is happening, change the process, or train people how to
use it properly.

•Document the internal processes of both test and development. You can't expect marketing and product
development to follow best practices if you don't do it yourself. At TRIP.com, one of the development
directors, with the help of the technical writer, led an effort to define and document the development

process. By the way?no matter the size of the company, unless you are using a lightweight technology
such as eXtreme Programming, you need at least one experienced, skilled technical writer in your
development organization.

•Enforce the process. If your QA team is large enough, dedicate one person to administering and
enforcing configuration management and delivery of installation scripts and documentation. At
TRIP.com, we expanded this Configuration Manager role to that of a deployment engineer who works
closely with developers to produce the builds and installation procedures. Don't accept software to test
if it is not accompanied by all the documentation and software you need to promote, test, and launch it
to production

•Innovate! Look for new ways to present documentation such as functional and specifications. Web
applications require a new approach. You have creative people at your company who can help! Get
input from as many different groups as you can. If your company really wants to get innovative,
consider lightweight methodologies such as eXtreme Programming (XP). These methodologies can
meet the need to get to market quickly, accomodate rapidly changing requirements but still release a
high quality product.

Summary - As You Grow

All companies change as they grow beyond the 'startup' size and environment. My team and I endured
countless frustrations when fast growth at TRIP.com led to temporary chaos. As your organization grows,
educate new employees about project process and quality practices. Listen to them and take advantage of their
fresh outlook and new ideas. Take the initiative. If a gap results from a re-organization, fill it yourself. For
example, when we were temporarily without a project management function in the company, the development
director and I set up a weekly tactical meeting with representatives from all departments so that everyone could
stay informed and juggle resources. Quality assurance can be a frustrating job, especially in a Web startup.
Pick your battles. Keep striving for better quality. Above all, enjoy the experience!

QWE2000 Keynote Session K2-2

Mr. Hans Buwalda [Netherlands]

(CMG Finance BV)

"Soap Opera Testing"

Key Points

Business oriented approach to test development●

Pitfalls of the traditional mechanical ways to develop tests●

Practical ways to apply scenarios as an alternative●

Presentation Abstract

It is far from easy to develop good tests. Translating requirements one by one into
test cases isn't always good enough. You can end up with an unmanageable volume
of boring tests, that lack effectiveness in finding complex and hidden problems.
Based on experiences in numerous projects around testing and test automation a
number of techniques will be presented that can improve the process of test
development. They are grouped around the theme "Soap Opera Testing". Applying
them can not only lead to a better manageable test set, it is also a more motivating
and creative way of developing tests.

The idea behind soap opera's is that you use real business examples for your tests
in the form of scenario's. But, comparable to soap opera's on television, they are
condensed and, if appropriate, exaggerated. In this way you can find out if a system
can cope with complex business situation and, even more important, it motivates end
users to make nice test cases (it is more fun).

This theme has been presented in the States as keynote for Star East 2000 and has
raised very positive evaluations from the audience.

About the Speaker

Hans Buwalda is project director at CMG, a leading European information technology
services group. He is responsible for new developments around the TestFrame
approach for testing and test automation of which he is the main architect. The
approach has been started by him in 1994. In 1996 he presented the main ideas for
the first time to an international audience in a speech called "Testing with Action
Words, abandoning record and playback". Since then the method is being used in an
increasing number of countries and Hans has become a frequent speaker at industry
conferences, tutorials, and workshops.

QWE2000 -- Conference Presentation Summary

http://www.soft.com/QualWeek/QWE2K/Papers/K22.html [9/28/2000 11:10:31 AM]

1

Hans Buwalda
CMG - TestFrame Research Centre

hans.buwalda@cmg.nl
www.testframe.com

Soap Opera
Testing

© 2000, CMG Nederland BV, all rights reserved

slide - 2 © 2000, CMG Nederland BV, all rights reserved

Agenda

• introduction

• underlying architecture: the TestFrame
Model

• Soap Opera’s

• usage

2

slide - 3 © 2000, CMG Nederland BV, all rights reserved

The Challenges for a Test Process

• testing should be fun

• testing should be effective

• testing should be efficient

• testing should be under control

slide - 4 © 2000, CMG Nederland BV, all rights reserved

The “mechanical approach” for test
development (example)

• start with (preferably long) list of requirements

• make a test case for every requirement

• use a standardized test technique to translate the
requirements into the test cases

• hire (many) people to peform the tests by hand

• ….

3

slide - 5 © 2000, CMG Nederland BV, all rights reserved

Some pitfalls with a too mechanical approach
• no fun at all
• inhibiting creativity
• coverage is focussed at single requirement level
• any defects should probably have been found in

an earlier test
• suggests false sense of control
• testset hard to maintain
• doesn’t catch mistakes in the requirements
• . . .

slide - 6 © 2000, CMG Nederland BV, all rights reserved

Questions to answer with a test collection

1. does the system comply to the
requirements

2. are there any problems (defects and/or
failures) we should know about

3. will the system work in practice

4

slide - 7 © 2000, CMG Nederland BV, all rights reserved

Re-usable test products in Testframe
test development

test execution

test cluster

navigation scheme

…
check balance
enter customer
…

 A B C D
. . .
transfer Houston Klein 210
check balance Klein 210
transfer Savy Klein 150
check balance Klein 360
. . .

slide - 8 © 2000, CMG Nederland BV, all rights reserved

tool

navigation script

target
systemseparation

report

test design

• test conditions
• test lines

test clusters

test plan

• actual results
• comparison with

expectations
• management

information

• input data
• expected outcomes
• documentation

management

system
development

QA/Auditors

end users

5

slide - 9 © 2000, CMG Nederland BV, all rights reserved

Independence of life cycles

system
development

test
development

test
automation

whatever they
might be like

in practice . . .

process oriented dependencies

slide - 10 © 2000, CMG Nederland BV, all rights reserved

Life cycles in perspective

• high level business oriented tests
• production acceptance tests

• functional tests
• technical tests

• low level functional tests
• technical tests

specifications

design

programming

high level
actions

intermediate
level actions

low level
actions

Test Execution

. .
 .

. .
 .

6

slide - 11 © 2000, CMG Nederland BV, all rights reserved

• high level business oriented tests
• production acceptance tests

• functional tests
• technical tests

• low level functional tests
• technical tests

specifications

design

programming

high level
actions

intermediate
level actions

low level
actions

Test Execution

. .
 .

. .
 .

system
development

test
development

navigation

Life cycles in perspective

slide - 12 © 2000, CMG Nederland BV, all rights reserved

Soap Operas
Ashley hears about Jack's deposit when he thought he had
to go. Victoria lectures her father about what's wrong with him
and Nikki but Victor advises her that it's none of her business
Olivia learns Dru has no regrets about leaving and takes great
satisfaction in having Lily as her companion. Dru then asks Olivia
why she is raking Malcolm over the coals. Stopping by Gina's,
Nikki spots Brad and sits with him, admitting she doesn't want to
be alone tonight. Victor stops by Mack's party at the Crimson
Lights. Ashley takes a home pregnancy test. Worried about Billy,
Raul makes call and J.T. claims he doesn't know where Billy is.
Raul rushes over and finds Billy out cold in the snow Raul worries
when he can't find a pulse. . . .

7

slide - 13 © 2000, CMG Nederland BV, all rights reserved

Properties of Soap Operas

• about “real life”

• but condensed

• and more extreme

slide - 14 © 2000, CMG Nederland BV, all rights reserved

Soap Operas for testing

• define a scope of the test to develop

• identify with the business environment

• which elements would make things difficult

• draft scenario’s (typical some dozen lines)

• write them down in clusters

8

slide - 15 © 2000, CMG Nederland BV, all rights reserved

Examples of story lines when used for testing
Pension Fund

World Wide Transaction System for an international Bank

William starts as a metal worker for Industrial Entropy
Incorporated in 1955. During his career he becomes ill, works
part time, marries, divorces, marries again, gets 3 children, one
of which dies, then his wife dies and he marries again and gets 2
more children….

A fish trade company in Japan makes a payment to a vendor on
Iceland. It should have been a payment in Icelandic Kronur, but
it was done in Yen instead. The error is discovered after 9 days
and the payment is revised and corrected, however, the interest
calculation (value dating)…

slide - 16 © 2000, CMG Nederland BV, all rights reserved

Example of test lines

from to amount valuta trans nr
enter payment 123421344 4124244123 120000 yen &keep tx1
check value dating &tx1 $0.47
wait days 9

order to reverse &tx1

from to amount valuta trans nr
enter payment 123421344 4124244123 1200000000 IKr &keep tx2
check value dating &tx2 $7,701.56

. . . .

9

slide - 17 © 2000, CMG Nederland BV, all rights reserved

Soap Operas (in testing) are not necessarily:

• “extreme”

• far fetched

• long and elaborate

• pieces of art and creativity

slide - 18 © 2000, CMG Nederland BV, all rights reserved

“Killer Soaps”

• more specifically aimed at finding hidden
problems

• run when everything else has passed

• one option: put a killer soap at the end of a
normal cluster

• ask the “specialists” for input

10

slide - 19 © 2000, CMG Nederland BV, all rights reserved

Reasons for scenarios like soaps

• test collection can be made more compact

• it is more fun to make

• specialists used more effectively

• testing more of the application

• less directly dependent on functional specs,
so catching more pitfalls

slide - 20 © 2000, CMG Nederland BV, all rights reserved

What to use it for

primary use
• high level functional acceptance testing

but also:

• module testing
• system testing
• integration testing
• ...

11

slide - 21 © 2000, CMG Nederland BV, all rights reserved

What is not interesting for soaps

• screen stuff

• routine tests

• any other straight forward compliance
testing

slide - 22 © 2000, CMG Nederland BV, all rights reserved

Relation to use cases

• friendly cousins

• soap opera’s are more directly aimed at
testing, for example by exaggerating and
using (non local) combinations

• less analytical “top down”, but “outside in”:
translated from end user practice

12

slide - 23 © 2000, CMG Nederland BV, all rights reserved

Who could make Soaps

• nearly everybody:
end users

specialized testers

developers

auditors

...

slide - 24 © 2000, CMG Nederland BV, all rights reserved

Ways to get them

• coaching end users or business specialists

• interviews

• own fantasy

• workbooks

• using joint development sessions

13

slide - 25 © 2000, CMG Nederland BV, all rights reserved

Joint Testware Development (JTD) ™

• JTD = A technique for structured test
development without (complete)
documentation

• Based on knowledge of experts instead of
just documentation

• JTD <> “Just talk to the end-users and write
down what they say”

slide - 26 © 2000, CMG Nederland BV, all rights reserved

What can joint sessions give you

• Test Strategy

• Acceptance Criteria

• Cluster Grouping

• Test conditions

• Evaluation of Results

• Starting up development of scenarios

14

slide - 27 © 2000, CMG Nederland BV, all rights reserved

Joint sessions

• moderator / chairman

• users

• business specialists

• developers

• testers

slide - 28 © 2000, CMG Nederland BV, all rights reserved

Setup of a joint session for a telecom provider
• 1st session

Introduction by moderator and project manager
explanation about the JTD procedure
explanation of the functional area by a specialized user

• 2nd session
start of production of test conditions

• 3rd session
start of production of test scenarios

• 4th session
evaluation test scenarios

15

slide - 29 © 2000, CMG Nederland BV, all rights reserved

Structured test development and Soaps

• soaps are not the natural way to get
“coverage”

• additional techniques can help, examples in
TestFrame:

test conditions

test design templates

• recommendation: do “matching” afterwards

slide - 30 © 2000, CMG Nederland BV, all rights reserved

Test analysis and test creation

Test Analysis:

- what do we want

- what do we need

Test Creation:

- confrontation with reality

- put it to the test
separate

relate

and

specifications
analytical techniques

business
environment

16

slide - 31 © 2000, CMG Nederland BV, all rights reserved

Example Test Condition

nr description
...
3.51 it is checked that the exit date is after the entry date
...

test condition 3.51

name entry date exit date
enter employment Bill Goodfellow 1999-10-02 1999-10-01
check error message The exit date must be after the entry date.

coupling with the actual test lines in the cluster

slide - 32 © 2000, CMG Nederland BV, all rights reserved

Matching Conditions
condition description severity tested in scenario:

MB01 Entering customers using manual numbering
MB02 Automatic account numbering

MBT-C02 high MB01 Entering customers using manual numbering
MB02 Automatic account numbering

MBT-C03 a customer with a negative balance cannot
transfer money to another customer

2

MBT-C04 high MB01 Entering customers using manual numbering
MB02 Automatic account numbering

MBT-C05 high MB01 Entering customers using manual numbering
MB02 Automatic account numbering

MBT-C06 account numbers can be entered manually by
the user

medium MB01 Entering customers using manual numbering

MBT-C07 account numbers can be generated
automatically by the system

medium MB02 Automatic account numbering

MBT-C08 ...
...

high

the balance of the receiving customer is
increased with the sum payed

the balance of the paying customer is
decreased with the sum payed

MBT-C01 a customer entered in the enter client screen
is present in the database

a customer with a positive balance can
transfer money to another customer

17

slide - 33 © 2000, CMG Nederland BV, all rights reserved

Test Design Templates
• spreadsheet based technique for designing tests

• introduced in 1998 as an extension to TestFrame
by Edward Kit

• friendly technique and yet very strong, for example
in identifying needed situations and combinations

• for a further description please have a look at Ed’s
article in Software Development Magazine:
http://www.sdmagazine.com/breakrm/features/s992f2.shtml

slide - 34 © 2000, CMG Nederland BV, all rights reserved

Example of Test Design Templates

Template ID: MB des 1 MB des 2 MB des 3 MB des 4
….

customer * * * *
last name
first name
balance positive too low positive positive
number

confirmation letter yes yes
automatic numbering yes

….
tested in scenario: MB01 MB01, MB02 MB02

matching

18

slide - 35 © 2000, CMG Nederland BV, all rights reserved

A life cycle for test development

clustering

test
conditions test design

templates test
scenario’s

review
execution
maintenance
...

cl
us

te
r l

ev
el

ov
er

al
l

match
(cross ref)

slide - 36 © 2000, CMG Nederland BV, all rights reserved

Questions to answer with a test collection

1. does the system comply to the
requirements

2. are their any problems (defects and/or
failures) we should know about

3. will the system work in practice

19

slide - 37 © 2000, CMG Nederland BV, all rights reserved

Questions to answer with a test collection

mechanical soaps soaps +
techniques

1 does the system comply
to the requirements *** * **

2
are their any problems
(defects and/or failures)
we should know about

* *** ***

3 will the system work in
practice ** ** ***

slide - 38 © 2000, CMG Nederland BV, all rights reserved

The three “holy grails” of Test Development

effective “clustering” of tests

the proper level of actions

choosing the right approach per cluster

20

slide - 39 © 2000, CMG Nederland BV, all rights reserved

Experiences

• the approach can work well once people are
used to it

• it can be hard to get away from traditional
functional testing

• not magic, use it where applicable (grail 2)
• good clustering is essential (grail 1)
• start with a coach who understands and

believes

slide - 40 © 2000, CMG Nederland BV, all rights reserved

Acknowledgements

• Edward Kit

• Cem Kaner

• James Bach

• Hans Schaefer

• Dennis Janssen

• Chris Schotanus

QWE2000 Session 6T

Mr. Francesco Piazza [Italy]
(Alenia Aerospazio)

"A Requirements Trace Application"

Key Points

Practical and usefull simple database application●

Industrial experience on trace requirements subject●

Standard approach on document formatting to make easier requirements tracing
management

●

Presentation Abstract

The present abstract is aimed at describing a company methodology for
requirements tracing. The methodology foresees some working rules and is based
on an set of conventions and on an application built using the ACCESS '97 relational
database by Microsoft. The methodology has been widely used in ground and flight
satellite systems built by the company.

About the Speaker

Mr. Francesco Piazza graduated in Computer science with 106/110 at the University
of Pisa in 1979 with a thesis on concurrent programming. HeÆs been working in
ALENIA AEROSPAZIO S.p.A. since 1990 in engineering department and since 1994
in the Central Quality Direction. Now he is working on Information Technology
Center. He has worked for several years in other companies in the following areas:
system qualification tests, graphic computing, software tools.

QWE2000 -- Conference Presentation Summary

http://www.soft.com/QualWeek/QWE2K/Papers/6T.html [9/28/2000 11:10:40 AM]

1

A REQUIREMENTS TRACE APPLICATION

Summary:
A Requirements Trace Application, based on a database application, is
described herein. Details on methodology, requirements document structure and
organisation, man machine interface, implementation issues are given in the
paper.

Francesco Piazza, Dr., Alenia Spazio Company
ph: +39-06-41512244 fax: +39-06-41512433
e-mail: f.piazza@roma.alespazio.it

Keywords: Requirement, Traceability, Software, System, Subsystem, Test

1 Introduction
The present paper is aimed at describing the experience of Alenia Aerospazio in the "in house"
development of a Requirements Trace Methodology (RTM), using an application based on a
database management system supporting the relational data model.
Both the methodology and the application have been widely used to support the verification and
validation of ground and flight satellite systems developed by the company.

The methodology allows a structured requirements management during design and test phases
from high levels toward bottom. It allows a strict control on requirements distribution among
different working groups. Impacts of changes in requirements can be better evaluated and
controlled during the projects development. The methodology foresees some working rules and
is based on a limited set of conventions.

The methodology covers requirements tracing from
system requirements specification toward subsystem,
software requirements, architectural design elements;
moreover it covers tracing among requirements and
related test specifications (see fig. 1 for the documents
relationships, and for the related logical database
schema). Both forward and backward requirements
tracing have been fully implemented.

The factors driving the decision to develop in house a
methodology and the corresponding application have
been:
• the growing number of requirements imposed on a

space system, often hierarchically layered and
decomposed (from system requirements, to S/S
requirements down to software requirements;

• Test steps and involved environments in the overall
testing process are complex, spread on different Documents relationships related with database schema

N:M Relationship

N:M Relationship

SW Requirements
Table

Architectural Object
Table

SW Test Specific.
Table

N:M Relationship

S/S Requirements
Table

S/S Test Specific.
Table

N:M Relationship

S/S
Requirements

Documents

SW
Requirements

Documents

Architectural
Design

Documents

SW
Test
Plan

S/S
Test
Plan

N:M Relationship

System Requirements
Table

System Test Specific.
Table

System
Requirements

Documents

System
Test
Plan

N:M Relationship

Fig. 1

2

phases and with different aims, using different platforms;
• Higher flexibility reachable with a totally internally controlled application. This flexibility

allowed to adapt the application to different scenarios ranging from flight to ground segment
requirements specifications. The flexibility allowed to better cope with customer
requirements.

The experience has been greatly influenced by the joined work with the effort of the system
designers that required support in managing requirements tracing.

2 Concepts and Definition
Requirement: is a statement that describes a condition or capability that must be met or possessed
by a system or system component to satisfy a contract, standard, specification, or other formally
imposed documents. It should be written in plain words and good style. A requirement should not
be ambiguous. One requirement shall define a single condition or capability at a time. A
requirement shall be univocally identified by means of a label.
Architectural Object: an object is a cohesive entity that make up a system that has attributes,
behaviour, and possibly a state; it is the result of an architectural design process.
Forward traceability: allows to relate each single requirement toward the following development
and validation phases. It helps in showing requirements completeness and duplication, if any.
Backward traceability: it can be logically considered as the inverse operation of the forward.
Outputs that cannot be traced to inputs may be superfluous, unless it is acknowledged that the
input were incomplete.
Both kinds of tracing are often required by main software quality assurance standards (see [1], [2]
, [3] , [4]).
Many-to-many relationship: a relationship between two tables is of many-to-many type (M:N in
fig. 1) when one record in either table can relate to many records in the other table.
Requirements definition process: the process of requirements definition starts at system level
and proceeds toward lower levels, i.e. subsystem, software, architectural design.
Similarly the relationship attribution process relates:
• subsystem requirements to system,
• software requirements to subsystem requirements,
• architectural design objects to software requirements,
• test specification to related requirements (at the same level).
Each requirement in a document at a level below the system, must refer to one or more
requirements specified in one or more documents at the immediately upper level.
Trace Matrix: Tracing is normally shown by matrix listing the correspondence between two
entities belonging to different levels; e.g.: list test specifications in the leftmost column of a table
and their corresponding requirements specifications in the rightmost column (see fig. 2).
Missing entries in the matrix may display incompleteness.
Cross trace matrix: Cross trace matrix is the one that implies at least two levels of relationship
(e.g.: printing of a trace matrix showing the relationship among software tests and subsystem or
system requirements using the intermediate relationship with software requirements – see fig. 1
for relationships).

3 Methodology description
The methodology includes a set of practices based on appropriate documents formatting:

3

• automatic loading of requirements, architectural objects and test specification in database
tables;

• automatic setting of relationships among requirements at different levels;
• automatic setting of relationships among test specifications and related requirements;
• automatic setting of relationships among architectural design objects and software

requirements.

Cross trace matrix: Cross trace matrix is the one that implies at least two levels of relationship
(e.g.: printing of a trace matrix showing the relationship among software tests and subsystem or
system requirements using the intermediate relationship with software requirements – see fig. 1
for relationships).
It is very important to highlight that the approach described in the paper allowed a great saving in
time and a good reliability in database information management.

After the database has been populated a set of Man Machine Interfaces allows the interactive
relationship management and the production of the trace matrixes and cross trace matrixes.
A set of reports allows trace matrix printing for documentation and check purposes.

Figure 2

4

3.1. Automatic Items Loading
This section explains the technique adopted to allow automatic population of the database tables
containing items to be traced. The description refers to a Software Requirements Document
(SRD).
All the requirements written in the document are formed by two parts: a requirement header and
a requirement body. Example:

##BSW.3.1.2-5 Time Tagged Tele Commands shall be executed within 1 ms [T]
 <body of the requirement>

In the SRD each requirement is written using the following syntax pattern:
##XXX.<par.n.>-<prg.><tab><req.h><tab> <v.m.>
where:
XXX is a three letter code indicating the CI,
par.n.: is the paragraph number in the document,
prg.: an unique progressive number within the paragraph,
req.h.: is the requirement header,
v.m. is the validation method.
The validation method is often equal to test and therefore the two words have been used as
synonymous.
In the example the fifth requirement of the paragraph 3.1.2 of the software component
implementing the Basic Software (BSW) functions is validated by test.
The characters “##” of the requirement header were used to allow the automatic recognition, by a
procedure, in order to extract and load the complete requirement header row. The body is used, in
the document, to give details on requirement and it is not loaded in the database table.
A similar approach has been adopted in the:
• system requirements document using a string such as:

##SYS.3.7.8-5 System Requirement number 5 in the paragraph 3.7.8;
• subsystem requirement document using a string such as:

##SSA.6.3.4-7 Requirement number 7 in the paragraph 6.3.4 of the Sub System A;
• test specification document:

##SSATS.3-14 test specification 14 in the paragraph 3 related with the Sub System A.
The string between the "##" characters and the header, bold faced, acts as an unique label (i.e. it
is a primary key), and is arbitrary, i.e. the database behaviour is not based on the label key string
structure. There is a unique limitation on the label length that is maximum 30 characters.
The end of the label is determined by a <tab> character.
During loading a check for the uniqueness of the label key is made, i.e. double key are refused
and recorded in a log-file as an error.
It is recommended to use different "letter codes" in the key for different documents whose items
are loaded in the same table; this will avoid key duplication during items loading from different
documents.
The approach described allowed to load database tables automatically with system requirements,
subsystem requirements, software requirements, architectural objects and with test specifications.
The number of the documents allowed for each table is arbitrary (see logical database schema in
figure 1).

5

The maximum number of items (requirements, test specifications and architectural design
objects) is limited by the maximum number of records for each table, that is well above the
needs. Up to five thousand requirements, and two thousand test specifications have been
managed in the most important application till today.

3.2. Automatic Relationships Loading
The relationship between items at different levels must be loaded in the database in order to allow
the correspondence management, check and report (see fig. 1 for relationship schema).

Following the rules foreseen by the methodology the loading can be accomplished automatically.
A detailed description follows:
##SSA.4.1.2-10 <Requirement number 10 of the paragraph 4.1.2 of the subsystem A >
#$SYS.3.5.4-3
#$SYS.3.7.3-7
The example must be read in the following way. The subsystem requirement 4.1.2-10 belonging
to the "Subsystem A" has been derived from the requirements at system level SYS.3.5.4-3 and
SYS.3.7.3-7.
With this approach the database loading procedure at first recognise and loads the requirement
SSA.4.1.2-10 and then its links with the system requirements loading the links in the appropriate
internal table.

In order to better clarify the approach another example follows:
##SSATS.10-12 <SSA test 10-12 specification header>
#$SSA.3.4.1.5-7
#$SSA.2.10.5.2-3
The database load routine recognises the test specification 10-12 and loads its header in the
subsystem test table therefore the relationships with the two subsystem requirements
SSA.3.4.1.5-7 and SSA.2.10.5.2-3 are loaded. As consequence the database has loaded the
information that the requirements SSA.3.4.1.5-7 and SSA.2.10.5.2-3 are tested by the test
SSATS.10-12 and vice versa.
The same approach has been adopted in all the other relationships drawn in figure 1.
No checks of relationship key existence is made during loading operations. Consistency checks
can be accomplished by adequate reports.

3.3. Interactive relationship management
In the figure 3 the MMI designed to manage the relationships between subsystem "A" (SSA)
requirements and software requirements is drawn.
The form allows a quick mean to manage relationships.
A brief explanation (starting from the bottom of the figure 3) is given in the forthcoming rows.
The MMI contains two sub-forms. The sub-form 2 lists all the software requirements belonging
to the Subsystem "A". The sub-form 1 lists all the software requirements that has been related
with the subsystem A requirement specification SSA.3.2.5-01.
The current subsystem A requirement is shown in the row of the form labelled with “S/S requ id”
followed by the requirement description in the same row.
The row “Action” shows the last operation performed on a link.
Two operations are available:

6

Delete a link: to indicate that a relationship has to be cancelled.
The Add/Delete operations were managed by “mouse double click”, on the appropriate MMI sub-
form, in a very easy and rapid way. After each operation a refresh of the sub-form 1 is executed,
i.e. the one indicating linked BSW requirements. In the figure 3 the Add operation between the
S/S requirement 'SSA.3.2.5-01' is shown in the window "S/S requ. id" and the software
requirement BSW.3.1.2-4 double clicked in the sub-form 2 is shown. Note that the row labelled
with BSW.3.1.2-4 has been added in the sub-form 1.
Finally the figure 3 meaning is that the four requirements of BSW CI (3.1.2-2, -3, -4 and –5) have
been derived from the S/S requirement SSA.3.2.5-01.
In a very similar way it is possible, for example, to delete the requirement relationship:
BSW.3.1.2-5<->SSA.3.2.5-01
to accomplish this action it is necessary to double click on the requirement BSW 3.1.2-5 in the
sub-form 1.

4 Database Internal Structure
The relationship implemented in the database is of many-to-many type (M:N). For example a
requirement can be related with one or more test specifications and a test specification refers one
or more requirements.
Similarly for relationship among requirements: a subsystem requirement can be related with one
or more system requirement and vice versa. In the figure 4 a representation of the implemented

Figure 3

1

2

7

M:N relationship among tables is sketched
(fig. 4 doesn't contain all tables of documents
in fig. 1 for lack of room). The management of
the N:M relationship has been solved loading
in a third hidden table (see fig. 4), for each
relationship, the primary keys of the related
entities.
The operation “Add a link” is managed
inserting a row, containing the primary keys of
related items, in the appropriate table.
The operation “Delete a link” is managed
deleting a row, containing the primary keys of
related items, from the table.
The insertion/deletion of the records
containing the relationship keys (tables A, B and C) is hidden to the user and completely
controlled by the application using the MMI interface. The automatic management assures the
consistency of the process.

5 Requirements attributes
The in-house development allowed to customise attributes given to the traced item. As an
example the attributes added with software requirements are described (see fig 2 and 3):
VM: Validation Method. Possible values: A = Analysis, I = Inspection, T = Test;
TD: Test Design. Applicable only if VM=T. Can assume the values:

D = Direct - at least one test exists to validate,
I = Indirect - the requirement is linkable to another test specification;

TP: Test Priority. Applicable only if VM=T. Can assume the values:
H = High - the test procedure, execution and verification has to be implemented first,
L = Low - the test procedure implementation execution and verification can be postponed,

TL: Test Level. Applicable only if VM=T. Can assume the values:
C = Component: the related test will be executed at component level only,
I = Integrated: the related test will be executed on the integrated test platform, with the real
hardware,
T = Total: the test will be conducted at both levels C and I.

6 Reports
The database managing the relationships among requirements, architectural objects and test
specifications allowed to produce the following reports:
• listing of all software requirements with related architectural design objects for each CI;
• listing of all requirements at system, subsystem and software level with related test

specifications; see as example software requirements with related test in figure 5. Note that the
requirements BSW.3.1.2-5 and 3.1.2-8 do not have a test specification identified on their row;
this implies that the two requirements have not a test assigned. The same result could be
obtained with a check report that lists only requirements that do not have test specifications
assigned;

• listing of all requirements not related to any architectural design object (should be empty); any
existing unlinked requirement should be corrected or justified;

Software Test
Specification

Software
Requirem.

N:MN:M

Sub System
Requirem.

Fig. 4 - Tables layout structure

N:M

Hidden table
C with

primary keys

 System
Requirements

Hidden table
A with

primary keys

Hidden table
B with

primary keys

8

• listing of all requirements not related with at least one test specification (should be empty);
any existing unlinked requirement should be corrected or justified;

All the reports have been used and checked for consistency and correctness.

7 Code amount and other data
The total amount of statements has been evaluated in more than 3500 and 25 SQL queries.
The following elements have been designed: 16 "Tables", 40 "Forms",30 "Reports".
The effort to develop the application can be estimated in seven hundred hours.

8 Future developments
Possible enhancements that are foreseen are the following:
• Control of test evolution in terms of test design, run, result validation;
• Support to problem reporting raised during tests run and the relevant evolution;
• Requirement stability control, to trace evolution during the project lifecycle;
• Support multiple formats for input documents during database population.
Currently the release 5.0 is under design. It has been completely redesigned in order to be fully
parametric, i.e. it will be able to manage many-to-many relationships between sets of documents
not necessarily related with requirements or tests specifications.

Figure 5

9

Acronyms

BSW = Basic SoftWare
CI = Configuration Item
ESA = European Space Agency
MMI = Man Machine Interface
M:N = Many-to-many
RTM = Requirements Trace Methodology
SRD = Software Requirements Document
SSATS= Test Specification of S/S A
S/S = Sub System
SYS = System
VM = Validation Method

Bibliography

[1] MIL-STD-498 Software Development and Documentation
 5 December 1994
[2] MIL-STD-498 Guidebook-Application and Reference
 31-January 1996
[3] ESA PSS-05-0 Software Engineering Standards Issue 2
 February 1991
[4] ECSS-Q-80-A Space Product Assurance
 13 April 1999

A Finmeccanica Company

Requirement Trace
Application

Francesco Piazza

A Finmeccanica Company

Introduction
� This presentation is aimed at describing a facility designed

to trace requirements through a development life cycle, i.e.
- System requirements to S/S requirements
- S/S requirements to software requirements
- S/S requirements to S/S test procedure
- Software requirements to S/W test procedure
- Software requirements to architectural design

The application is based on the database Access ‘97 by
Microsoft

� It has been designed in order to fulfil a mandatory
requirement included in many software standards such as

- PSS and ECSS series by ESA
- MIL-STD-498 military standard

A Finmeccanica Company

Documents relationships related with database schema

N:M Relationship

N:M Relationship

SW Requirements
Table

Architectural Object
Table

SW Test Specific.
Table

N:M Relationship

S/S Requirements
Table

S/S Test Specific.
Table

N:M Relationship

S/S
Requirements

Documents

SW
Requirements

Documents

Architectural
Design

Documents

SW
Test
Plan

S/S
Test
Plan

N:M Relationship

System Test Specific.
Table

System
Requirements

Documents

System
Test
Plan

N:M Relationship

- The figure on the right shows the
document structure that can be
managed with the application
- The lines show the relationships
(N:M type) between the documents
that the system can trace
- The figure shows that tracing is
possible among:
...design phases from system below
...test phases against requirement

A Finmeccanica Company

Syntax and structure of documents (I)

� The slide shows below an example of the syntax used to write items
(software requirement) and relevant relationship with s/w test spec

� The item row is followed by the related test specification and by the body
of the items itself

� It is possible to specify more than one parent
� The characters ## and #$ are used to allow database automatic load

Example:
� ##BSW.3.1.2-5 Time Tagged TCs shall be executed within 1 ms [T]

� #$TSSW.4-7, TSSW.5-1
� <body of the software requirement>

A Finmeccanica Company

Syntax and structure of documents (II)
� The slide shows below an example of the syntax used to write items

(software requirement) and relevant relationship with S/S requir. spec
� The requirement row is followed by the parent specification and by the

body of the requirement itself
� It is possible to specify more than one parent
� The characters ## and #$ are used to allow database automatic load

� Example:
� ##BSW.3.1.2-5 Time Tagged TCs shall be executed within 1 ms [T]
� #$SSA.5.1.2-4, SSA.3.4.5.6-1

� <body of the the software requirement>

A Finmeccanica Company

MMI to load software requirements

A Finmeccanica Company

Loading items and relationships
� The previous slide shows the MMI used to load items (software

requirements in this case) and relationships in the database
� Requirement can be loaded in addition to already existing items or

supersede existing items and/or relationships
� Controls are accomplished on:

duplicate identifiers (that are forbidden)

duplicate relationships
syntax errors on item specification

� No controls on relational integrity are made at loading time
� All the errors are logged on file to allow error collection
� Controls on not linked requirements or test can be accomplished

through proper check reports

A Finmeccanica Company

MMI interface to manage relationships

A Finmeccanica Company

� The previous slide shows the MMI interface used to manage
relationships between software requirements and related test
specification

� The figure shows on the top the s/w test identifier and test description
whose relationships will be managed

� The frame immediately below shows the already related requirements
(linked requirements)

� The frame at the bottom shows all the software requirements that can
be related with the current test

� Double clicking on the frame above unlinks a requirement with the test
specification. The frame is immediately updated

� Double clicking on the frame below links a requirement with the test
specification shown

MMI interface to explanation

A Finmeccanica Company

Reports
� Next slides show three reports:

– a Trace Matrix from SW test specification vs SW requirements. The
requirements tied to each test can be used as input specification for the
test design and for the test result evaluation

– a Trace Matrix from SW requirements vs SW tests. This report show
requirement not related to a test (if any) and, for each requirement, shows the
amount of test effort

– a Cross Trace Matrix from SW requirements vs S/S tests through S/S
requirements.
Cross Trace Matrix is a report based on a query that involves two level of
relationship among three tables. The report shows how each sw requirement is
involved in S/S testing effort

� Other report are available such as:
– list of SW requirement, S/S requirement, SW tests, S/S tests
– check reports showing SW or S/S requirements not tested
– check reports showing SW or S/S requirements not flown down to design

A Finmeccanica Company

A Finmeccanica Company

A Finmeccanica Company

A Finmeccanica Company

Database tables layout structure

Software Test
Specification

Software
Requirem.

N:MN:M

Sub System
Requirem.

N:M

 System
Requirements

Hidden table
A with

primary keys

Hidden table
B with

primary keys

Hidden table
C with

primary keys

The figure on the right
shows tables containing
data to be traced and
the hidden tables that
are managed by the
application for tracing
purposes

A Finmeccanica Company

Requirement Trace Application Evolution
� A new release completely redesigned has been issued at the end of

June
� The new release has been speeded up by a new project with a

structure more complex than the previous
� It is based on the observation that a tool able to manage N:M relation in

a completely parametric way would be satisfactory for trace
management purposes

� The tool takes as input from a configuration table:
– the names of the two tables involved in the relationship and of the link table
– the names of the forms and of the reports to be used
– the names of the headers showing the name of each table

� The new approach is able to manage an unlimited number of
relationships; only one relationship is managed at a time

� next slide shows the structure of a system currently traced

A Finmeccanica Company

Bus vs S/S Requirements

BUS requ

PDHTICSATD

ALSB

THCRCS

TTC

462

1873 requs89420112

170 58 280

341

39

109

16095

Platform level

S/S level

ICS sw RSC sw S/W level

CSCI level

EGSE MGSE PRP STR

115

EOS DHSMS AOC&N

450

??? ??? ???

A Finmeccanica Company

Relationship Configuration
� Next slide shows the MMI used to fill in the table used to manage

relationships
� The table considered are always generically named as table A and

table B; the name of a third table to memorise link relationship
information is shown

� It is possible to see that parametric values are on:
– data table names and link table name,
– sub-forms used to interactively manage information
– reports used to show relationships

� It is also possible to manage some attributes, tied with each record, that
in the current application are dedicated to specify the test level that
currently are:

– SC = spacecraft PF = Platform SS = subsystem
– E = Equipment SW = software

A Finmeccanica Company

A Finmeccanica Company

A Finmeccanica Company

Item management
� Previous slide shows the MMI used to link/unlink items present in table

A and B (see the two sub-forms on the left);
linked items are shown on the subform on the rigth

� At the bottom of the MMI two buttons are shown:
– item management: allow the activation of the record input, deletion and change
– reports: allow the activation of the available reports, Trace Matrix, Check Matrix

and the generation of word .rft format file to export data

Conclusion
� The approach adopted in the current release of the application will

allow, with a little effort, the management of other items, but this area is
still under development

QWE2000 Session 6A

Jacobus DuPreez & Lee
D. Smith

(ARM Ltd)

SPI: A Real-World
Experience

Key Points

The rationale behind SPI●

A success story in the making●

Essential attributes of an effective SPI model●

Presentation Abstract

After exposure to all phases and various models of large-scale software engineering,
the presenter became increasingly fascinated by the challenge of predictably
engineering quality in software, and his search for a climate in which genuine SPI
would "grow" well led him to join the software group of ARM Ltd
(http://www.arm.com) early 1999 as a full-time internal SPI consultant. The paper
relates his successes in this team since then and highlights a number of key
prerequisites to viable SPI.

The concepts discussed would be of interest to anyone involved in SPI and/or
related initiatives in growing software teams. The presenter's experience prior to
joining ARM includes the setting up from scratch and management of a test
department in a medium-sized software house.

About the Speaker

Jacobus C. Du Preez, BA Hons (French)

In 1989, following a career in translating/interpreting, Du Preez successfully
produced an automated translation prototype, which led to a new career in software
development. He first documented a 4GL, then developed and presented a training
package for it, then worked as an applications developer, and ended up in senior
support and test roles. This hands-on experience in all development life cycle
phases left him fascinated by the challenge of predictably engineering genuine
quality in software, in spite of the particular dynamics of the industry. He joined ARM
in March 1999, where his role currently is to focus exclusively on software process
improvement.

QWE2000 -- Conference Presentation Summary

http://www.soft.com/QualWeek/QWE2K/Papers/6A.html (1 of 2) [9/28/2000 11:10:50 AM]

Lee D. Smith, MA (Cantab) (Mathematics, BA 1974)

Smith has been involved in the construction of large-scale software systems for more
than 25 years. In 1978 he became an academic Computer Scientist (Edinburgh
University) and in 1983 he moved to Acorn Computers to manage a VLSI design
tools project. He moved into the field of compilers and development tools at the end
of 1987, where he works until today. Smith has been with ARM since its start-up
days, and he has been been involved in its software process improvement initiatives
for more than five years. Smith is also co-author of "Challenges in
Cross-development", an article published in the Jul/Aug 1997 IEEE Micro
(http://computer.org/micro/mi1997/m4toc.htm).

QWE2000 -- Conference Presentation Summary

http://www.soft.com/QualWeek/QWE2K/Papers/6A.html (2 of 2) [9/28/2000 11:10:50 AM]

1

Software Process Improvement

4 th Annual
International
Quality Week
Europe Conference
22-24 November 2000
Brussels, Belgium

Jacobus DuPreez
Lee D. Smith

ARM Ltd, UK

J DuPreez & L Smith Slide 2 of 48 © Arm Ltd. All Rights Reserved

INTRODUCTION

SPI: A Real-world Experience QW2000 Brussels

2

J DuPreez & L Smith Slide 3 of 48 © Arm Ltd. All Rights Reserved

INTRODUCTION

• THE RATIONALE BEHIND SPI

SPI: A Real-world Experience QW2000 Brussels

J DuPreez & L Smith Slide 4 of 48 © Arm Ltd. All Rights Reserved

INTRODUCTION

• THE RATIONALE BEHIND SPI

• A SUCCESS STORY IN THE MAKING

SPI: A Real-world Experience QW2000 Brussels

3

J DuPreez & L Smith Slide 5 of 48 © Arm Ltd. All Rights Reserved

INTRODUCTION

• THE RATIONALE BEHIND SPI

• A SUCCESS STORY IN THE MAKING

• ESSENTIAL ATTRIBUTES OF AN
 EFFECTIVE SPI MODEL

SPI: A Real-world Experience QW2000 Brussels

J DuPreez & L Smith Slide 6 of 48 © Arm Ltd. All Rights Reserved

INTRODUCTION

• THE RATIONALE BEHIND SPI

• A SUCCESS STORY IN THE MAKING

• ESSENTIAL ATTRIBUTES OF AN
 EFFECTIVE SPI MODEL

CONCLUSION

SPI: A Real-world Experience QW2000 Brussels

4

J DuPreez & L Smith Slide 7 of 48 © Arm Ltd. All Rights Reserved

INTRODUCTION

• THE RATIONALE BEHIND SPI

• A SUCCESS STORY IN THE MAKING

• ESSENTIAL ATTRIBUTES OF AN
 EFFECTIVE SPI MODEL

CONCLUSION

SPI: A Real-world Experience QW2000 Brussels

J DuPreez & L Smith Slide 8 of 48 © Arm Ltd. All Rights Reserved

INTRODUCTION

• introduction to the company

SPI: A Real-world Experience QW2000 Brussels

5

J DuPreez & L Smith Slide 9 of 48 © Arm Ltd. All Rights Reserved

INTRODUCTION

• introduction to the company
• introduction to the context

SPI: A Real-world Experience QW2000 Brussels

J DuPreez & L Smith Slide 10 of 48 © Arm Ltd. All Rights Reserved

INTRODUCTION

• introduction to the company
• introduction to the context
• introduction to the story

SPI: A Real-world Experience QW2000 Brussels

6

J DuPreez & L Smith Slide 11 of 48 © Arm Ltd. All Rights Reserved

INTRODUCTION

• THE RATIONALE BEHIND SPI

• A SUCCESS STORY IN THE MAKING

• ESSENTIAL ATTRIBUTES OF AN
 EFFECTIVE SPI MODEL

CONCLUSION

SPI: A Real-world Experience QW2000 Brussels

SPI: A Real-world Experience QW2000 Brussels

J DuPreez & L Smith Slide 12 of 48 © Arm Ltd. All Rights Reserved

THE RATIONALE BEHIND SPI

• loops within loops

7

SPI: A Real-world Experience QW2000 Brussels

J DuPreez & L Smith Slide 13 of 48 © Arm Ltd. All Rights Reserved

THE RATIONALE BEHIND SPI

• loops within loops
• the challenge

SPI: A Real-world Experience QW2000 Brussels

J DuPreez & L Smith Slide 14 of 48 © Arm Ltd. All Rights Reserved

THE RATIONALE BEHIND SPI

• loops within loops
• the challenge
• key definitions

8

SPI: A Real-world Experience QW2000 Brussels

J DuPreez & L Smith Slide 15 of 48 © Arm Ltd. All Rights Reserved

THE RATIONALE BEHIND SPI

• loops within loops
• the challenge
• key definitions
• engineering vs process

SPI: A Real-world Experience QW2000 Brussels

J DuPreez & L Smith Slide 16 of 48 © Arm Ltd. All Rights Reserved

THE RATIONALE BEHIND SPI

• loops within loops
• the challenge
• key definitions
• engineering vs process
• software process goodness

9

SPI: A Real-world Experience QW2000 Brussels

J DuPreez & L Smith Slide 17 of 48 © Arm Ltd. All Rights Reserved

THE RATIONALE BEHIND SPI

• loops within loops
• the challenge
• key definitions
• engineering vs process
• software process goodness
• software process reuse

SPI: A Real-world Experience QW2000 Brussels

J DuPreez & L Smith Slide 18 of 48 © Arm Ltd. All Rights Reserved

THE RATIONALE BEHIND SPI

• loops within loops
• the challenge
• key definitions
• engineering vs process
• software process goodness
• software process reuse
• measuring SPI

10

SPI: A Real-world Experience QW2000 Brussels

J DuPreez & L Smith Slide 19 of 48 © Arm Ltd. All Rights Reserved

THE RATIONALE BEHIND SPI

• loops within loops
• the challenge
• key definitions
• engineering vs process
• software process goodness
• software process reuse
• measuring SPI
• the essential nature of SPI

SPI: A Real-world Experience QW2000 Brussels

J DuPreez & L Smith Slide 20 of 48 © Arm Ltd. All Rights Reserved

THE RATIONALE BEHIND SPI

• loops within loops
• the challenge
• key definitions
• engineering vs process
• software process goodness
• software process reuse
• measuring SPI
• the essential nature of SPI
• two crucial factors

11

SPI: A Real-world Experience QW2000 Brussels

J DuPreez & L Smith Slide 21 of 48 © Arm Ltd. All Rights Reserved

THE RATIONALE BEHIND SPI

• loops within loops
• the challenge
• key definitions
• engineering vs process
• software process goodness
• software process reuse
• measuring SPI
• the essential nature of SPI
• two crucial factors
• the case for SPI

J DuPreez & L Smith Slide 22 of 48 © Arm Ltd. All Rights Reserved

INTRODUCTION

• THE RATIONALE BEHIND SPI

• A SUCCESS STORY IN THE MAKING

• ESSENTIAL ATTRIBUTES OF AN
 EFFECTIVE SPI MODEL

CONCLUSION

SPI: A Real-world Experience QW2000 Brussels

12

J DuPreez & L Smith Slide 23 of 48 © Arm Ltd. All Rights Reserved

A SUCCESS STORY IN THE MAKING

• the SW group

SP I: A Real-w orld Experien ce QW2000 Bru sse ls

J DuPreez & L Smith Slide 24 of 48 © Arm Ltd. All Rights Reserved

SPI: A Real-world Experience QW2000 Brussels

A SUCCESS STORY IN THE MAKING

• the SW group
• growth pains

13

J DuPreez & L Smith Slide 25 of 48 © Arm Ltd. All Rights Reserved

A SUCCESS STORY IN THE MAKING

• the SW group
• growth pains
• full-time SPI

SPI: A Real-world Experience QW2000 Brussels

J DuPreez & L Smith Slide 26 of 48 © Arm Ltd. All Rights Reserved

A SUCCESS STORY IN THE MAKING

• the SW group
• growth pains
• full-time SPI
• a suitable climate

SPI: A Real-world Experience QW2000 Brussels

14

J DuPreez & L Smith Slide 27 of 48 © Arm Ltd. All Rights Reserved

A SUCCESS STORY IN THE MAKING

• the SW group
• growth pains
• full-time SPI
• a suitable climate
• three dimensions

SPI: A Real-world Experience QW2000 Brussels

J DuPreez & L Smith Slide 28 of 48 © Arm Ltd. All Rights Reserved

A SUCCESS STORY IN THE MAKING

• the SW group
• growth pains
• full-time SPI
• a suitable climate
• three dimensions
• a starting point

SPI: A Real-world Experience QW2000 Brussels

15

J DuPreez & L Smith Slide 29 of 48 © Arm Ltd. All Rights Reserved

A SUCCESS STORY IN THE MAKING

• the SW group
• growth pains
• full-time SPI
• a suitable climate
• three dimensions
• a starting point
• a long shot

SPI: A Real-world Experience QW2000 Brussels

J DuPreez & L Smith Slide 30 of 48 © Arm Ltd. All Rights Reserved

A SUCCESS STORY IN THE MAKING

• the SW group
• growth pains
• full-time SPI
• a suitable climate
• three dimensions
• a starting point
• a long shot
• a turning point

SPI: A Real-world Experience QW2000 Brussels

16

J DuPreez & L Smith Slide 31 of 48 © Arm Ltd. All Rights Reserved

A SUCCESS STORY IN THE MAKING

• the SW group
• growth pains
• full-time SPI
• a suitable climate
• three dimensions
• a starting point
• a long shot
• a turning point
• the mind of a programmer

SPI: A Real-world Experience QW2000 Brussels

J DuPreez & L Smith Slide 32 of 48 © Arm Ltd. All Rights Reserved

A SUCCESS STORY IN THE MAKING

• the SW group
• growth pains
• full-time SPI
• a suitable climate
• three dimensions
• a starting point
• a long shot
• a turning point
• the mind of a programmer
• the Quality Tracker

SPI: A Real-world Experience QW2000 Brussels

17

J DuPreez & L Smith Slide 33 of 48 © Arm Ltd. All Rights Reserved

A SUCCESS STORY IN THE MAKING

• the SW group
• growth pains
• full-time SPI
• a suitable climate
• three dimensions
• a starting point
• a long shot
• a turning point
• the mind of a programmer
• the Quality Tracker

SPI: A Real-world Experience QW2000 Brussels

• the inspection process

J DuPreez & L Smith Slide 34 of 48 © Arm Ltd. All Rights Reserved

A SUCCESS STORY IN THE MAKING

• the SW group
• growth pains
• full-time SPI
• a suitable climate
• three dimensions
• a starting point
• a long shot
• a turning point
• the mind of a programmer
• the Quality Tracker

SPI: A Real-world Experience QW2000 Brussels

• the inspection process
• success breeding success

18

J DuPreez & L Smith Slide 35 of 48 © Arm Ltd. All Rights Reserved

A SUCCESS STORY IN THE MAKING

• the SW group
• growth pains
• full-time SPI
• a suitable climate
• three dimensions
• a starting point
• a long shot
• a turning point
• the mind of a programmer
• the Quality Tracker

SPI: A Real-world Experience QW2000 Brussels

• the inspection process
• success breeding success
• requirements management

J DuPreez & L Smith Slide 36 of 48 © Arm Ltd. All Rights Reserved

A SUCCESS STORY IN THE MAKING

• the SW group
• growth pains
• full-time SPI
• a suitable climate
• three dimensions
• a starting point
• a long shot
• a turning point
• the mind of a programmer
• the Quality Tracker

SPI: A Real-world Experience QW2000 Brussels

• the inspection process
• success breeding success
• requirements management
• a success story

19

J DuPreez & L Smith Slide 37 of 48 © Arm Ltd. All Rights Reserved

A SUCCESS STORY IN THE MAKING

• the SW group
• growth pains
• full-time SPI
• a suitable climate
• three dimensions
• a starting point
• a long shot
• a turning point
• the mind of a programmer
• the Quality Tracker

SPI: A Real-world Experience QW2000 Brussels

• the inspection process
• success breeding success
• requirements management
• a success story
• next steps

J DuPreez & L Smith Slide 38 of 48 © Arm Ltd. All Rights Reserved

INTRODUCTION

• THE RATIONALE BEHIND SPI

• A SUCCESS STORY IN THE MAKING

• ESSENTIAL ATTRIBUTES OF AN
 EFFECTIVE SPI MODEL

CONCLUSION

SPI: A Real-world Experience QW2000 Brussels

20

J DuPreez & L Smith Slide 39 of 48 © Arm Ltd. All Rights Reserved

SPI: A Real-world Experience QW2000 Brussels

ESSENTIAL ATTRIBUTES
OF AN EFFECTIVE SPI MODEL

• orientation

J DuPreez & L Smith Slide 40 of 48 © Arm Ltd. All Rights Reserved

SPI: A Real-world Experience QW2000 Brussels

ESSENTIAL ATTRIBUTES
OF AN EFFECTIVE SPI MODEL

• orientation
• popularity

21

J DuPreez & L Smith Slide 41 of 48 © Arm Ltd. All Rights Reserved

SPI: A Real-world Experience QW2000 Brussels

ESSENTIAL ATTRIBUTES
OF AN EFFECTIVE SPI MODEL

• orientation
• popularity
• clarity

J DuPreez & L Smith Slide 42 of 48 © Arm Ltd. All Rights Reserved

SPI: A Real-world Experience QW2000 Brussels

ESSENTIAL ATTRIBUTES
OF AN EFFECTIVE SPI MODEL

• orientation
• popularity
• clarity
• appropriateness

22

J DuPreez & L Smith Slide 43 of 48 © Arm Ltd. All Rights Reserved

SPI: A Real-world Experience QW2000 Brussels

ESSENTIAL ATTRIBUTES
OF AN EFFECTIVE SPI MODEL

• orientation
• popularity
• clarity
• appropriateness
• flexibility

J DuPreez & L Smith Slide 44 of 48 © Arm Ltd. All Rights Reserved

SPI: A Real-world Experience QW2000 Brussels

ESSENTIAL ATTRIBUTES
OF AN EFFECTIVE SPI MODEL

• orientation
• popularity
• clarity
• appropriateness
• flexibility
• automation

23

J DuPreez & L Smith Slide 45 of 48 © Arm Ltd. All Rights Reserved

SPI: A Real-world Experience QW2000 Brussels

ESSENTIAL ATTRIBUTES
OF AN EFFECTIVE SPI MODEL

• orientation
• popularity
• clarity
• appropriateness
• flexibility
• automation
• simplicity

J DuPreez & L Smith Slide 46 of 48 © Arm Ltd. All Rights Reserved

SPI: A Real-world Experience QW2000 Brussels

ESSENTIAL ATTRIBUTES
OF AN EFFECTIVE SPI MODEL

• orientation
• popularity
• clarity
• appropriateness
• flexibility
• automation
• simplicity
• coherence

24

J DuPreez & L Smith Slide 47 of 48 © Arm Ltd. All Rights Reserved

INTRODUCTION

• THE RATIONALE BEHIND SPI

• A SUCCESS STORY IN THE MAKING

• ESSENTIAL ATTRIBUTES OF AN
 EFFECTIVE SPI MODEL

CONCLUSION

SPI: A Real-world Experience QW2000 Brussels

J DuPreez & L Smith Slide 48 of 48 © Arm Ltd. All Rights Reserved

CONCLUSION

• not a one-man show

SPI: A Real-world Experience QW2000 Brussels

SPI: A Real-world Experience Page 1 of 20 © ARM Ltd, UK
J du Preez, L D Smith All Rights Reserved

Software Process Improvement
A Real-world Experience

Presentation for the
4th Annual International Quality Week Europe Conference

22 to 24 November 2000, Brussels, Belgium

Jacobus du Preez (jdupreez@arm.com)
Lee D. Smith (lsmith@arm.com)

ARM Limited, Cambridge, UK

www.arm.com

ABSTRACT

The paper relates a number of SPI successes in the Development Systems software group of
ARM Ltd, a rapidly expanding, highly commercial small/medium enterprise that has
consistently generated high levels of customer satisfaction and profit since its inception in 1991.
It involves no “rocket science”. It is more about the effective reduction of process chaos under
tight commercial constraints than about conventional SPI. It may appear to challenge some
aspects of received SPI wisdom. Nonetheless, it highlights a number of key prerequisites to
viable SPI, and involves principles which can be applied with good effect in most organisations.

SPI: A Real-world Experience Page 2 of 20 © ARM Ltd, UK
J du Preez, L D Smith All Rights Reserved

INTRODUCTION

This paper is about successful software process improvement (SPI) in a rapidly expanding,
highly commercial small/medium enterprise.

Software development in ARM began in 1991 with four people. Today, nine years later, there are
more than 120 developers (a compound annual growth of around 50 %). The largest development
team at ARM still employs only 15 engineers. Teams have – and need – their own cultures.

ARM has consistently generated high levels of customer satisfaction and profit, and our SPI
efforts have always been constrained by these two factors. To ARM the two are strongly linked.
We have never been allowed the luxury of "stopping the world" while we installed a new process
and retrained engineers to use it. We have always had to evolve existing processes. The ultimate
criterion that all improvement ideas must meet is unconditional profitability within one product
development cycle.

In common with most small/medium enterprise software providers, our main problem has not
been an absence of process or poor process. As we grew, our primary problem areas have been
incomplete processes, patchy adoption of best local practice, and lack of process coherence among
developers within and between development teams.

The "success story in the making" discussed in this paper involves no rocket science. It is more
about effective reduction of process chaos under tight commercial constraints than about
conventional SPI. It may appear to challenge some aspects of received SPI wisdom. Nonetheless
it involves principles which can undoubtedly be applied with good effect in most organisations.

At corporate level, ARM is working at developing a Quality Management System that satisfies
the ISO 9001-2000 standard (currently in final draft). Existing business processes are being
mapped to the principles of the new QMS, designed to provide a framework within which the
business can grow, improve, and satisfy customer needs and expectations. We foresee that our
software development process will link up with that framework in due time.

This paper assumes an appreciation of the general context of SPI. Its discussion of theoretical
issues beyond the real-world SPI account described is primarily aimed at positioning the account
appropriately within that context.

SPI: A Real-world Experience Page 3 of 20 © ARM Ltd, UK
J du Preez, L D Smith All Rights Reserved

THE RATIONALE BEHIND SPI

Loops Within Loops

That quality is an attribute of software no one would seriously wish to question. Just think
"Y2K", for example. However, what in turn are the attributes of quality? Here we become
conscious of finding ourselves in the domain of the abstract, where great minds do not think
alike. Nonetheless, on the surface of the question there is a reasonable degree of likemindedness:
quality software is – here we go – capable, reliable, installable, compatible, usable, efficient,
testable ...

So far, so good (more or less).

The next question is obviously: what are the attributes of capability, reliability, installability,
etc? Or, when faced with conflicting opinions for example on the attributes of compatibility and
usability, on what grounds do we decide to work with one definition rather than the other? How
do we go about deciding which definition reflects reality most accurately? And once we have
decided, how confident are we that we have made the right decision? What level of confidence is
adequate?

So far, so good? How far, how good?

Approaches have been put forward that allow quantification of quality attributes, as well as
quantitative predictions of all sorts of quality-related effort and cost. This, of course, appears to
be the answer, moving towards objective analyses, acceptable to all stakeholders. Yet who are
these stakeholders? Does "acceptable" mean the same thing to all of them? How acceptable is
acceptable enough? "Objective analyses" – how objective? How do we quantify acceptability and
objectivity?

Hang on – have we got ourselves into a loop?

Shouldn't we abort this process, revert to gut feel, and just get on with the job? How much can
we afford to theorise about these things before reverting to gut feel will not have become a more
cost-effective way of achieving the same end? But whose gut feel? And which end? How do we
know to what extent we have achieved this end? How do we establish the cost-effectiveness of
our approach? How do we discern the wood from the trees here? (Or – hang on – was it the trees
from the wood?)

And how many levels of nesting are supported here?

The Challenge

We do find ourselves in the domain of the abstract – at least that much is certain. The challenge
is to find out how much else is certain in this web of nested abstract loops with which we could

SPI: A Real-world Experience Page 4 of 20 © ARM Ltd, UK
J du Preez, L D Smith All Rights Reserved

end up busying ourselves under the banner of SPI. How do we distill some genuine, concrete
improvement out of all the theory vying for our attention?

Oversimplification (or reverting to "gut feel") is not the answer. It does not do justice to the
problem. If anything, it risks aggravating it. Overcomplication is also not the solution. It is too
prone to infinite loops.

Where then is the commonsense, “good-enough” approach that will deliver the goods? Where is
the balance? How do we make SPI work – for us, that is, showing meaningful results amidst the
reality of our unique constraints?

The difficulty with abstract concepts is that we cannot compile, run and debug them the way we
compile, run and debug programs. When our theory is flawed, there are no overnight build
reports, or defect reports with screen shots and core or memory dumps, allowing comparatively
quick resolving of specific issues.

Obviously this does not mean that the abstract is necessarily vague or obscure. The vague may
be pointless in a technical context – try feeding your CPU vague notions about the on and off
states of bits and see how far you get. What this does mean, however, is that there is a need for
thorough analysis from the outset rather than the process engineering equivalent of "debugging
by compilation". Process engineers cannot afford this practice – it takes too long, costs too much,
and does too much damage when things go wrong.

Key Definitions

For the purposes of this discussion:

� A process is in essence a recipe for success. It is a sequence of steps for a given purpose1. The
collective noun process denotes an integrated set of processes, all aiming at achieving a
common ultimate end.

� Software process relates to the context of software engineering and is an integrated set of
processes ultimately aimed at the creation of software products as per required feature set,
budget and schedule in a given context.

� Improvement is measured progress along a defined worst-to-best axis. Measurement in the
process improvement context is the positioning of instances of process along an appropriately
defined worst-to-best axis.

� Process improvement is the improvement, as defined, of process, as defined, and involves
controlled alteration of the process as part of an improvement strategy.

� Software process improvement is process improvement, as defined, applied in the software
engineering context (or improvement, as defined, of software process, as defined).

� A model is a conceptual model rather than a process framework.

SPI: A Real-world Experience Page 5 of 20 © ARM Ltd, UK
J du Preez, L D Smith All Rights Reserved

Engineering vs Process

In the above definitions we link process directly to the purpose of the activity it is designed to
support. This implies that in our view process no more drives the software development effort
than the tail wags the dog. Process does not produce software; software engineering does.

Software engineering, however, never happens without process, because it includes process. All
but the most incompetent hackers follow some sort of structured development process.

The question is therefore not whether the dog has a tail or not, but rather how much of the tail is
left. It is also not whether the dog wags the tail or vice versa, but rather whether we look at a
dog or at some other strange phenomenon.

Software Process Goodness

He who says "improve" implies moving from "bad" to "good". What then is "goodness" in software
process?

As stated, our definitions inextricably link the "goodness" of a given instance of software process
to the purpose of the activity it is designed to support. That is, a particular manifestation of
software process is only as "good" as the degree to which (or as the effectiveness with which) it
actually supports the software engineering going on in the same context in the creation of
software products as per required feature set, budget and schedule.

Software Process Reuse

If processes are recipes for success, then they are by definition designed for reuse. The fact that
the same process will never be equally good in two different contexts does not mean that process
reuse is necessarily a bad idea. Process reuse does not necessarily imply a “one size fits all”
approach. Process reuse can be cost-effective when:
� the process is designed for a specific “market”
� production means (eg. process) is differentiated from production content (software)
� the process is kept lean, or limited to what is really necessary.

If the average process “goodness” registered during reuse along these lines is good enough,
process reuse makes sense.

Measuring SPI

In our view, the main requirements for meaningful measurement of process "goodness" across a
series of instances of the same process in the same context are consistency and relevance in the
measurement approach. Relevance, that is, to what constitutes goodness in a software process,
as defined above.

SPI: A Real-world Experience Page 6 of 20 © ARM Ltd, UK
J du Preez, L D Smith All Rights Reserved

Formal audits and process frameworks are generally designed to promote among other things
consistency and relevance in the measurement approach. However, meaningful measurement
only happens where their actual implementation is consistent, as well as relevant to the
development environment in question. In our experience these two conditions are not always
adequately satisfied, with the result that the benefits achieved by implementing such formal
approaches do not always outweigh the stress they introduce into the environment. Where we
strongly suspect such a mismatch in advance, we would rather opt for a measurement approach
which is less formal and less refined, but more consistent and more in touch with the reality of
the environment.

The Essential Nature of SPI

There appears to be consensus in the industry today that competitiveness and high quality levels
require the use of fitting processes2. At the same time, however, many serious software
organisations are still battling with fundamental process issues (requirements capture, access to
information, quantitative feedback on progress, time and cost estimation, etc3). Also, although
successes are registered, a large number of SPI programmes still deliver little or nothing (i.e. are
not even followed through to completion).

We stated that the challenge SPI poses is to distill, out of all the available theory, some genuine
improvement in a particular development environment. In order to be able to meet this
challenge, we need to:
� understand existing processes in that environment
� understand the issues that would be involved in specific changes
� select and introduce appropriate improvement ideas, and
� learn from experience.

The challenge is further to achieve as much of this as possible up front, that is, without creating
situations out of which we may be required to backtrack. Finally, the challenge is also to achieve
these things amidst the reality of ongoing competitive software engineering, that is, without
requiring the world to stop turning or to start turning around us.

All this implies that the effect of failure or success in SPI tends to be exponential. More than in
most other fields, success breeds success and failure breeds failure here, for a number of reasons:
� software is complex: the impact of getting PI right or wrong is just that much more

significant in a software organisation than in a chewing gum factory
� process is central to the software development activity: it affects all team members
� process is designed for reuse: it affects multiple projects
� SPI has much to do with culture: it needs buy-in in order to get off the ground.

Two Crucial Factors

If it is true that the effect of failure or success in SPI tends to be exponential, two factors of
paramount importance emerge:

SPI: A Real-world Experience Page 7 of 20 © ARM Ltd, UK
J du Preez, L D Smith All Rights Reserved

� The success/failure ratio. Whatever our overall SPI strategy, it is crucial that we make a
success of the current SPI initiative. The current initiative is the one thing which more than
anything else will open doors for further sensible SPI. Hence we’d rather introduce say two
SPI initiatives per year and give them the focus they require to guarantee success than
introduce say ten initiatives and see half of them fail, because in our view those failures hold
enough potential to derail our entire SPI drive. Or to put it differently, we’d rather carefully
consider ten valid SPI ideas and implement only the two we are positive will succeed now. A
high success/failure ratio ensures ongoing SPI, with all the potential that that holds for SPI
becoming part of the culture of the organisation. This implies, among other things, that the
younger an SPI programme is, the more crucial its need to register success.

� Buy-in. However sound or impressive the SPI initiatives we introduce, their genuine effect
hinges on the level of buy-in they register. That is, in order to be successful, they need to
become part and parcel of the software engineering activity actually going on. This is not the
same as becoming part of the machinery nominally. It is possible for a process to be
introduced, accepted and applied in such a way that it passes formal audits and yet is never
"bought" by the engineering staff. In such a case, buy-in is low and compliance becomes a
façade. This is the very sickness that often afflicts top-down quality engineering approaches.
Compare two hypothetical processes A and B, aimed at achieving the same result. Process A
can be implemented using a bottom-up approach, but is, in itself, only half as effective as
process B, which needs to be imposed and policed. However, process A registers 90 % buy-in,
whereas process B achieves only 10 %. We would prefer process A over process B, because it
is likely to deliver more compound benefit in both the short, medium and long term.

Of course these key SPI success factors do not constitute SPI in themselves. That is, while it is
difficult to imagine how SPI success can be achieved without them, these factors do not
guarantee the soundness of the SPI initiatives for which they open the door.

The Case for SPI

SPI success has arguably become a key factor in the ability of any software organisation to
remain competitive, and hence to survive, in the medium and longer term. If this is true, then
we should as a matter of priority seek to fully understand the challenge SPI poses before using
our limited process improvement budget for anything other than the most appropriate solution
we can afford. The knock-on effects of failing to do that could be far-reaching.

SPI: A Real-world Experience Page 8 of 20 © ARM Ltd, UK
J du Preez, L D Smith All Rights Reserved

A SUCCESS STORY IN THE MAKING

The Software Group

As stated in the introduction, software development in ARM began in 1991 with four people.
Nine years later, the direct descendant of that group counts 15 and continues to produce our
compilers and linkers as part of a larger group of about 40 engineers responsible for the complete
software development toolkit we sell. Closely related products bring the total number of software
engineers working within the business unit under study to nearly 60. Within ARM worldwide
there are more than 120 software engineers. Software development activity has increased by
around 50 % each year. Shipments of the software development toolkit have increased 100-fold
in these nine years (approximately 70 % CAGR).

Growth Pains

This sort of commercial success poses a number of difficulties for conventional approaches to
software development process and its improvement:
� There is never enough effort. Recruitment always lags need. Around 25 % overload is

endemic.
� Management structures are lightweight, dynamic, and impermanent. Informal

reorganisation happens frequently. Major formal restructuring becomes necessary every two
to three years.

� There is little visibility of the future. The next quarter may be 90 % predictable, but the one
after that would typically be only 60 % predictable, and the next one down the line only 40 %
or so. Development projects, however, span three to eight quarters. Most projects need to be
replanned more than once.

� Within the general constraint of alignment with company business objectives, developers are
allowed to use their own discretion when reacting to customer requirements. In fact, they are
encouraged to take a customer-oriented approach, and the company prefers to rely on their
judgement rather than introduce measures that might constrain initiative or reduce
responsiveness to customer needs.

� High growth rates – in personnel and in product volumes – can rapidly change the most
important problem to solve next. Process problems tend to be moving targets, and trying to
improve processes sometimes feels like shooting rabbits from a speeding train.

Full-time SPI

To date we have never seen our way open to introduce into this environment an SPI programme
based on carefully documenting existing practices, then closing the gap to industry-wide best
practice, etc. We can conceive of such an SPI approach being effective when development is
chaotic within an orderly environment, that is, where the challenge is to impose order within a
stable environment. Our problem, however, is to order development in a chaotic environment!
How does one achieve that?

SPI: A Real-world Experience Page 9 of 20 © ARM Ltd, UK
J du Preez, L D Smith All Rights Reserved

Of course we agree with much of what frameworks such as CMM, ISO9003, etc propose as sound
software development practice. We have always understood, for example, that we would never
survive unless we explicitly project managed the production of software products. From
inception, we have used automated build and test techniques, as well as version-controlled
source code. We have always been able to build products in a repeatable manner, and trace
changes in detail. These capabilities are just essential entropy reducers without which there is
no hope of orderly development in an otherwise chaotic environment.

The growth in numbers, resulting in various teams working in parallel, obviously did nothing to
reduce the chaos. At the same time, software development was becoming increasingly important
to overall company business objectives, and we realised that a more specific and proactive focus
on development process was required if we were to retain the competitive edge we had in our
market. Among other things, this resulted in the appointment of a full-time internal SPI
"consultant".

A Suitable Climate

Following his interview at ARM in mid 1998, there were specific reasons why Du Preez believed
that the software group at ARM constituted as ideal a climate for “growing” real SPI as any he
was likely to encounter:
� The manager of the software group came across as a down-to-earth, commonsense man,

capable of perspective and decision making.
� The team was growing and the team size was right: the growth necessitated process

upgrades, and yet they were small enough to be open to new improvement ideas.
� The team managers had burnt their fingers once or twice with premature releases and were

keen to reduce the risk of further similar incidents.
� Opinions of acquaintances who knew ARM directly or indirectly painted a picture of a non-

bureaucratic company with comparatively low levels of internal politics.
� The company had been registering phenomenal growth, as regards both head count and

revenue, so spending a few pounds on SPI would hopefully not be a big deal.
� The team was producing software which was actually being sold and used. Theirs was not an

artificial environment: what was being produced today actually mattered tomorrow.

The company profile sketched here should be seen in context. The intention is not to suggest that
genuine SPI will not "grow" in companies with a different profile, but simply to give an account
of the situation as it evolved.

Three Dimensions

When Du Preez joined the ARM software team in March 1999, he was thinking: Be careful – they
must be doing something right, otherwise they wouldn’t be successful at selling their software.

How does one go about improving process in such a situation? Most of the team were right in the
middle of a sizable project – never a good time to want to change the way they work. However,

SPI: A Real-world Experience Page 10 of 20 © ARM Ltd, UK
J du Preez, L D Smith All Rights Reserved

this provided a good opportunity to assess the context in the three dimensions which he believed
can and must be applied to any SPI programme:

� The people dimension, defined in terms of the actors with whom the process improver needs to
interact (covering all levels – everyone affected by the process to be improved).

Process improvement is not defining an "improved" process, presenting it to the team and
then "making everyone do it". Such an approach excludes the people dimension from the
activity, which cripples it, because people are the very source of energy that fuels it.4

Process improvement is:
 thinking carefully about the existing process and any potential for improvement
 convincing process stakeholders that a better version of the process is both desirable and

feasible in the current context
 defining the improved version with their help (they know what is going on on the ground)
 facilitating the implementation of this improved version
 keeping the door open for further improvement.

None of these phases is possible without meaningful interaction with process stakeholders.

This does not imply that process improvers must always keep everybody happy – it implies
that without successful interaction with key people at all levels they cannot do their job.

� The dimension that defines the sequential flow of the process, running more or less along the
so-called software development life cycle.

This dimension requires not only an understanding of software development life cycles, but
also the ability to accurately assess particular instances or adaptations of software
development life cycles, so as to be in a position to appreciate the potential overall impact of
improvement ideas.

� The worst-to-best dimension (see above) allowing the relative positioning of particular
instances of process in terms of their "goodness".

This dimension requires a worst-to-best axis definition that is appropriate for the context, as
well as the positioning of particular instances of process on that axis. This in turn implies the
achievement of meaningful measurement mechanisms enabling the assessment of the overall
level of support which instances of process provide to the engineering activity, as described.

As part of his initial assessment of the context in terms of these dimensions, Du Preez threw a
number of ideas into the software group purely to see what would emerge. For example, a rather
formal sounding suggestion for a full-blown three-year improvement programme, which was
ignored by all recipients, and which helped to shape his subsequent approach.

A Starting Point

The first real opening presented itself when it became clear that no serious test coverage
tracking was being done. A plan was agreed and implemented with the help of the SQA team to

SPI: A Real-world Experience Page 11 of 20 © ARM Ltd, UK
J du Preez, L D Smith All Rights Reserved

track the extent to which test phases were respectively covering application components,
interfaces, functionality, user interface elements, code, documentation, recovery from equipment
failure, processors, architecture types, and operating systems. The idea was not so much to show
up inadequate test coverage – helpful as that may have been – but to highlight the need for good
quality specifications on which to base tests and against which to measure coverage.

This, in conjunction with a slide show presentation to the group about good practice and hands-
on participation in system testing while waiting for the project to finish, provided opportunities
to get acquainted with the team and the situation, and to consider the next step.

A Long Shot

Before too many decisions were going to be taken about the next project, Du Preez submitted a
major improvement proposal to the software group. This was risky, because:
� the proposal laid it on thick, involving comprehensive quality tracking throughout the life

cycle, using a utility which didn't exist as yet as a kind of all-encompassing framework
� initial discussions about the proposal triggered warnings that the group would reject it

because they had grown allergic to new utilities after a previous bad experience
� attempts to gauge management support before the gathering revealed that one out of four

managers was negative, two were neutral, and one was positive
� Du Preez had often in his career been accused of being "binary" about quality, and had to

ask himself whether it was wise to table such a radical proposal at such an early stage.

However, he was thoroughly convinced of the sense of the proposal, and decided to go ahead.

A Turning Point

The result was an overwhelming vote of confidence in the proposal. This constituted a turning
point in more than one way. Firstly, the manager of the software group bought the proposed
idea, albeit with reservations. He told the company Quality Steering Group about it and they
asked for a repeat show, following which they requested a functional specification for the utility.
Secondly, the true colours of the team became apparent, as discussed below.

A minor restructuring became necessary soon afterwards, and one of its side effects was an
agreement worth describing. The SPI consultant now reports directly to the software group
manager. His brief allows him to question any existing practice and suggest any improvement
idea he sees fit. He has no interests to protect other than improving development practice. At the
same time, the group is under no obligation to follow his advice. He is a consultant – he is there
to provide advice, and if he wishes to see his advice implemented, he needs to effectively “sell” it.

The Mind of a Programmer

Many roles contribute to success in software development. Various contributions are crucial at
times. However, if one role is to be singled out without which no commercial software is ever

SPI: A Real-world Experience Page 12 of 20 © ARM Ltd, UK
J du Preez, L D Smith All Rights Reserved

shipped, it is that of true programmers – those members of the broader software engineering
community whose experience and skill sets make all the difference when complex and/or
unexpected coding challenges present themselves.

The nature of the job these programmers are required to do conditions their minds to think
logically. When confronted with an “improved” process, the first thing they think is: why? If a
good reason can be provided, they will support it. If no good reason can be provided, their
support will be lacking, overtly or covertly, to the very extent and for the very reason that they
are valuable to the project.

We believe that the Quality Tracker proposal received an overwhelming vote of confidence from
the software team because it was based on good reasons, and because the links between the
model and the reasons held water as explained.

The Quality Tracker

The proposed utility generally referred to as the Quality Tracker has not yet been produced
and may never be fully implemented as originally intended, for reasons explained further down.
The concept behind it, however, underpins all SPI we have done since.

In brief, the Quality Tracker is designed:
� to interface with existing systems rather than replace any of them
� to use the same product breakdown as other systems (eg the defect tracking system)
� to ensure, in as objective and automated a fashion as possible, the capturing of all

development progress which has a bearing on quality
� to reflect quality progress in terms of mini-milestones that link directly to master copies of

associated information, and which have attributes such as priority, owner, weight, entry
criteria, exit criteria, etc

� to reflect the entire product development life cycle using these mini-milestones
� to allow self-regulation (for example following lessons-learnt sessions) in that mini-

milestones are concensus-driven
� to manage dependencies between mini-milestones pertaining to the same module
� to cater for product hierarchy (linking modules into subsystems and subsystems into a

systems) and manage dependencies between product elements at all levels
� to provide visibility of actual progress by maintaining multiple pointers per module (multiple

pointers to cater for tasks executed in parallel on the same module, with pointers indicating
mini-milestones currently being addressed)

� to use weighting of both progress steps and of modules in order to calculate overall quality
progress achieved per product at the click of a button

� to be flexible by allowing a compulsory/non-compulsory flag to be set for each mini-milestone,
and by then permitting manual overriding of non-compulsory mini-milestones

� to maintain and use progress and exception history to calculate confidence levels per product
at the click of a button.

SPI: A Real-world Experience Page 13 of 20 © ARM Ltd, UK
J du Preez, L D Smith All Rights Reserved

The Inspection Process

The Quality Tracker slide show presented a concept. The actual mini-milestones remained to be
defined. This resulted in a discussion about what would be more appropriate during a first
phase: a coarse granularity, including only key milestones but covering the entire life cycle, or a
fine granularity, including all appropriate mini-milestones but covering only a limited section of
the life cycle. In the end, the approach was adapted to match an acute and generally recognised
need. The fine granularity approach was to be applied to only one life cycle element:
Specification of User-visible Behaviour (which we call SUBs).

The reason for selecting SUBs rather than anything else was two-fold:
� it would provide useful and better quality early input to the documentation and test teams
� it was likely to highlight flaws in a number of related processes and products, both upstream

(eg requirements specifications) and downstream (eg low level designs) from SUBs.

Another slide show was lined up to sell the concept of limited-effort inspections on SUBs. This
resulted in a focused, measurement-oriented inspection process, deliberately designed to be “lean
and mean”. This process:
� is applied at the point of sign-off, that is, after a technical peer review and at the point where

the author considers the SUB to be finalised
� is viewed as a quality sampling process (applying cut-off points as regards time spent) rather

than as a process designed to cover the total product
� is not compulsory, but is a service provided upon request

Apart from the above, the inspection process is not exceptional: it requires participants to work with
a specific primary role or focus in mind with a view to optimising the effectiveness of the process,
and it applies a number of tried and tested rules to ensure its own survival.

The following roles are used:
� Author – has written the specification (answers questions when called upon to do so)
� Instigator – whose prior work has given rise to the specification currently being inspected
� Peer – colleague of the author, with essentially the same skill-set and experience
� Customers – whose work depends in some way on the specification being inspected
� Tester – SQA engineer due to test the product based on the specification being inspected
� Moderator – ensures that participants confine themselves to their roles and respect the rules

The following "tried and tested" rules are applied:
� Inspection training beforehand (typically a one hour slide show presentation followed by a discussion)
� The inspection consists of two parts: 1 – at participants' convenience; 2 – common, bug-logging session
� No changes to work between the point of submission for inspection and the inspection itself
� The second or common part of the inspection never lasts longer than one hour
� Nobody ever spends more than one manday per week doing inspections
� No extended discussions on how to fix a defect
� No extended discussions on whether or not a defect exists
� Authors do not defend their work, except in response to questions
� No extended technical explanations
� Style issues are not to divert focus from the substance of the job

SPI: A Real-world Experience Page 14 of 20 © ARM Ltd, UK
J du Preez, L D Smith All Rights Reserved

Success Breeding Success

Just at the right time – after the inspection process had been agreed and defined, and before the
first SUB would be ready – Du Preez’s neighbour requested an inspection on a (non-SUB)
specification he had been producing. This presented an ideal opportunity to try out the process.

In spite of the fact that the specification had been peer-reviewed and turned out to be of above-
average quality, the inspection still uncovered a surprising number of valid defects. Participants
were positively impressed with a clear demonstration of the value of early defect detection. The
inspection process was off to a good start.

As the effectiveness of the process became apparent (see below) management started expecting
all SUBs to be submitted for inspections. One day, for example, the group manager was
overheard stating the case for inspections to a team leader who had phoned to ask for an
exception on one of his SUBs.

As anticipated, close scrutiny of SUBs showed up flaws in requirements specifications. Soon
requirements specifications were also being submitted for inspection. Previously it had always
been difficult in our environment to secure feedback from requirements stakeholders during peer
reviews, but the inspection process secured impressive stakeholder representation for
requirements specification inspections, resulting in excellent visibility.

The process became so popular in the end that all sorts of products were being submitted for
inspections, from low-level specifications to the inspection process document itself.

Increasingly participants in inspections were coming from other teams in the business unit.
Some of these started prompting their managers to adopt the process as well, and currently the
process is being introduced BU-wide.

Requirements Management

The inspections conducted on requirements specifications stretched the inspection process and
showed up a few shortcomings, but resulted in clear benefit and became a forceful demonstration
of the need for improved requirements management. It highlighted for example:
� the need for a common requirements specification template
� the need to enable users to pinpoint complex information quickly and easily
� the need to update individual requirements and keep them current throughout the life cycle.

Of course there are numerous reasons why all reasonable attempts should be made to optimise
the process of capturing and managing requirements – this is not the place to describe them in
detail. The challenge is to render enough of these reasons apparent to ensure adequate
momentum for the introduction of improvement ideas to succeed.

From a process improvement perspective, we now had the wind from behind. We were in a
position to start putting the horse before the cart. Just about every SPI initiative we could
foresee for the medium term was part of the cart in the horse-before-the-cart analogy, and

SPI: A Real-world Experience Page 15 of 20 © ARM Ltd, UK
J du Preez, L D Smith All Rights Reserved

without the horse of sound requirements engineering we couldn’t see how that cart was going to
get anywhere.

Our next step was to assess requirements management solutions available on the market. Two
questions needed to be answered:
� is it a good idea to buy a requirements management tool?
� if yes, which tool would be most suitable?

Three tools were shortlisted for evaluation on a trial basis. A tool was selected, and three
licences were purchased, with a view to evaluating it in depth. At the time of writing we are
embarking on a pilot project in which traditional, document-based requirements capture is being
replaced entirely by tool-based requirements capture. The tool will also be used to manage a
limited number of requirements objects throughout the development life cycle, covering a few
typical user scenarios.

A Success Story

To date, we only have limited and crude data available for assessing the comparative
effectiveness of measures introduced over the past eighteen months. The table below gives a
crude but conservative comparison between the defect find rate achieved by inspections during
the current project and the overall defect find rate during the previous project.

Previous Project: All Testing
(comparatively major toolkit upgrade)

1500 mandays' test
= 1500 * 6 manhours
= 9000 manhours
(excluding developer test time)

1714 defects total
(including defects logged by developers)

0.2 defects/manhour

Current Project: Inspections Only (first 13 weeks)
(comparatively minor upgrade of same product)

180 manhours (inspection participants)
+ 500 manhours (Du Preez full-time)
= 680 manhours
(using not 6 but 7.5 manhours/day)

417 defects total
(found early in life cycle, i.e. cheaper to fix)

0.6 defects/manhour

This comparison seems to indicate that the inspection process was at least cost-effective,
especially considering that requirements and design defects found early cost much less to fix.

However, in our view there are a number of further reasons for qualifying the process
improvement drive described as a “success story in the making”:
� Its Success/Failure ratio. We have yet to see an improvement idea fail.
� Its Popularity. Each success “breeds” more success. The Quality Tracker presentation played

a key role in preparing the way for the inspection process, and the inspection process played
a key role in opening up the opportunity to improve requirements management practice.

SPI: A Real-world Experience Page 16 of 20 © ARM Ltd, UK
J du Preez, L D Smith All Rights Reserved

� Its Soundness. It is outside the scope of this paper to explain in detail why the main
initiatives introduced represent good development practice, but in our view they could hardly
have been more in line with proven, sound practice.

� Its Proactiveness. The initiatives described lay a solid foundation for further SPI over the
medium term, and are indispensable to sound practice during later life cycle phases. Also,
the work described has made a positive impact on the way engineers think about SPI,
promoting an awareness and an appreciation of the issues involved in proactive quality
engineering, and leaving the door open for further work.

In addition, consideration is already being given to the idea of broadening the scope of the
current SPI drive to cover the entire Development Systems Business Unit. Du Preez has recently
been tasked to capture and document existing practice across the BU with a view to analysing
the situation and investigating opportunities for improvement.

Next Steps

The first thing we need to achieve now is success with the tool-based requirements management
pilot project. As stated, we believe that that will give us a horse with which to pull the cart of all
further SPI we have in mind.

Following a successful pilot project, we hope to roll out the tool to the whole team. We plan to use
the pilot project to define a customised training package, designed to minimise the hassle factor
once the tool lands on people’s desktops.

Full application of the tool implies upgrading our development process to allow requirements
traceability across the entire life cycle. We plan to rethink and redefine the development process
where necessary in conjunction with the definition of the training package. This exercise will
also help focus our attention where it belongs for subsequent work.

Once we have fully applied the requirements management tool, we also need to ensure its
integration with existing systems, such as the defect tracking system, our version-control
system, and the ARM project management system.

Some of the ideas of the Quality Tracker will have been implemented by the requirements
management tool. After integrating it with existing systems, we plan to revisit the Quality
Tracker concept with a view to implementing an adapted version of it.

Our ultimate objective is to see proactive quality engineering become engrained in the
underlying fibre of the team, enabling full and ongoing compliance with ARM’s stated Quality
Policy of satisfying customer needs and expectations while sustaining and developing business
growth.

SPI: A Real-world Experience Page 17 of 20 © ARM Ltd, UK
J du Preez, L D Smith All Rights Reserved

ESSENTIAL ATTRIBUTES OF AN EFFECTIVE SPI MODEL

In the light of our experience, we would suggest that a few key attributes distinguish effective
SPI approaches – primary characteristics without which the thing will not fly.

Orientation

An effective SPI model has direction. Like a magnet, it aligns itself with the objectives of the
organisation. Its initiatives are always part of an overall design that serves stated goals directly.

Example. The slide show used to present the Quality Tracker concept carefully took into
account the objectives of all key stakeholders: group management, project management, SQA,
Documentation, Engineering and Support. We believe that the overwhelming vote of support it
received was a direct result of the fact that the links between these objectives and the various
elements of the Tracker concept could be made clear. All subsequent SPI efforts have been in
line with the Tracker concept.

Popularity

An effective SPI model is used as intended and is respected and owned by its intended users. The
less a model is used, the less its effect, and the more investment is required to secure its usage.

Example. The inspection process introduced is an eminent example of a popular process. It is a
stringent process, and was intended to be applied only to SUBs during its first project. However,
within the duration of that first project, the process sold itself to further life cycle phases
(requirements, low-level design), to other projects, and to other groups within the same business
unit. Its popularity played a key role in opening the way for a further major initiative: the
introduction of a requirements management tool.

Clarity

An effective SPI model is understood by those who use it. It can be explained to them and it makes
sense to them. Any lack of clarity is superficial and removable. The intent of the model is clear.

Example. Throughout the SPI drive described, we took care to ensure and confirm that concepts
put forward were clearly defined. Using slide show presentations to the entire (distributed)
team, as well as a well-documented intranet page, we conveyed ideas and invited comments,
always ensuring that key team members understood what we meant and that any concerns
raised were taken seriously. SPI without a clear vision cannot expect to command the respect
and support of software engineering staff.

SPI: A Real-world Experience Page 18 of 20 © ARM Ltd, UK
J du Preez, L D Smith All Rights Reserved

Appropriateness

Both the what and the how of an effective SPI model is suitable for the context it seeks to serve.
The support it provides matches the real need of the situation. It wastes nothing; it lacks nothing.

Examples. The Development Systems software group has a “keep it simple”, non-bureaucratic
culture. The word “formal” scares them. At the same time, team members are proud of their
contributions. Hence the initiatives we introduce rely little on bureaucracy and much on trust.
Further, the group is, and has been ever since its inception, in the business of actually delivering
software and making a profit out of it. Hence the initiatives we introduce are calculated to show
a return on investment within one project cycle.

Flexibility

Like a dog’s tail, a successful SPI model is flexible. Like aircraft wings, it does not break off when
required to bend in the interest of the environment it serves.

Example. Some of the ideas which Du Preez raised early on in his career at ARM were shot
down, almost as soon as they were voiced, by prominent team members who perceived them to
be irrelevant to their particular interests. A rigid approach at the time would have been
disastrous. Flexibility (without losing perspective – bending without breaking) ensured ongoing
SPI. In the meantime, some of those ideas have been implemented and the same team members
have become supportive of SPI initiatives introduced.

Automation

Cost-effective exploitation of automation opportunities characterises successful SPI models. SPI
models that promote automation tend to reduce bureaucracy, facilitating more and imposing less.

Examples. The main reason why requirements do not remain current throughout the
development life cycle is lack of automation. In our view, opportunities for medium term
progress are limited without automating the requirements engineering process. Also, the Quality
Tracker concept is an attempt at automating centralised quality status tracking. Manual
tracking could never provide the same levels of visibility on real progress, no matter how hard
we tried, and the knock-on effects of this lack of visibility are substantial.

Simplicity

Successful SPI models “keep it simple”. As simple as possible, that is – as specific as is necessary,
without being over-specific.

Example. When the first inspections happened, pass/fail criteria had not yet been finally
agreed. We decided to base pass/fail decisions on consensus among participants for the time

SPI: A Real-world Experience Page 19 of 20 © ARM Ltd, UK
J du Preez, L D Smith All Rights Reserved

being. This worked so well that we decided to “keep it simple” and to forget about the idea of
preagreed pass/fail criteria. Quite a few specifications failed inspections, but the validity of
decisions reached has never been questioned. On the other hand, rigid application of the criteria
originally discussed would have led to dissatisfaction in some cases.

Coherence

SPI which is consistent with a well thought-through overall SPI strategy based on sound
development practice is more likely to be successful on the whole.

Example. The soundness of making reasonable efforts to contain defects within life cycle phases
cannot be denied. A focused inspection prior to sign-off (before making products available to
subsequent phases) is one of the most effective ways of uncovering defects within the phase
during which they are introduced. The implementation of a clearly defined, generic inspection
process (which can potentially be applied to any product during any life cycle phase) is totally
consistent with the principles of early defect detection and phase containment of defects.

SPI: A Real-world Experience Page 20 of 20 © ARM Ltd, UK
J du Preez, L D Smith All Rights Reserved

CONCLUSION

Getting SPI right is a tricky business. If the account described in this paper has taught us one
thing, then it is that successful SPI is not a one-man show. The recipe which appears to be
working for us is a balance between:
� a non-interfering, yet strong, informed and supportive management style
� an open-minded team, trusted to think for themselves and taken seriously when they do so
� a dedicated, pragmatic focus on SPI, not imposed but born out of conviction.

In fact, it strikes us that even the most accomplished process model would remain largely
ineffective if the above balance is lacking.

The processes described in this paper may be regarded by some as comparatively immature, and
perhaps rightly so. We do not yet formally comply with any known quality framework, and we do
not yet use any complicated statistical models. Yet the initiatives introduced are in many
respects an SPI dream come true: they are eminently sound, popular and cost-effective. The
balance between process and engineering as a whole appears to be healthy, and the door is wide
open for further SPI along similar lines.

After exposure to all phases and various models of large-scale software engineering,
Jacobus du Preez became increasingly fascinated by the challenge of predictably engineering
quality in software, in spite of the particular dynamics of the industry. His search for a climate
where genuine SPI would “grow” led him to the Development Systems software group of ARM Ltd,
where he currently works as a full-time internal SPI consultant.

Lee Smith has been with ARM since its start-up days, and has been involved in its software
process improvement initiatives for more than five years. Smith is also co-author of "Challenges
in Cross-development", an article published in the Jul/Aug 1997 IEEE Micro.

1 IEEE Std 610.12
2 Jalote, Pankaj; “CMM in Practice: Processes for Executing Software Projects at Infosys”;

Addison-Wesley, Reading, Massachusetts, 1999; p xi
3 McGuire, Eugene G.; “Worst Practices: A Field Report on Software Development

Weaknesses”; Computer Science and Information Systems, American University, Washington,
D.C.

4 Bach, James; “Microdynamics of Process Evolution”; IEEE Computer Society; Feb 1998
4 Goodhew, Peter; “Achieving Real Improvements in Performance from Software Process

Improvement Initiatives”; ESPI Foundation, Ref AA008P; p 6

QWE2000 Session 6I

Mr. Olivier Denoo [Belgium]
(ps_testware)

"Usability: A Web Review"

Key Points

What is usability testing?●

Why usability Testing?●

Objective versus subjective usability criteria.●

Review and results of 30 websites concerning their usability.●

Presentation Abstract

Despite the efforts of Internet gurus like Nielsen or others, a large number of web
sites are still not usable. Some could argue that usability is a fuzzy concept widely
depending on users tastes, that you cannot satisfy everybody and that rules can be
contradictory...it is true!

With a couple of Internet-minded users, we reviewed the progress of the historical
usability study on Sun Microsystem site and, though everybody acknowledged the
drastic progress that had been made, some were still not happy with the final result.
Does it mean that the web site is not usable?

No! Since we are not Sun users and as the main critics were addressed to graphical
contents and icon choices which are among the most subjective ever, our remarks
are a bit out of scope, or at least second range. And that is a bit the problem,
because some aspects of usability seem to be rather subjective, some web sites
builders take the tempting opportunity to neglect them, pretending that usability
testing is so partial and senseless that it isn't worth the effort (read price).

About the Speaker

Olivier Denoo is a consultant active in the Business of Structured Software Testing
since 1997. He was the key-developer of ps_testware's Y2K testing techniques.
Nowadays, he still is a highly respected trainer of this methodology. Continuously
looking for new challenges, Olivier started to investigate the possibilities of website
and e-commerce testing and became in charge of ps_testware's
e-commerce/WWW-testing knowledge base. Currently, he is working in a project at
one of the largest Belgian Telecom companies.

QWE2000 -- Conference Presentation Summary

http://www.soft.com/QualWeek/QWE2K/Papers/6I.html [9/28/2000 11:10:56 AM]

1

QWE2000 - QWE2000 - Usability TestingUsability Testing

C
op

yr
ig

ht
 ©

 2
00

0
ps

_t
es

tw
ar

e
–

Q
W

E2
00

0
 U

sa
bi

lit
y

Te
sti

ng
 -

 1

A review of current errorsA review of current errors

Copyright © 2000 ps_testware – Olivier Denoo – QWE2000 - Usability Testing - 2

AgendaAgenda
•• IntroductionIntroduction
•• Why testing usability?Why testing usability?
•• Methodological approachMethodological approach
•• Usability and the webUsability and the web
•• A quick reviewA quick review
•• ConclusionsConclusions
•• QuestionsQuestions

2

Copyright © 2000 ps_testware - Olivier Denoo – QWE2000 Usability Testing 3

What is Usability?What is Usability?

Copyright © 2000 ps_testware – Olivier Denoo – QWE2000 - Usability Testing - 4

What is Usability? What is Usability? ((JakobJakob Nielsen) Nielsen)

•• Usability is the measure of the quality of the userUsability is the measure of the quality of the user
experience when interacting with somethingexperience when interacting with something

•• The usefulness of a system is determined by twoThe usefulness of a system is determined by two
components:components:

–– UtilityUtility: Does the system do anything that people care: Does the system do anything that people care
about?about?

–– UsabilityUsability: Can the user use the system and: Can the user use the system and
can he or she do so effectively?can he or she do so effectively?

»» Ease of learningEase of learning
»» MemorabilityMemorability
»» Efficiency of useEfficiency of use
»» Error type and frequencyError type and frequency
»» Subjective satisfactionSubjective satisfaction

3

Copyright © 2000 ps_testware - Olivier Denoo – QWE2000 Usability Testing 5

Why Testing Usability?Why Testing Usability?

Why is it aWhy is it a Conditio Conditio sine qua non? sine qua non?

Copyright © 2000 ps_testware – Olivier Denoo – QWE2000 - Usability Testing - 6

Why Testing Usability?Why Testing Usability? The FactsThe Facts
•• Developers sell their products to real usersDevelopers sell their products to real users

(machines, technology and systems don’t buy)(machines, technology and systems don’t buy)

•• Easier is better when you have the choiceEasier is better when you have the choice
(why bother with complexity when easiness is knocking at(why bother with complexity when easiness is knocking at
your door)your door)

•• Usability is very critical in some areasUsability is very critical in some areas
((Especially in E-commerce and communicatingEspecially in E-commerce and communicating
applications)applications)

•• Consumer is king!Consumer is king!
((You have to adapt to their way of working and not theYou have to adapt to their way of working and not the
contrary)contrary)

4

Copyright © 2000 ps_testware – Olivier Denoo – QWE2000 - Usability Testing - 7

Why Testing Usability?Why Testing Usability? The The GoalsGoals
•• Historical records and knowledge baseHistorical records and knowledge base

•• Minimise the costs Minimise the costs (hotline…)(hotline…)

•• Increase sales and the probability of repeatIncrease sales and the probability of repeat
salessales

•• Minimise risks Minimise risks (e.g. feeling secure on the Web)(e.g. feeling secure on the Web)

•• Acquire a competitive advantage asAcquire a competitive advantage as
usability has become a product separatorusability has become a product separator
(e.g.(e.g. Linux Linux))

Copyright © 2000 ps_testware - Olivier Denoo – QWE2000 Usability Testing 8

IntermezzoIntermezzo

Why is the web differentWhy is the web different??

5

Copyright © 2000 ps_testware – Olivier Denoo – QWE2000 - Usability Testing - 9

WebWeb vs vs. Client/Server Applications. Client/Server Applications
•• Target Market Target Market (more than ever consumer rules)(more than ever consumer rules)

•• Media particularities Media particularities (specific constraints)(specific constraints)

•• Usability Usability (even more business critical)(even more business critical)

•• Users do not read, they scan Users do not read, they scan “no time to read on-line”“no time to read on-line”
•• Love me or leave me Love me or leave me “offer is wide, no constraint accepted”“offer is wide, no constraint accepted”
•• Download time is an issue Download time is an issue “when you pay the bill”“when you pay the bill”
•• Feeling secure is an issue Feeling secure is an issue when security is “extrawhen security is “extra muros muros””
•• Users have low error toleranceUsers have low error tolerance
•• Users are NOT “educated” Users are NOT “educated” some don’t even want tosome don’t even want to
•• Target market is fuzzy or unknownTarget market is fuzzy or unknown
•• Portability and standards are issuesPortability and standards are issues

Copyright © 2000 ps_testware - Olivier Denoo – QWE2000 Usability Testing 10

Methodological ApproachMethodological Approach

6

Copyright © 2000 ps_testware – Olivier Denoo – QWE2000 - Usability Testing - 11

The V-model :The V-model :

Strategic choicesStrategic choicesStrategic choices AuditAuditAudit

RequirementsRequirementsRequirements Acceptance testAcceptance testAcceptance test

Logical designLogical designLogical design

Physical designPhysical designPhysical design

Unit/Module testUnit/Module testUnit/Module test

Integration testIntegration testIntegration test

System testSystem testSystem test

CodeCodeCode

Copyright © 2000 ps_testware – Olivier Denoo – QWE2000 - Usability Testing - 12

Test Test Requirements HierarchyRequirements Hierarchy
Test Requirements Hierarchy:

• Structured hierarchical set-
up of test requirements

• Process-driven (related to
the business)

• Trace every possible step to
the business goal (from
business to functionality)

Test Requirements Hierarchy:Test Requirements Hierarchy:

•• Structured hierarchical set-Structured hierarchical set-
up of test requirementsup of test requirements

•• Process-driven (related toProcess-driven (related to
the business)the business)

•• Trace every possible step toTrace every possible step to
the business goal (fromthe business goal (from
business to functionality)business to functionality)

Test requirement 1Test requirement 1
Test requirement 1.1Test requirement 1.1

Test requirement 1.2Test requirement 1.2
Test requirement 1.2.1Test requirement 1.2.1

Test requirement 1.2.2Test requirement 1.2.2

Test requirement 1.2.3Test requirement 1.2.3

Test requirement 1.3Test requirement 1.3

Test requirement 1.4Test requirement 1.4

Test requirement 1.3.1Test requirement 1.3.1

Test requirement 1.3.2Test requirement 1.3.2

7

Copyright © 2000 ps_testware – Olivier Denoo – QWE2000 - Usability Testing - 13

SettingSetting-up Business -up Business Process ThinkingProcess Thinking
•• Web applications are Web applications are communicatingcommunicating applications applications

–– Market should be correctly targeted Market should be correctly targeted (WHY? WHO? HOW?)(WHY? WHO? HOW?)

–– Corporate image should be clear & relevantCorporate image should be clear & relevant
–– Business processes should be clear, easy & user-friendlyBusiness processes should be clear, easy & user-friendly
–– Confidence has to be builtConfidence has to be built
–– Business transactions should be understandable andBusiness transactions should be understandable and

under (user) controlunder (user) control
–– …/……/…

•• Web site has to sell itself/ application is alreadyWeb site has to sell itself/ application is already
sold : consequences for testingsold : consequences for testing
–– USERS need to be more involvedUSERS need to be more involved
–– BPT is a solution BPT is a solution

Copyright © 2000 ps_testware – Olivier Denoo – QWE2000 - Usability Testing - 14

TechniquesTechniques
•• Expert reviewExpert review

•• done by expertsdone by experts
•• mostly find “objective” usability defectsmostly find “objective” usability defects
•• adopt either expert’s or supplier’s point of viewadopt either expert’s or supplier’s point of view
•• TRH, Business Process Thinking, scenariosTRH, Business Process Thinking, scenarios

•• Guided (business) scenariosGuided (business) scenarios
•• done by users (real users, target groups…)done by users (real users, target groups…)
•• coached by suppliers / expertscoached by suppliers / experts
•• mostly find business process defectsmostly find business process defects
•• adopt users’ point of viewadopt users’ point of view
•• Business Process Thinking, scenariosBusiness Process Thinking, scenarios

•• Recorded or logged sessionsRecorded or logged sessions
•• done by users (real users, target groups…)done by users (real users, target groups…)
•• logged by suppliers / expertslogged by suppliers / experts
•• mostly find subjective defectsmostly find subjective defects
•• adopt users’ point of viewadopt users’ point of view
•• ad-hocad-hoc

8

Copyright © 2000 ps_testware - Olivier Denoo – QWE2000 Usability Testing 15

Our Our ReviewReview of of CommonCommon
Defects Found over the WebDefects Found over the Web

Large companies make mistakesLarge companies make mistakes
too ...too ...

Copyright © 2000 ps_testware – Olivier Denoo – QWE2000 - Usability Testing - 16

Important Warning and RemarksImportant Warning and Remarks
•• Errors shown here were observed “live” in Errors shown here were observed “live” in March 2000March 2000..

Some are or could be already corrected now.Some are or could be already corrected now.
•• Everybody makes mistakesEverybody makes mistakes: large companies web: large companies web

teams...but also usteams...but also us,, and their competitors as well and their competitors as well
•• There is no relationship between the quality of a web siteThere is no relationship between the quality of a web site

and the quality of services and products advertised onand the quality of services and products advertised on
that web site.that web site.

•• We respect corporate images, copyrights and trademarksWe respect corporate images, copyrights and trademarks
•• This presentation has This presentation has no commercial goalno commercial goal, , it is it is forfor

Educational purposes onlyEducational purposes only
•• Examples were chosen randomly… but we canExamples were chosen randomly… but we can

find more elsewhere if you ask us to do so.find more elsewhere if you ask us to do so.
•• It is only our (subjective) opinionIt is only our (subjective) opinion, , though wethough we

qualify the defects qualify the defects as as being being « objective »« objective »

9

Copyright © 2000 ps_testware - Olivier Denoo – QWE2000 Usability Testing 17

Missing Missing ALT contentsALT contents

No Refuges – Ban No Refuges – Ban Text Text ModeMode
Mapped Mapped Images Have no Images Have no MemoryMemory

Copyright © 2000 ps_testware – Olivier Denoo – QWE2000 - Usability Testing - 18

10

Copyright © 2000 ps_testware - Olivier Denoo – QWE2000 Usability Testing 19

Spelling MistakesSpelling Mistakes

Little Little Attention to Attention to DetailsDetails

Copyright © 2000 ps_testware – Olivier Denoo – QWE2000 - Usability Testing - 20

11

Copyright © 2000 ps_testware - Olivier Denoo – QWE2000 Usability Testing 21

Unclear Corporate Unclear Corporate ImageImage

Lost Lost in in spacespace

Copyright © 2000 ps_testware – Olivier Denoo – QWE2000 - Usability Testing - 22

12

Copyright © 2000 ps_testware - Olivier Denoo – QWE2000 Usability Testing 23

Heavy Graphical Heavy Graphical ContentsContents

Please hold Please hold on, on, the first icon willthe first icon will
appearappear in a minute or in a minute or twotwo!!

Copyright © 2000 ps_testware – Olivier Denoo – QWE2000 - Usability Testing - 24

Fly with the eagle or scratch with chicken!

13

Copyright © 2000 ps_testware - Olivier Denoo – QWE2000 Usability Testing 25

No No PrioritisationPrioritisation

If If everything is everything is important…important…
nothing is nothing is important!important!

Copyright © 2000 ps_testware – Olivier Denoo – QWE2000 - Usability Testing - 26

42 Links
are visible

on that slide
About 60!

Better prioritisation
About 50 or so!

14

Copyright © 2000 ps_testware - Olivier Denoo – QWE2000 Usability Testing 27

No No BreadcrumbsBreadcrumbs

SorrySorry Gretel Gretel, we can’t find our way, we can’t find our way
back home I’m afraid!back home I’m afraid!

Copyright © 2000 ps_testware – Olivier Denoo – QWE2000 - Usability Testing - 28

Where are the links?

15

Copyright © 2000 ps_testware - Olivier Denoo – QWE2000 Usability Testing 29

Translation & WorldTranslation & World
CultureCulture

Je Je Speak NederlandsSpeak Nederlands; Du Parla; Du Parla
SpañolSpañol??

Copyright © 2000 ps_testware – Olivier Denoo – QWE2000 - Usability Testing - 30

Only German and English
are available !!!

16

Copyright © 2000 ps_testware - Olivier Denoo – QWE2000 Usability Testing 31

Outdated ReferencesOutdated References

Cultural Cultural Shock Shock : : when the when the «« has has--
beenbeen » » meet the meet the « « superhypesuperhype » »

Copyright © 2000 ps_testware – Olivier Denoo – QWE2000 - Usability Testing - 32

Personal Email address inside

Your correspondent will not be reachable
for the next coming four years, please leave
a message after the tone!

17

Copyright © 2000 ps_testware - Olivier Denoo – QWE2000 Usability Testing 33

Low VisibilityLow Visibility

Hello, Hello, is anybody thereis anybody there??

Copyright © 2000 ps_testware – Olivier Denoo – QWE2000 - Usability Testing - 34

Please
don’t go!

It is here

 Motorbikes?
This way please (9th)

18

Copyright © 2000 ps_testware - Olivier Denoo – QWE2000 Usability Testing 35

Non-Non-PrinterPrinter--Friendly Friendly PagesPages

Stay Stay on-line a on-line a little little bit more…Ibit more…I
have to have to write it write it down!down!

Copyright © 2000 ps_testware – Olivier Denoo – QWE2000 - Usability Testing - 36

A4

WYSI N WYG

19

Copyright © 2000 ps_testware - Olivier Denoo – QWE2000 Usability Testing 37

Unexpected BehaviourUnexpected Behaviour

Have I Have I done something wrongdone something wrong??

Copyright © 2000 ps_testware – Olivier Denoo – QWE2000 - Usability Testing - 38

ENTER THE SHOP?
But I was expecting

info

They mean
Home Page

Strange
navigation

20

Copyright © 2000 ps_testware - Olivier Denoo – QWE2000 Usability Testing 39

Unclear Unclear Access Access StrategyStrategy

« Tire la chevillette et la bobinette« Tire la chevillette et la bobinette
cherra »cherra »

Le petit chaperon rougeLe petit chaperon rouge

Copyright © 2000 ps_testware – Olivier Denoo – QWE2000 - Usability Testing - 40

Which one?Which one?

No escape route…
Members only !!!

No escape route…
Members only !!!

21

Copyright © 2000 ps_testware - Olivier Denoo – QWE2000 Usability Testing 41

Script Script Failures Failures ––
LackLack of of ShieldingShielding

The The format format does does not not mattermatter, but, but
pleaseplease, , make your choicemake your choice!!

Copyright © 2000 ps_testware – Olivier Denoo – QWE2000 - Usability Testing - 42

22

Copyright © 2000 ps_testware – Olivier Denoo – QWE2000 - Usability Testing - 43

Copyright © 2000 ps_testware - Olivier Denoo – QWE2000 Usability Testing 44

Lack Lack of Control of Control over over GlobalGlobal
Business Business StrategyStrategy

Did I Did I turn turn off off the tap beforethe tap before
leavingleaving??

23

Copyright © 2000 ps_testware – Olivier Denoo – QWE2000 - Usability Testing - 45

No way to escape
I’ll have to pay

unless...

No way to escape
I’ll have to pay

unless...

Copyright © 2000 ps_testware – Olivier Denoo – QWE2000 - Usability Testing - 46

And here is the backdoor
40$ in my pocket…

Legally at any time !!!

And here is the backdoor
40$ in my pocket…

Legally at any time !!!

24

Copyright © 2000 ps_testware - Olivier Denoo – QWE2000 Usability Testing 47

ConclusionsConclusions

Copyright © 2000 ps_testware – Olivier Denoo – QWE2000 - Usability Testing - 48

Conclusions:Conclusions:
•• IssuesIssues

–– Maturity problem towards testing Maturity problem towards testing especially especially inin
new technologiesnew technologies

–– Please educate the market (www / e-commerce)Please educate the market (www / e-commerce)
–– Money is not (necessarily) the issue...nor timeMoney is not (necessarily) the issue...nor time

•• SolutionsSolutions
–– Structured E-Commerce Testing / MethodologyStructured E-Commerce Testing / Methodology
–– Start testing as early as possibleStart testing as early as possible
–– Business Process Thinking Business Process Thinking TMTM

–– Understand the needs and adopt theUnderstand the needs and adopt the
right approach (TRH)right approach (TRH)

25

TiensesteenwegTiensesteenweg 329 329
B-3010 B-3010 LeuvenLeuven
Tel.: +32 (16) 35.93.80Tel.: +32 (16) 35.93.80
Fax: +32 (16) 35.93.88Fax: +32 (16) 35.93.88
e-mail: e-mail: psps__testwaretestware@@compuservecompuserve.com.com
http://E-Commerce.http://E-Commerce.pstestwarepstestware.com.com

Copyright © 1999 ps_testware - <Name> - <Name Presentation> - 49

Copyright © 2000 ps_testware – Olivier Denoo – QWE2000 - Usability Testing - 50

Our BusinessOur Business
•• Structured Software TestingStructured Software Testing

•• MethodologyMethodology

•• Implementation ModelImplementation Model CodingCoding

Audit testAudit test

Acceptance testAcceptance test

System testsSystem tests

Integration testsIntegration tests

Modular testsModular tests

Strategic choicesStrategic choices

User requirementsUser requirements

Logical designLogical design

Physical designPhysical design

Program designProgram design

FollowFollow--upup

TestTest
executionexecution

TestTest
DevelopDevelop--

mentment

TestTest
PlanningPlanning

TestTest RepairRepair RetestRetestScopeScope PlanPlan DesignDesign BuildBuild

™

26

Copyright © 2000 ps_testware – Olivier Denoo – QWE2000 - Usability Testing - 51

Our ServicesOur Services
•• Training Training (see (see ps_testware instituteps_testware institute))

•• CoachingCoaching
•• ConsultancyConsultancy
•• Outsourcing Outsourcing (now also Total Outsourcing)(now also Total Outsourcing)

Provided by:Provided by:
–– Test ConsultantsTest Consultants

Copyright © 2000 ps_testware – Olivier Denoo – QWE2000 - Usability Testing - 52

Our ProductsOur Products
•• TestTest AssessmentAssessment
•• Test AssignmentTest Assignment
•• Test PlanTest Plan
•• Test ReportTest Report
•• Test AdviceTest Advice
•• Test Pack™Test Pack™
•• Test LaboratoryTest Laboratory
•• ToolsTools
•• E-commerce testingE-commerce testing

New

New

27

Copyright © 2000 ps_testware – Olivier Denoo – QWE2000 - Usability Testing - 53

ReferencesReferences
•• KredietbankKredietbank
•• Barco GraphicsBarco Graphics
•• Exact MaatwerkExact Maatwerk
•• ING BankING Bank
•• BankBank Card Company Card Company
•• JanssenJanssen

PharmaceuticaPharmaceutica
•• TessaTessa
•• Europese RaadEuropese Raad
•• LernoutLernout & & Hauspie Hauspie

•• OriginOrigin
•• SpecsSpecs
•• DexiaDexia
•• SiemensSiemens
•• ING ING 22
•• YokogawaYokogawa
•• LinkLink
•• Alcatel BellAlcatel Bell
•• MobistarMobistar
•• AXA-Royale AXA-Royale BelgeBelge

Copyright © 2000 ps_testware – Olivier Denoo – QWE2000 - Usability Testing - 54

CredoCredo

ps_testware’s first responsibility goes to the customers who use our
services. Our services must be of high quality and must be a reference
for our customers. In line with our primary business, Structured
Software Testing, we may not indulge in pressure, quantity or quick
profit.

We are responsible to our members, the men and women who work with
us. Every member must be respected as an individual and must be
rewarded personal and fair. We must support our members via a
competent management, an adequate working environment and proper
working conditions. Our members must have the means to provide and
receive feedback, allow them and the organisation to learn continuously.
We must support our members in their family responsibilities. Our
actions must be just and ethical.

Our final responsibility is to our stockholders. Our business must make a
sound profit. We must innovate and continuously improve our methods
and techniques. We must develop new services and implement them
effective and efficient. We must create reserves to provide for adverse
times. Our stockholders must receive a fair return on their investments.

28

Copyright © 2000 ps_testware – Olivier Denoo – QWE2000 - Usability Testing - 55

The MissionThe Mission

To offer the To offer the best solutionbest solution to quality problems of computer to quality problems of computer
systems by using its systems by using its test expert knowledgetest expert knowledge in a in a professionalprofessional

way.way.

Best solutionBest solution: the solution that provides the highest contribution.: the solution that provides the highest contribution.

Test expert knowledgeTest expert knowledge: the intellectual asset of: the intellectual asset of ps ps__testwaretestware, a profound, a profound
and complete knowledge regarding verification and validation (testing).and complete knowledge regarding verification and validation (testing).

ProfessionalProfessional: the courage to really provide what has been promised.: the courage to really provide what has been promised.

C
op

yr
ig

ht
 ©

 2
00

0
 p

s_
te

stw
ar

e
–

Q
W

E2
00

0
 U

sa
bi

lit
y

 -
56

QWE2000 Session 6M

Mr. Karl Lebsanft & Mr. Thomas Mehner [Germany]
(Siemens AG)

"CMM in Turbulent Times - Is CMM a Contradiction
to Innovation?"

Key Points

CMM - Capability maturity model of SEI.●

CMM is often misunderstood and this leads to criticism●

CMM is a good framework for improving software development processes●

Presentation Abstract

CMM is applicability in improving development processes. (whether innovative or
not). Concrete examples from various domains such as telecom, industrial
automation, medicine, etc. will be used where return -on- investment can be shown.

About the Speaker

Karl Lebsanft studied mathematics and computer science. He is a project manager
with the department 'Processes for Software and Systems' of Siemens Corporate
Technology in Munich, Germany. Hi is working as a company internal consultant for
software process analysis and improvement. He has nearly 20 years of experience in
software engineering, project management, and process innovation. He has led the
execution of numerous CMM-based maturity level assessments worldwide. He
coaches the introduction of measurement programs on all organizational levels, from
development tup to the management and business levels. In addition, his
responsibilities include research on measurement and evaluation of projects and
processes. His research interests are located in the fields of process modeling,
simulation, metrics, and project estimation.

Thomas Mehner received his diploma in computer science from the Technical
University of Munich in 1982. In 1983 he joined the corporate research and
development division of the Siemens AG. He is a project manager in the department
'Processes for Software and Systems' of Siemens Corporate Technology in Munich,
Germany. With seven years of experience as a company internal process consultant,
he is on of the most-experienced lead assessors in this area at Siemens Corporate
Technology in Munich, Germany. With seven years of experience as a company
internal process consultant, he is one of the most-experienced lead assessors in this
area at Siemens. He is particularly responsible for the area of process innovation
(e.g. incremental processes, spiral development, make or buy decisions, how

QWE2000 -- Conference Presentation Summary

http://www.soft.com/QualWeek/QWE2K/Papers/6M.html (1 of 2) [9/28/2000 11:11:00 AM]

component-oriented development influences the development processes, etc.). He
has particular domain expertise in areas of telecommunications, industrial
automation, and defense.

QWE2000 -- Conference Presentation Summary

http://www.soft.com/QualWeek/QWE2K/Papers/6M.html (2 of 2) [9/28/2000 11:11:00 AM]

Seite -1-© Siemens AG, 2000

s

s

CMM in Turbulent Times - QW2000

ZT SE 3

© Siemens AG 2000, All Rights Reserved
ZT SE 3, Le

Karl Lebsanft, Thomas Mehner
Siemens AG Phone ++49-89-636-53365 - 47253
ZT SE 3 Fax ++49-89-636-44424
Karl.Lebsanft@mchp.siemens.de Thomas.Mehner@mchp.siemens.de

• CMM and Assessment-based Improvement

• CMM: Strengths and Limitations

• Summary

CMM in Turbulent Times –
does CMM Contradict Innovation and Flexibility ?

s

CMM in Turbulent Times - QW2000

ZT SE 3

© Siemens AG 2000, All Rights Reserved
ZT SE 3, Le

Software is of strategic importance for many business fields

� Most products include a significant proportion of software
� Costs for development, maintenance and service are in the billions (DM)

Software development conditions are becoming more demanding

� Costs and deadline pressure are increasing
� Quality and flexibility requirements are increasing
� Systems and development processes are becoming continually more complex
� Distributed development between many sites / countries

Quality and efficiency are increasingly becoming
competition factors in system and software development

o

Significance of Software within Siemens

Seite -2-© Siemens AG, 2000

s

s

CMM in Turbulent Times - QW2000

ZT SE 3

© Siemens AG 2000, All Rights Reserved
ZT SE 3, Le

Siemens Software Initiative

Keeping software expertise at

Siemens among the best worldwide

Kick off 12/95Kick off 12/95

Challenge
Business success through

world-class software and engineering competence

Goals
Business-oriented Improvement with measurable results

Benchmarking & Strategies for software-related business
(software, systems, and engineering of industrial plants)

Experience Sharing & Best Practice Networking,
Just-in-time Training

Enterprise-wide (de facto) Standards:

� Siemens Assessments,
� Siemens “topSix” balanced scorecards,

Benefits
Focus on Customer Benefit

Controlling Process- and Product-Quality

Reaching Business Goals

Cooperative Product Strategies

Siemens-wide Software Community,
Learning Organizations

s

CMM in Turbulent Times - QW2000

ZT SE 3

© Siemens AG 2000, All Rights Reserved
ZT SE 3, Le

Siemens Process Assessments are cornerstones in
Siemens’ strategic Program

 to increase performance in software development.

They are used in many business fields to :

• Analyze and assess processes and architectures
• Determine improvement potential
• Specify measures to improve processes
• Implement programs to increase effectiveness

s

Siemens Process Assessments

Seite -3-© Siemens AG, 2000

s

s

CMM in Turbulent Times - QW2000

ZT SE 3

© Siemens AG 2000, All Rights Reserved
ZT SE 3, Le

Assessments clarify Issues of
Key Importance to the Organization

• What software development methods are
currently practiced within the organization?

• Where should we bundle our
resources to make the most
improvements?

• How do we do compared with the
competition and with other Groups?

Main outcome:
What provides the max.
leverage despite resource
restrictions?

Main outcome:
What provides the max.
leverage despite resource
restrictions?

Systematics

New Techniques

ExperienceKnoW
-How

 R I SK MANAGEMENT
 M ETRICS
 P ROJECT CONTROLLING
 DIST R IBUTED DEVELOPMENT
 PR O JECT MANAGEMENT
 RE V IEWS
 INT E RIM PROFILE
SUB-CONTRACTOR M ANAGEMENT
 INCR E MENTAL PROCESS
 CO N FIGURATION MANAGEMENT
 QUALI T Y ASSURANCE
 u.s.w.

s

CMM in Turbulent Times - QW2000

ZT SE 3

© Siemens AG 2000, All Rights Reserved
ZT SE 3, Le

What do we expect from a process ?

� Organize work to ensure business success.
� Everyone should be aware about the duties he is in

charge of.
� Everyone should be clear about the results he can

rely on.

CMM always provides invaluable hints on how to
come up with the adequate solution.

Seite -4-© Siemens AG, 2000

s

s

CMM in Turbulent Times - QW2000

ZT SE 3

© Siemens AG 2000, All Rights Reserved
ZT SE 3, Le

Turbulent vs. placid environments

R
el

at
iv

e
im

po
rta

nc
e

of
 p

ro
ce

ss
 q

ua
lit

y

re
ac

tiv
ity

sw
ift

ne
ss

pu
nc

tu
al

ity

 re
l.

pr
od

uc
t

qu
al

ity
pr

od
uc

tiv
ity

te
ch

n.
 p

ro
d.

qu
al

.
bu

dg
et

 a
nd

sc
he

du
le

st
ab

ilit
y

In turbulent environments In placid environments

Parts of the SW community claim:
„CMM fits for pleasant and stable
environments, but it is a contradiction
to the turbulent world“

1. Our experience: That is not true!
2. There are only very few
 pleasant environments

flexibilityflexibilityflexibilityflexibility

qualityqualityqualityquality

process maturityprocess maturityprocess maturityprocess maturity

shifts yourshifts yourshifts yourshifts your
limitslimitslimitslimits

s

CMM in Turbulent Times - QW2000

ZT SE 3

© Siemens AG 2000, All Rights Reserved
ZT SE 3, Le

Capability Maturity Model (SEI)

1
“Initial”

2
“Repeatable”

3
“Defined”

4
“Managed”

5
“Optimizing”

• Management of changes to the Process
• Error prevention process
• Management of technological changes

• Management of changes to the Process
• Error prevention process
• Management of technological changes

Risk

Quality

Characteristics Benefits
Maturity
Level

• Quantitative goals for Product and Process
• Statistical Control of goal attainment
• Reuse

• Quantitative goals for Product and Process
• Statistical Control of goal attainment
• Reuse

• Process Owner is the Organization
• Organization-wide Standard Process
• Projects derive their process from Stand. Proc.

• Process Owner is the Organization
• Organization-wide Standard Process
• Projects derive their process from Stand. Proc.

• Process “owner” is Project Manager
• Strict Project Management
• Process varies from Project to Project

• Process “owner” is Project Manager
• Strict Project Management
• Process varies from Project to Project

• Process undefined; Ad-Hoc methods
• Only a few individual experts make decisions
• Deadlines, quality & costs cannot be predicted

• Process undefined; Ad-Hoc methods
• Only a few individual experts make decisions
• Deadlines, quality & costs cannot be predicted

Seite -5-© Siemens AG, 2000

s

s

CMM in Turbulent Times - QW2000

ZT SE 3

© Siemens AG 2000, All Rights Reserved
ZT SE 3, Le

Business goals guide process innovation

Only basic process in place:
Spread personal process know-how
Unification of procedures
Repeatable project success

Established process:
Optimization of specific aspects
Introduction of new methods
and procedures

Business changes
Markets are changing

� Process Documentation!

� Process Optimization!

� Process (re)engineering!

s

CMM in Turbulent Times - QW2000

ZT SE 3

© Siemens AG 2000, All Rights Reserved
ZT SE 3, Le

Example from one of our Groups

In parallel for two trial projects
“creative procedures without process rules”=>

• Cost and schedule overrun (> 100%)
• Results: No product (fulfilling market expectations)

Assessment

Maturity Level
1,5

Assessment

Maturity Level
1,5

Re-
Assessment

Maturity Level
2,25

Re-
Assessment

Maturity Level
2,25

• Financial loss
• Unstable Products
• Unreliable cost and

schedule forecasts

• Financial loss
• Unstable Products
• Unreliable cost and

schedule forecasts

• Good profits
• Reliable planning
• Accepted quality

products

• Good profits
• Reliable planning
• Accepted quality

products

Seite -6-© Siemens AG, 2000

s

s

CMM in Turbulent Times - QW2000

ZT SE 3

© Siemens AG 2000, All Rights Reserved
ZT SE 3, Le

Attaining high maturity (Process Capability) leads to:
less effort for current products and their maintenance
more room for innovation; new products and markets

The breakdown of R&D expenses in percentage form

0

100

95/96 96/97 97/98 98/99 99/00 00/01

“Hunting Fields”
 Innovations

“Farming Fields”
Core Development

%

Sustaining, Maintenance

 New Ideas

Improvement Creates Room for Innovation
Best Practice Example

s

CMM in Turbulent Times - QW2000

ZT SE 3

© Siemens AG 2000, All Rights Reserved
ZT SE 3, Le

The Scope of CMM has limitations:
CMM alone is not enough – you need good Products

Success comes from:

Doing the right things right.

“The right things”:

• Scanning and selection of business opportunities.

• Definition of competitive products.

“Do it right”:
Define and live an adequate
development process.

CMM Focus

Not covered by CMM

ProzesseProzesse

ProjekteProjekte

GeschäftGeschäft

EFQMEFQM
evaluationevaluation

CMMCMM
assessmentassessment

ISO9001 auditISO9001 audit

InternalInternal
auditsaudits

BalancedBalanced
scorecardsscorecards

ProjectProject
metricsmetrics

CockpitCockpit
chartscharts

C
on

tin
uo

us
 c

on
tr

ol

S
tatus evaluation

Seite -7-© Siemens AG, 2000

s

s

CMM in Turbulent Times - QW2000

ZT SE 3

© Siemens AG 2000, All Rights Reserved
ZT SE 3, Le

The Scope of CMM has limitations:
CMM is not enough – you need the best people

Success comes from:

The company has the best people with
excellent skills, working in fruitful teams

Selection and strategic development
of staff and management

Training and inter working aspectsCMM Focus

Not covered by CMM

s

CMM in Turbulent Times - QW2000

ZT SE 3

© Siemens AG 2000, All Rights Reserved
ZT SE 3, Le

CMM tells you what to take care of – not how to do it

Success means:

Establish adequate (market, product, size,...)
procedures for all relevant activities.

Which methods, necessary flexibility, tooling,...

Areas and topics which have to be under control:
Craftsmanship (Level 2)
Engineering (Level 3 and 4)

CMM Focus

Not covered by CMM

Seite -8-© Siemens AG, 2000

s

s

CMM in Turbulent Times - QW2000

ZT SE 3

© Siemens AG 2000, All Rights Reserved
ZT SE 3, Le

CMM does not require huge process documentation

Success means:

Process documentation for
efficient support of developers

Lots of paper, one process for all

Document sufficiently to make good results repeatable
Suitable availability and the ability to check whether the
process and associated documentation are being adhered to
Continuous learning
Systematic Tailoring

CMM Focus

Not required by CMM

s

CMM in Turbulent Times - QW2000

ZT SE 3

© Siemens AG 2000, All Rights Reserved
ZT SE 3, Le

CMM does not require a specific process model

Success means:

Market-oriented development
processes

Sequential (waterfall) or incremental or...

Abilities in SW engineering and related areas:
Analysis, design, implementation, test,...

CMM Focus

Not defined by CMM

Incremental development
requires higher maturity
(at least in level 2
areas) than waterfall:
• Requirements
• Configuration Management
• Project Management
• Supplier Management
• Quality Assurance

Seite -9-© Siemens AG, 2000

s

s

CMM in Turbulent Times - QW2000

ZT SE 3

© Siemens AG 2000, All Rights Reserved
ZT SE 3, Le

Conclusion

� CMM is an excellent basis for success
in the SW business.

� CMM is applicable in turbulent as well as in placid
environments.

� CMM is no guarantee for success.
� Application of the CMM requires consideration of the

environment.

QWE2000 Vendor Technical
Presentation VT6

Panos Ntourntoufis
(UPSPRING Software, Inc.)

"An Automated Approach to
Software Defect Prevention"

Key Points

Point 1...●

Point 2...●

Point 3...●

Presentation Abstract

A solution for dramatically reducing the number of defects in large C, C++ or Java
applications is described. This solution has been implemented using a software
Development Information System (DIS), and consists of two stages: 1) Existing
Defect Identification identifies and fixes existing software defects early in the
development cycle; 2) New Defect Prevention prevents new defects from entering
the code base by enforcing coding standards through automated code reviews, and
preventing code breakages by enabling accurate impact analysis.

About the Speaker

Dr Panos Ntourntoufis, Ph. D., D.I.C. - Greek National. Born and educated in
Belgium. Degree in Mechanical and Electrical Engineering from the Free University
of Brussels, Belgium (1988). Joined the Neural Systems Engineering Laboratory at
Imperial College London (1988-1992). Ph.D. in Electrical Engineering from Imperial
College London, University of London (1994). Appointed Research Fellow at Brunel
University, England, to carry out Neural Systems research (1994-1995). C/C++
software development for Siemens-Plessey at Eurocontrol Maastricht, The
Netherlands (1996). Joined Equifax Europe, in April 1996, to carry out R&D in the
field of Hybrid Risk Assessment Systems. Was co-running the Equifax Europe New
Technology Forum. Joined Software Emancipation Technology (1997) where he is
currently a technical manager for Europe. Has collaborated with many large software
development organizations, in the Telecommunications, Manufacturing and ISV
sectors, to help them achieve greater levels of Productivity and Software Quality.
Speaks French, English and Greek fluently.

QWE2000 -- Conference Presentation Summary

http://www.soft.com/QualWeek/QWE2K/Papers/VT6.html [9/28/2000 11:11:05 AM]

10/6/2000

1

From Software Quality ControlFrom Software Quality Control
to Quality Assuranceto Quality Assurance

Dr Panos Ntourntoufis
European Technical Manager
Software Emancipation Technology

From Software Quality Control to Quality Assurance

� Software Development Crisis

� Development Information Systems

� Solution Stage 1: Quality Assessment

– Establish an Information Model
– Establish Quality Standards
– Assess initial quality and identify defects
– Repair defects
– Monitor Quality
–

� Solution Stage 2: Quality Assurance

– Impact Analysis
– Prevent defects – check Config. Mgmt. Submissions
– Application simplification

 QWE 2000 – 23rd November 2000

agenda

10/6/2000

2

From Software Quality Control to Quality Assurance

� Software Development Crisis

� Development Information Systems

� Solution Stage 1: Quality Assessment

– Establish an Information Model
– Establish Quality Standards
– Assess initial quality and identify defects
– Repair defects
– Monitor Quality
–

� Solution Stage 2: Quality Assurance

– Impact Analysis
– Prevent defects – check Config. Mgmt. Submissions
– Application simplification

 QWE 2000 – 23rd November 2000

agenda

From Software Quality Control to Quality Assurance

time

Build
Application

Application
Used

Customer/Market
Enhancements

Competition, Mergers, Multi-Site &
Platform Support, Customer and

Feedback Enhancements

Increased Product Complexity due to market pressure
creates a “Software Complexity Crisis”

m
ar

ke
t

p r
e s

su
re

development crisis
 SYSTEM EVOLUTION

10/6/2000

3

From Software Quality Control to Quality Assurance

Agents of Change
President
VP Marketing

VP Sales
Customers

Managers of Change
VP-Engineering

Director Director

Manager Manager Manager

Implementers of Change

DEVELOPERS

No Feedback

Uninformed Change

No Measurement

Unknown:
Quality
Functionality
Time to Market

Uninformed Decision

development crisis
 MANAGING CHANGE

From Software Quality Control to Quality Assurance

Testing
(~20%)

Documentation
(~5%)

Coding (15%)

Helping Others
(10%)

Navigating,
searching,

understanding
(~30%)

Impact
Analysis
(15%)

Code Reviews
(5%)

development crisis
 COMPETITIVE ADVANTAGE

10/6/2000

4

From Software Quality Control to Quality Assurance

2 Types of Quality
External Quality

That Which Can be Seen by
Customers

Traditionally Tested

Internal Quality
Program Structure

Coding Practices
Maintainability

Domain Expertise

WHAT YOU SEE
System Crashes

Unexpected Behavior
Data Corruption

Slow Performance
(Usability)

(Usefulness)

WHAT IS HAPPENING
Lost Development Time

Loss of Competitiveness and Reputation
Fixes Introduce New Problems and Lengthy Retesting

Loss of Domain Expertise Introduces Delays

development crisis
 SOFTWARE QUALITY

From Software Quality Control to Quality Assurance

Assertions!

External Quality is a Symptom
Internal Quality is the Root Problem
Poor Internal Quality = High Maintenance Cost
In Order to Improve SW Quality:

Internal Quality Must be Improved

development crisis
 SOFTWARE QUALITY

10/6/2000

5

From Software Quality Control to Quality Assurance

� Software Development Crisis

� Development Information Systems

� Solution Stage 1: Quality Assessment

– Establish an Information Model
– Establish Quality Standards
– Assess initial quality and identify defects
– Repair defects
– Monitor Quality
–

� Solution Stage 2: Quality Assurance

– Impact Analysis
– Prevent defects – check Config. Mgmt. Submissions
– Application simplification

 QWE 2000 – 23rd November 2000

agenda

From Software Quality Control to Quality Assurance

 A Software Development Information System (DIS)
based on a single, comprehensive database of all

the objects used throughout the software design,
implementation, test, and maintenance process

The DIS’s applications enable analysis and
modification of the data while

monitoring and controlling the processes
that produce them

DIS
DEFINITION

10/6/2000

6

From Software Quality Control to Quality Assurance

DIS
 PARALLELS

MISDATA BASE
OF

INFORMATION

Accounts
Payable

General
Ledger

Asset Mgt

Payroll

Order
Processing

Accounts
Receivable

HRISDATA BASE
OF

INFORMATION

Personnel
Records Benefits

Applicant
RecordsBenefits

Administration

Payroll
W/H and 401k

Purchasing

MRPDATA BASE
OF

INFORMATION

Inventory Shop Floor
Control

Engineering

Scheduling

Accounting

QA Analyst

Developer Engineer

Special Projects

Project Leader

Architect

INFORMATION MODEL

From Software Quality Control to Quality Assurance

DIS
 APPROACH

C, C++, SQL, Java
Source CodeSource Code

 DISCOVER DISCOVER®®

 Information
Model

Unix, NT,
HTTP

10/6/2000

7

From Software Quality Control to Quality Assurance

� Software Development Crisis

� Development Information Systems

� Solution Stage 1: Quality Assessment

– Establish an Information Model
– Establish Quality Standards
– Assess initial quality and identify defects
– Repair defects
– Monitor Quality
–

� Solution Stage 2: Quality Assurance

– Impact Analysis
– Prevent defects – check Config. Mgmt. Submissions
– Application simplification

 QWE 2000 – 23rd November 2000

agenda

From Software Quality Control to Quality Assurance

� Software Development Crisis

� Development Information Systems

� Solution Stage 1: Quality Assessment

– Establish an Information Model
– Establish Quality Standards
– Assess initial quality and identify defects
– Repair defects
– Monitor Quality
–

� Solution Stage 2: Quality Assurance

– Impact Analysis
– Prevent defects – check Config. Mgmt. Submissions
– Application simplification

 QWE 2000 – 23rd November 2000

agenda

10/6/2000

8

From Software Quality Control to Quality Assurance

DISCOVER®

Information
Model Entities

DISCOVER®

Information
Model Entities

• Functions
• Structures
• Classes
• Global Variables
• Local Variables
• Unions
• Strings
• Macros
• Typdefs
• Enums
• Templates
• Packages
• Methods
• Class Vars
• Classes
• Interfaces
• Tables
• Cursors

Entity Attributes Relationships

Information
ModelCM System

File System

Check-in
 Check-out

quality assessment
 ESTABLISH AN INFORMATION MODEL

Existing
Software

DISCOVER®

 Model Build

C/C++/JAVA COMPILERC/C++/JAVA COMPILER

DISCOVER PARSERDISCOVER PARSER

Project
Definition

File

File System
CM System Source Files

Makefiles

Pre-
proces

sor

Pre-
proces

sor

Pre-
proces

sor

Pre-
proces

sor

Token
iser

Token
iser

Token
iser

Token
iser

ParserParser

ParserParser

Abstract
Syntax
Trees

Code
Gene
rator

Code
Gene
rator

Object Files

.o.o.o.o.o

LinkerLinker .exe

Executable

Entities
Attributes

Relationships

ExtractorExtractor

Information
Model

quality assessment

 ESTABLISH AN NFORMATION MODEL

10/6/2000

9

Developers

Managers

Executives
• Rapid System Comprehension
• Rapid System Navigation
• Impact Analysis
• Automated Code Reviews
• Change propagation

• Pre-change Risk Analysis
• Change Management
• Process Automation

• Software Quality Reports
• Software Improvement
• Management Decision Support

Company

• Knowledge Capture
• Cost and Time Savings
• Asset management

DISCOVER®® provides a persistent store of information
about your application unobtainable anywhere else:

DISCOVER

Information
Model

DISCOVER

Information
Model

For C, C++
SQL, JAVA

 Entities
Attributes
Relationships

quality assessment
 ESTABLISH AN NFORMATION MODEL

From Software Quality Control to Quality Assurance

� Software Development Crisis

� Development Information Systems

� Solution Stage 1: Quality Assessment

– Establish an Information Model
– Establish Quality Standards
– Assess initial quality and identify defects
– Repair defects
– Monitor Quality
–

� Solution Stage 2: Quality Assurance

– Impact Analysis
– Prevent defects – check Config. Mgmt. Submissions
– Application simplification

 QWE 2000 – 23rd November 2000

agenda

10/6/2000

10

quality assessment
 ESTABLISH QUALITY STANDARDS

Metrics

Portability

Programming
Standards

Structure

Custom
specific

Statistics

Globalization

Standard Quality Filter Sets (QFS)

Over 150 Quality Standards for
Software Development

Customise & Extend

Assignments in conditionals

Empty statement bodies

Control flow interrupts

Constant conditionals

Discarded return values

Functions using global variables

Downward casts

Base classes with non-virtual destructors

Constructors that do not initialise

all data members

Search by syntactic patterns in
the abstract syntax tree

Uncover hidden suspect code

Automatically remediates code
through change propagation.

highly complex and error-prone
constructions can be detected

and replaced before they surface
later in the development process

quality assessment
 ESTABLISH QUALITY STANDARDS

TREE PATTERN MATCHING (TPM)

10/6/2000

11

From Software Quality Control to Quality Assurance

Data use is often masked because
variable names are unrelated to usage,

or because data are passed through
functions

DFA finds all entities that receive the
value of a variable by recursively tracing

through all assignment statements.

"in", "out" or "bi-directional" relationships
are explored through any number of

levels

The accuracy and completeness of DFA is
critical for bug fixes or other remediation

efforts.

y

=
y

z

x

y
=

Multiple de-allocations

Binary Inputs/Outputs

Functions that return a pointer

to the local stack.

Potential memory leaks

quality assessment
 ESTABLISH QUALITY STANDARDS

DATA FLOW ANALYSIS (DFA)

From Software Quality Control to Quality Assurance

� Software Development Crisis

� Development Information Systems

� Solution Stage 1: Quality Assessment

– Establish an Information Model
– Establish Quality Standards
– Assess initial quality and identify defects
– Repair defects
– Monitor Quality
–

� Solution Stage 2: Quality Assurance

– Impact Analysis
– Prevent defects – check Config. Mgmt. Submissions
– Application simplification

 QWE 2000 – 23rd November 2000

agenda

10/6/2000

12

From Software Quality Control to Quality Assurance

Ideal Quality

Dangerously low
software quality

Low risk/ high quality

Products to market
sooner, fewer defects

High risk/low quality

Products to market later,
more defects

� Assess Initial Quality and Identify P1 Defects

– Over 150 quality rules used (customisable)

� Quality Filter Based QAR (Quality Assessment Report)

– Graphical charts for management
– List of viewable suspect instances for engineers
– Quantitative baseline to measure improvements in product quality

quality assessment
 ASSESS QUALITY AND IDENTIFY DEFECTS

From Software Quality Control to Quality Assurance

� Software Development Crisis

� Development Information Systems

� Solution Stage 1: Quality Assessment

– Establish an Information Model
– Establish Quality Standards
– Assess initial quality and identify defects
– Repair defects
– Monitor Quality
–

� Solution Stage 2: Quality Assurance

– Impact Analysis
– Prevent defects – check Config. Mgmt. Submissions
– Application simplification

 QWE 2000 – 23rd November 2000

agenda

10/6/2000

13

•Access/Query - View/Navigate
Architecture
Design
Code

quality assessment
 REPAIR DEFECTS

From Software Quality Control to Quality Assurance

� Software Development Crisis

� Development Information Systems

� Solution Stage 1: Quality Assessment

– Establish an Information Model
– Establish Quality Standards
– Assess initial quality and identify defects
– Repair defects
– Monitor Quality
–

� Solution Stage 2: Quality Assurance

– Impact Analysis
– Prevent defects – check Config. Mgmt. Submissions
– Application simplification

 QWE 2000 – 23rd November 2000

agenda

10/6/2000

14

From Software Quality Control to Quality Assurance

Trend Analysis
– Regularly Generated Quality Assessment Reports
– Provides Assessment of Trends Over Time

Class Complexity Over Time

19
-Ju

l-9
5

25
-Ju

l-9
5

31
-Ju

l-9
5

6-
Aug

-9
5

12
-A

ug
-9

5

18
-A

ug
-9
5

24
-A

ug
-9
5

30
-A

ug
-9

5

5-
Se

p-
95

11
-S

ep
-9
5

17
-S

ep
-9

5

23
-S

ep
-9

5

29
-S

ep
-9

5

5-
Oct-

95

Time

Complexity

Total #

quality assessment
 MONITOR QUALITY

From Software Quality Control to Quality Assurance

� Software Development Crisis

� Development Information Systems

� Solution Stage 1: Quality Assessment

– Establish an Information Model
– Establish Quality Standards
– Assess initial quality and identify defects
– Repair defects
– Monitor Quality
–

� Solution Stage 2: Quality Assurance

– Impact Analysis
– Prevent defects – check Config. Mgmt. Submissions
– Application simplification

 QWE 2000 – 23rd November 2000

agenda

10/6/2000

15

From Software Quality Control to Quality Assurance

� Software Development Crisis

� Development Information Systems

� Solution Stage 1: Quality Assessment

– Establish an Information Model
– Establish Quality Standards
– Assess initial quality and identify defects
– Repair defects
– Monitor Quality
–

� Solution Stage 2: Quality Assurance

– Impact Analysis
– Prevent defects – check Config. Mgmt. Submissions
– Application simplification

 QWE 2000 – 23rd November 2000

agenda

Software
Engineer

Proposed
code change

– How many places will be affected?
– How much effort is required?
– What are the recompilation dependencies?
– Will the impact be local or will it cross

project boundaries?

� Examines the impact of proposed entity signature changes
� before they become final
� Prevents further defects from entering the code
� Reliable, accurate, and immediate

quality assurance
 IMPACT ANALYSIS

DISCOVER

Information
Model

DISCOVER

Information
Model

For C, C++
SQL, JAVA

10/6/2000

16

From Software Quality Control to Quality Assurance

� Software Development Crisis

� Development Information Systems

� Solution Stage 1: Quality Assessment

– Establish an Information Model
– Establish Quality Standards
– Assess initial quality and identify defects
– Repair defects
– Monitor Quality
–

� Solution Stage 2: Quality Assurance

– Impact Analysis
– Prevent defects – check Config. Mgmt. Submissions
– Application simplification

 QWE 2000 – 23rd November 2000

agenda

From Software Quality Control to Quality Assurance

� Providing a means to prevent defects early

– Monitors compliance of new or modified code with
established quality standards via QFS before submission

– Early detection of violations in coding procedures
– Allows process repeatability & scalability

Compliance Report

quality assurance
 PREVENTS DEFECTS – CHECK CM SUBMISSIONS

DISCOVER

Information
Model

DISCOVER

Information
Model

For C, C++
SQL, JAVA

10/6/2000

17

From Software Quality Control to Quality Assurance

� Software Development Crisis

� Development Information Systems

� Solution Stage 1: Quality Assessment
– Establish an Information Model
– Establish Quality Standards
– Assess initial quality and identify defects
– Repair defects
– Monitor Quality
–

� Solution Stage 2: Quality Assurance
– Impact Analysis
– Prevent defects – check Config. Mgmt. Submissions
– Application simplification

 QWE 2000 – 23rd November 2000

agenda

From Software Quality Control to Quality Assurance

� Elimination of Unnecessary Header Files

– reduce header file inclusions to only those necessary
• Reducing footprint
• Reducing compile time
• Simplifying Maintenance

� Elimination of Dead Code

– identify code that is not used by a user-specified root entity
– only live code for dev teams to maintain, test, or remediate

� Other Areas

– Reorganising software structure & functionality
– Porting between C, C++, Java
– Porting to new platforms
– Internationalising software

quality assurance
APPLICATION OPTIMISATION

10/6/2000

18

From Software Quality Control to Quality Assurance

� Software Development Crisis

� Development Information Systems

� Solution Stage 1: Quality Assessment
– Establish an Information Model
– Establish Quality Standards
– Assess initial quality and identify defects
– Repair defects
– Monitor Quality
–

� Solution Stage 2: Quality Assurance
– Impact Analysis
– Prevent defects – check Config. Mgmt. Submissions
– Application simplification

 QWE 2000 – 23rd November 2000

agenda

From Software Quality Control to Quality Assurance

 QWE 2000 – 23rd November 2000

agenda

http://www.upspringsoftware.com

An automated approach to software defect prevention

Panos Ntourntoufis
Software Emancipation Technology Ltd.

Reading, United Kingdom
panos@setech.com

Abstract

A solution for dramatically reducing the number of defects in large C, C++ or Java applications is
described. This solution has been implemented using a software Development Information System
(DIS), and consists of two stages: 1) Existing Defect Identification identifies and fixes existing
software defects early in the development cycle; 2) New Defect Prevention prevents new defects
from entering the code base by enforcing coding standards through automated code reviews, and
preventing code breakages by enabling accurate impact analysis.

1 Introduction

Improving quality, increasing productivity, reducing software complexity, and introducing controlled
software measurement, remain the aims of a large number of software development initiatives [1][6]. The
financial justification for improving process is obvious - software development pays a extremely high price
without optimal processes in place. As software ages and complexity increases due to market pressure,
maintenance costs increase exponentially whilst product quality steadily decreases. According to the U.S.
Defense Dept. and the Software Engineering Institute at Carnegie Mellon University, there are typically 5
to 15 flaws in every 1,000 lines of code. Just tracking down each defect takes about 75 minutes, according
to a five-year Pentagon study. And fixing them takes two to nine hours each. On the outside, that is 150
hours, or roughly $30,000, to cleanse every 1,000 lines of code [5].

The following sections of the paper describe a solution for dramatically reducing the number of defects in
the code base. This solution has been implemented using information built in a Software Development
Information System [7][8], and consists of two stages:

Stage 1: Existing Defect Identification aims at identifying and fixing software defects before the customer
finds them.

Stage 2: New Defect Prevention aims at preventing new defects from entering the code base by enforcing
coding standards through automated code reviews, and preventing code breakages by enabling accurate
impact analysis.

2 Software Development Information Systems

A software Development Information System (DIS) is defined as a database that captures the
interrelationships between all entities in the code base (files, functions, macros, variables, etc), and its
associated tools - to provide the critical information needed both by management and development teams,
in order to increase productivity, quality and process [Figure 1]. The information that populates the
database, also referred to as Information Model, is typically generated by compiler-level parsing of the
source code.

The concept of Information System has been applied to other industries for a number of years and has
produced systems used in manufacturing (such as MRP and ERP), in human resources (HRIS), and design
(CAD/CAM) [2]. It is only recently that the idea of a DIS aimed at Software Development teams has
emerged. For a review of the subject we recommend papers by Rogers [1], Boes [2] and GartnerGroup [3].

Figure 1. Software Development Information System.

3 The Software Development Crisis

3.1 Definition

As software ages and complexity increases due to market pressure, maintenance costs increase
exponentially whilst product quality steadily decreases. As applications mature, source code grows in size
and complexity, resulting in poor quality and long release cycles. In addition, software development
consists of multiple error-prone tasks such as navigation, impact analysis, code review and comprehension
that are tedious, difficult to perform, and often do not yield complete or accurate results. The increased
product complexity due to market pressure creates a “Software complexity crisis”.

3.2 External and Internal Software Quality

Two types of software quality can be distinguished: External Quality and Internal Quality.

External quality is that which can be seen by the customers and which is traditionally tested. Bad external
quality is what can be seen in system crashes, unexpected behavior, data corruption or slow performance.

Internal quality is the hidden part of the iceberg, i.e. program structure, coding practices, maintainability,
domain expertise. Bad internal quality will result in lost development time, fixes are likely to introduce new
problems and therefore require lengthy re-testing. From a business point of view, this will invariably result
in loss of competitiveness and reputation.

We argue that external quality is a symptom whereas the root problem is internal quality. Poor internal
quality leads to high maintenance costs. In order to improve software quality, internal quality must be
improved.

Tests Documents Specs

DATA

Information
Model

For C, C++,
SQL, Java

Navigate
Query

Analyse
Change

Monitor
Control

Navigate
Query
Build

Report

Reengineer

Source
code

4 Stage 1: Existing Defect Identification

4.1 Introduction

A software defect and repair cost 10 to 100 times as much to fix during testing phase if not caught in earlier
in design and coding. Studies have also demonstrated their cost will grow up to 40 to 1000 times the
original if not found until after software has been released [4]. Finding defects earlier in the cycle saves
therefore over $10,000 per defect.

The following sub-sections describe a series of steps which will enable to identify and fix defects before the
software is released to the customer.

4.2 Establish an information model

Establishing an information model requires the following steps:

1- build and deliver the initial information model, the database that captures all software entities, their
attributes and inter-relationships, together with software artifacts such as tests and documentation.
2- synchronise the model build process with the software build process itself
3- provide training to the administrators who will maintain the information model
4- ensure the repeatability of the model build process

4.3 Establish standards for software development: standard quality filter sets (QFS)

The DIS provides a significant number of industry-standard quality filter sets (QFS), each covering a
different category of software quality standards. Typical QFSs include programming constructs, software
structure, adherence to globalisation standards, portability, statistics, metrics, etc.

As an example of QFS, we consider Programming Constructs queries, which measure the use of
questionable programming constructs that may be unsafe or may conflict with site-specific programming
guidelines. Use of questionable programming constructs adds to overall complexity of the code base,
compromises security and makes the code less manageable and less modular than intended. Examples of
questionable programming constructs include empty statement bodies, functions using global data,
functions that return a pointer to a local stack, potential memory leaks, etc.

The creation of QFSs is enabled by two unique technologies built in the DIS: Tree Pattern Matching (TPM)
and Data Flow Analysis (DFA).

TPM is a language that allows the navigation of the Abstract Syntax Tree (AST) generated by the DIS
when the Information Model is built. Quality queries are therefore constructed by translating a particular
code construct into an AST pattern. Identifying all the places in the code that match a particular query is
then accomplished by finding all the places in the AST that match the corresponding pattern.

The Data Flow Analysis (DFA) functionality is also based on the Tree-Pattern Matching (TPM)
technology. DFA searches for all entities that receive the value of a variable by tracing through all the
assignment statements. DFA enables the identification of instances of memory allocations with no
corresponding de-allocations and this globally throughout the application.

The TPM and DFA technologies can also be used to create company-specific quality filters.

4.4 Assess initial quality and identify defects

The quality of the source code is assessed by applying the QFSs previously defined and collecting results
on the number of instances detected. Quality assessment is then represented graphically using a chart of

quality indexes, each index corresponding to a QFS. The quality index FQI for the quality filter set F is
calculated using the expression

 ⋅
⋅−⋅= ∑

q q

q
qF wQI

)code of linesrelevant total(
)founddefectsnb.(3

1100 ,

where is the ceiling-to-1 function, qw is a normalised weight associated with query q, with

1=∑
q

qw , and the scaling constant 3 expresses the heuristic that if a third of the code examined is

severely error-ridden, it probably needs a significant amount of remediation and therefore the quality index
for the correspondent query is given the value 0. For instance, Figure 2 shows the overall quality index
together with the quality indexes of four quality filter sets (QFS): programming constructs, portability,
globalisation and structure. Quality indexes approaching 100 are representative of near ideal quality
whereas low quality indexes are representative of dangerously low software quality [Figure 2]. The higher
the software quality the lower the risk, the sooner the products will be out to market, the fewer the defects.

4.5 Defect repair

Once the defects have been detected, their repair is facilitated by the DIS’s code browser which enables fast
access, navigation and querying of the code base. An added benefit of the browser is that it allows fast
comprehension of complex code. These comprehension improvements deliver software quality
improvements as well as increased developer productivity.

4.6 Monitor quality

Monitoring of software quality is enabled by regularly generated QFS-based quality assessments and
custom trend chart generation, providing assessment of trends over time.

Figure 2. Quality assessment. The chart shows the overall quality index together with the quality indexes of four quality filter sets

(QFS).

5 Stage 2: New Defect Prevention

5.1 Introduction

Market demands are regularly quoted as being responsible for the abandonment of sound development
practices, exhorting a much higher price than most may realise. For example, an often overlooked but

B Programming
 constructs

40

60

80

20

0

100

A C D EB

A Overall quality

C Portability

D Globalisation

E Structure

extremely valuable facility to detecting defects is the use of peer reviews, or code inspections. JPL has
documented a cost of only a $90 to $120 per defect if found during inspections, but an astonishing $10,000
per incident when caught in testing [1]! In the following paragraphs we go through the successive steps to
enable automated defect prevention.

5.2 Impact analysis

Understanding the complex relationships between all the entities in the code base requires not only skill but
also extensive experience with the specific source code. Even the best and most experienced engineers can
make mistakes in their analysis of changes to the source code. For example, if an engineer changes only a
single line of source in a function, there may be 15 other places in the code base that must be examined and
may require related changes. Even if the developer remembers 14 of the 15 other places in the code to
check, it is the one instance overlooked that can cause the code submission to fail. Such a failure impacts
not only the individual developer but may very well impact the entire engineering team, or even the entire
company, waiting on a successful build or defect-free release. The DIS provides reliable, automatic,
accurate, precise and complete analysis of the impact of changes to the source code.

The impact of proposed entity signature changes are therefore examined before they become final. Impact
Analysis reduces the risk of making changes before committing to them.

5.3 Submission check

Checking code for design flaws and coding defects before it is submitted to the shared source base is
widely acknowledged as a good thing to do. The promise of properly conducted code reviews is that they
can be effective in improving quality of software. Poor coding constructs can be identified and eliminated
before they add complexity to the product. Coding defects can be found and remediated before they enter
and pollute the shared source base.

However, the reality of manual code reviews usually does not match their promise. Because code reviews
are labor intensive and require scarce senior developers, they are viewed by many developers as painful and
a waste of time. Manual code reviews are often not done with the level of attention and energy necessary
to be thorough and complete. Because of this reality, code reviews are done on an irregular basis and are
frequently ineffective.

Through automation of this labor intensive and time consuming task, the quality of source code can
significantly be improved prior to submission to the shared source base thereby preventing potential defects
from entering the code base and affecting the entire engineering development and testing team. A
Submission Check mechanism is implemented inside the DIS to automatically analyse and evaluate source
code submissions. Submission Check examines coding constructs that cause software failures or may lead
to complexity and costly rework. The submission check feature is fully customisable, through TPM and
DFA technologies, to allow developers to optimise the analysis for specific coding constructs and coding
standards.

6 Conclusion

The cost of software defects places a heavy burden on every software development organisation. The
business need to address this problem has become critically urgent with rapidly increasing volumes of
source code, rapidly increasing salaries due to fierce competition for scarce developers and rapidly
changing technologies and market needs. Some companies will discover how to cope with the tremendous
burden of such rapidly increasing costs…other companies will not. The two keys are; 1) Prevention and 2)
Assuming all prevention is not possible, discovery of errors as early in the process as possible.

References

[1] R. Rogers, “The cost of software defects”, White paper, Software Emancipation Technology, June 1999.

[2] B. Boes, “Development Information Systems, A New Paradigm in Software Development: Complexity Begets
Complexity – A Vicious Cycle”, White paper, Software Emancipation Technology, May 1999.

[3] GartnerGroup, “Software Emancipation Technology, Inc.: DISCOVER”, GartnerGroup/DataPro, Nov. 1999.
[4] B Boehm, Software Engineering Economics, Prentice-Hall, 1981.
[5] N. Gross, M. Stepanek, O. Port , and J. Carey, “Software Hell: Glitches cost billions of dollars and jeopardize

human lives. How can we kill the bugs?”, Business Week Online – International,
http://www.businessweek.com/1999/99_49/b3658015.htm, Dec. 1999.

[6] R. E. Park, W. B. Goethert and W. A. Florac, “Goal-Driven Software Measurement - A Guidebook”, Handbook
CMU/SEI-96-HB-002003, Software Engineering Institute, Carnegie Mellon University, Pittsburgh, August 1996.

[7] P. Ntourntoufis, “From Software Quality Control to Quality Assurance”, pp. 100-4, in Embedded Systems
Engineering, Vol.8 No.3, April-May 2000.

[8] P. Ntourntoufis, “Transforming Software Quality Control to Quality Assurance”, pp. 191-201, in Approaches to
Quality Management, Ed. D Chadwick et al., The British Computer Society, May 2000.

QWE2000 Session 7T

Mr. Bill Lewis [Canada]
(Technology Builders, Inc.)

"Requirements-Based Testing: An Overview
(Process and Techniques for Successful Development

Efforts)"

Key Points

An overview of the Requirements-Based Testing (RBT) process●

An overview of Caliber-RBT, the tool that supports the RBT process.●

The intended audience is project managers, development managers, developers, test
managers and test practitioners who are interested in understanding RBT and how it can be
applied to their organization.

●

Presentation Abstract

In many organizations, testing is viewed as slowing down the delivery of the system,
partly because it is the last step in the development process. Ironically, when testing
is properly deployed, with heavy emphasis on Requirements-Based Testing, it can
have a major impact on overall project productivity as well as product quality.

Many organizations also have discovered that capture/playback tools require a
significant investment in building and maintaining test scripts. They also discover that
the scripts cannot keep up with rapidly changing specifications. This presentation will
address how a Requirements-Based Testing (RBT) process provides major
productivity gains, especially when used in conjunction with a tool to support it. The
RBT process stabilizes the completeness of the specifications early in the
development process. Caliber-RBT tool then designs an optimized set of test cases
that are then automatically fed into all of the major capture/playback tools. The
results are fewer tests with greater functional coverage, shortened time to delivery,
reduced costs of development, and significantly improved quality.

About the Speaker

Bill Lewis has 34 years experience in the computing industry. Currently as a senior
technology engineer he trains and consults in the requirements-based testing area
which focuses on leading-edge testing methods and tools.

Before joining TBI, he was an assistant director for Ernst & Young, LLP for almost 6
years as the quality/ testing manager. The majority of BillÆs career was at IBM for
28 years. His jobs included system programmer, analyst, performance analyst and
technical instructor. With IBM, Bill has consulted and trained all over Europe and

QWE2000 -- Conference Presentation Summary

http://www.soft.com/QualWeek/QWE2K/Papers/7T.html (1 of 2) [9/28/2000 11:11:10 AM]

Asia. His first job out of college was with the Apollo Support Department for General
Electric at the Kennedy Space Center as a real-time programmer.

Bill is a prolific communicator having lectured at various quality organizations
including the Quality Assurance Institute (QAI) Fourth International Quality
Conference, the American Society for Quality, and Association of Information
Technology Practitioners. His has also authored five books on computer problem
solving and has recently authored a book on software testing as a continuous quality
improvement process.

Bill holds a BA degree in Mathematics from the University of Miami, Florida and an
MS in Operations Research from the University of Central Florida. He is also a
Certified Quality Analyst (CQA) and Certified Software Test Engineer (CTSE).

QWE2000 -- Conference Presentation Summary

http://www.soft.com/QualWeek/QWE2K/Papers/7T.html (2 of 2) [9/28/2000 11:11:10 AM]

1

Requirements-Based Testing
Overview

Technology Builders, Inc.
400 Interstate Parkway

Suite 1090
Atlanta, Georgia 30339

tel: 770-937-7900
fax: 770-937-7898
http://www.tbi.com

Bill Lewis
Senior Technology Engineer

2

Agenda

The Business Case for Better Quality

The Requirements-Based Testing Process

Management Considerations

Summary

2

3 (IBM, et. al.)

Relative Cost To
Fix An Error

Phase In Which Found Cost Ratio
Requirements 1
Design 3-6
Coding 10
System/ Integration Testing 15-40
User Acceptance Testing 30-70
Operation 40-1000

4

Distribution
of Bugs

Distribution of
Effort To Fix
Bugs

(James Martin)

Requirements
82%

Design
13%

Other
4%Code

1%

Requirements
56% Design

27%

Other
10%Code

7%

3

5

Why Good Requirements are
Critical
Standish Group Statistics

for 1997

In 1997, American
companies spent $100
BILLION for canceled
software projects.

$45 BILLION spent for
projects which significantly
exceeded time and budget
estimates.

Standish Group Statistics for
2000

In 2000, American companies
will spend $84 BILLION on
failed software projects

$192 BILLION will be spent on
projects that significantly
exceed time and budget
estimates, or have reduced
functionality

6

Why Good Requirements Are
Critical

Top reasons for failure:
Incomplete requirements and
specifications
Changing requirements and
specifications
Lack of user input

(Standish Group and other studies)

4

7

The Test Process - Make It:

Timely:
Integrate throughout the life cycle

Effective:
Rigor in test definition

Efficient:
Heavily automated
Minimum number of tests

Manageable:
Measurable
Predictable

8

Standard Development
Lifecycle

Requirements

Design

Code

Test

Write User
Manuals

Write Training
Materials

International
Translations

TIM
E

5

9

Lifecycle With Testable
Requirements and Integrated
Testing

Test
Requirements Requirements

Test
Design Design

Test
Code Code

International
Translations

Write User
Manuals

Write Training
Manuals

TIM
E

10

The Requirements-Based
Testing Methodology
Quality filters

1. Validate requirements (WHAT) against objectives (WHY)
2. Apply use-cases against requirements
3. Perform initial Ambiguity Reviews
4. Perform domain expert reviews
5. Create Cause-Effect Graphs
6. Logical consistency check and test cases designed by Caliber-RBT
7. Review of test cases by requirement authors
8. Review of test cases by users/domain experts
9. Review of test cases by developers
10. Walk test cases through design
11. Walk test cases through code
12. Execute test cases against code

6

11

Characteristics of a
Testable Requirement
1. Deterministic

2. Unambiguous

3. Correct

4. Complete

5. Non-redundant

6. Lends itself to change control

7. Traceable

8. Readable by
all project members

9. Written in a consistent style

10. Processing rules reflect
consistent standards

11. Explicit

12. Logically consistent

13. Lends itself to re-usability

14. Terse

15. Annotated for criticality

16. Feasible

12

Ambiguity Review Checklist
Dangling else
Ambiguity of reference
Scope of action
Omissions

Causes without effects
Missing effects
Effects without causes
Complete omissions
Missing causes

Ambiguous logical
operators

Or, And, Nor, Nand
Implicit connectors
Compound operators

Negation
Scope of negation
Unnecessary negation
Double negation

Ambiguous statements
Verbs, adverbs, adjectives
Variables, unnecessary aliases

Random organization
Mixed causes and effects
Random case sequence

Built-in assumptions
Functional/environmental
knowledge

Ambiguous precedence
relationships
Implicit cases
Etc.
I.E. versus E.G.
Temporal ambiguity
Boundary ambiguity

7

13

Test Case Design
Approaches
Goal:
Design a necessary and sufficient set of
test cases to ensure system integrity.

Production files
Gut feel
Exhaustive “Combinatorics” of inputs
Rigorous algorithms

14

Testing With Only Production
Files

Covers less than 30% of the code
Exception cases not covered since data is already
scrubbed
Time-dependent functions not covered
Expected results not determined for every output
field
Might find some missing cases
Have value in performance testing
Have value in helping build test cases

8

15

Testing By Gut Feel

Totally dependent on who is doing the testing:
How experienced they are at testing
How experienced they are in the application
How experienced they are in the technology that the
application runs on
How they are feeling today

Even if all the tests run successfully, all you know is
that those tests run -- not that the system runs
successfully

16

Testing By Brute Force
Combinatorics
Amount of time to arrange 15 books in every
possible way:

2,487,996 YEARS at one change per minute

Length of paper required to write all the possible
sequences of the 26 letters of the alphabet:

160 million light years

QUESTION: how many variables are in your
application?

9

17

 Validates requirements
Provides maximum coverage with the
minimum number of tests
 Automates test case design
Uses a rigorous algorithm

18

Designing Test Cases -- An
Example

This function has sixty-four possible combinations
of input from which to select test cases:
If the customer is a business client or a preferred personal
client and they have a checking account, $100,000 or more
in deposits, no overdraft protection and fewer than 5
overdrafts in the last 12 months, then set up free overdraft
protection. Otherwise, no overdraft protection.

 How many test cases are required to confirm that
the function works?

Answer: Seven

Question: Can you name them?

10

19

Cause-Effect Graph

~

~

20

Test Cases Designed By
Caliber-RBT
TEST#1 -- Automatic Check For Overdraft Protection

Cause states:

The customer is a business client

The customer has a checking account

The customer has $100,000 or more in deposits

The customer does not have overdraft protection

Overdrawn less than five times in last 12 months

Effect states:

Set up free overdraft protection

Caliber-RBT takes the cause-
effect information entered and
designs a complete set of
TEST CASES.

Caliber-RBT takes the cause-
effect information entered and
designs a complete set of
TEST CASES.

11

21

Automatic Check For Overdraft Protection
STATISTICS

Synthesis of NEW Tests was specified.

There were 14 input statements processed.

There were 9 Functional Variations generated.
There were NO Infeasible Variations
There were NO Untestable Variations

There were 7 NEW Test Case definitions generated by Caliber-RBT.
There were 9 Tested Variations, and
9 FEASIBLE Variations, which yields
100% Functional COVERAGE of FEASIBLE variations.

There were 9 Tested variations, and
9 TESTABLE variations, which yields
100% Functional Coverage of TESTABLE variations.

For n = 6 Primary causes, then
2^n = 64 THEORETICAL Maximum Number of Test Cases.

Caliber-RBT generated 7 Test Cases, which yields a
9 to 1 Test Case Compression Ratio.

Caliber-RBT processed 9 Testable Variations, which yields a
1 to 1 Testable Variations to Test Case Compression Ratio.

Caliber-RBT Elapsed Time: 00:00:01 (hh:mm:ss)

Summary statistics are
produced to aid in project
estimating and tracking.

Summary statistics are
produced to aid in project
estimating and tracking.

22

Test Statistics For a Large
Problem
CHP_PG5_26/TOBACCO USE STATISTICS

Synthesis of NEW Tests was specified.

There were 112 input statements processed.

There were 141 Functional Variations generated.
there were NO infeasible Variations
there was 1 Untestable Variation

There were 22 NEW Test Case definitions generated by Caliber-RBT.
there were 140 Tested Variations, and
141 FEASIBLE Variations, which yields
99% Functional COVERAGE of FEASIBLE variations.

There were 140 Tested variations, and
140 TESTABLE variations, which yields
100% Functional Coverage of TESTABLE variations.

For n = 37 Primary causes, then
2^n = [a little more than] 137,438,953,472 THEORETICAL Maximum Number of Test Cases.

Caliber-RBT generated 22 Test Cases, which yields a
6,247,225,157 to 1 Test Case Compression Ratio.

Caliber-RBT processed 140 Testable Variations, which yields a
6 to 1 Testable Variations to Test Case Compression Ratio.

Caliber-RBT Elapsed Time: 00:00:02 (hh:mm:ss)

12

23

Thought experiment
Put 137,438,953,450 RED balls in this room
Add 22 GREEN balls to the room and mix well
Turn out the lights

Pull out 22 balls
What is the probability that you have selected the 22
green ones?

Pull out 1,000 balls
What is the probability that you have the 22 green ones
now?

Pull out 1,000,000 balls
What is the probability that you have the 22 green ones
now?

** This is what “GUT FEEL” testing really is.**

Justification for Rigorous Testing

24

Would You Rather Validate a
Specification That Looks Like This:

James Joycian Novel Style

Dental Insurance Claims Payment Specification
Dentists with membership codes of 2, 3, or 9 are member
dentists. For claims referencing a non-member dentist or
for procedures not within the referenced dentist’s record,
a system table is used to calculate the amount paid.
Otherwise, the amount submitted is paid. However, an
override code of 1 or 9 allows the amount submitted to be
paid for non-member dentists or for procedures not within
the referenced dentist’s record. When an override code is
used an entry is made on the paid claims report.

Dental Insurance Claims Payment Specification
Dentists with membership codes of 2, 3, or 9 are member
dentists. For claims referencing a non-member dentist or
for procedures not within the referenced dentist’s record,
a system table is used to calculate the amount paid.
Otherwise, the amount submitted is paid. However, an
override code of 1 or 9 allows the amount submitted to be
paid for non-member dentists or for procedures not within
the referenced dentist’s record. When an override code is
used an entry is made on the paid claims report.

13

25

Or Validate Test Cases That
Look Like This:

Cause States:
The Dentist is a Member Dentist
The procedure was not preauthorized
An override code was entered

 Effect States:
This is a potential partial payment
situation
Override the partial payment
Pay the full amount of the claim
Make an entry on the paid claims report

Cause States:
The Dentist is a Member Dentist
The procedure was preauthorized

 Effect States:
It is a valid procedure for the member dentist
Pay the full amount of the claim
Do not make an entry on the paid claims
report

TEST 1 TEST 2

26

Management Considerations

Staffing curve peaks earlier
Requirements are written in more detail
Design is concurrent with requirements
Implementation preparation is concurrent with
design
Testers are involved from the beginning
Technical writers are involved earlier

Total resources reduced
Minimize scrap and rework
Plans have better focus on scope and priorities

1 4

27
72

RBT Process
Test Case Design/Execution Status Report

Function
Priority

Function
Name

Require-
ments
Written

Ambiguity
Review

Complete

Require-
ments

Complete

Cause-
Effect

Graphs

Caliber-
RBT
Entry

Test
Cases

Designed

Test
Cases

Reviewed

of
Functional
Variations

of
Test

Cases
Modules
Coded

Test
Cases
Built

Test
Cases

Executed

of
Defects
Identified

of
Defects
Open

% Code
Coverage

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20

TOTALS

28

Summary
What Caliber-RBT Delivers:

Maximum coverage with minimum tests
100% functional coverage
70-90% code coverage

Quantitative test progress metrics
Testing is no longer a bottleneck
Highly portable test scripts
Tests any application written in any
language running on any computer

QWE2000 Session 7A

Ms. Jill Pritchet & Mr. Ian Lawthers [Ireland]
(Centre for Software Engineering)

"Software Process Improvement for Small
Organizations using the "SPIRE" Approach"

Key Points

Outlines a comparatively low cost approach to Process Improvement particularly suitable for
small to medium sized software companies

●

Presents results and analysis of companies that have used the approach●

Describes the future direction of the work●

Presentation Abstract

Shows how a focussed, pragmatic approach to process assessment and
improvement has yielded real benefits to a number of small to medium sized
companies involved in developing software in four European countries.

The paper describes the Software Process Improvement in Regions of Europe
(SPIRE) project. SPIRE was a project funded through the European Systems and
Software Initiative (ESSI), which started in March 1997 and ran for two years.
SPIRE's objectives were to lower the barriers preventing Small Software Developers
(SSD s - companies/departments of companies with fifty or fewer software staff) from
successful participation in SPI by:

- raising awareness of SPI benefits among decision makers and change agents in
SSDs

- educating participating SSD managers and staff in practical SPI skills

- helping SSDs to maintain momentum in carrying through their improvement plans

The SPIRE project used the SPIRE Approach, a low cost way to help small software
companies to implement their first SPI projects efficiently. The paper will explain
what the SPIRE Approach is, and how it was used in the project.

About the Speaker

Jill Pritchet is a Senior Consultant at the Centre for Software Engineering in Dublin,
Ireland. She is responsible for promoting Software Process Improvement and Quality
in Irish Software Companies through awareness and training programmes,

QWE2000 -- Conference Presentation Summary

http://www.soft.com/QualWeek/QWE2K/Papers/7A.html (1 of 2) [9/28/2000 11:11:17 AM]

consultancy support and relevant European programmes. She is also the Project
Manager for the Software Process Improvement in Regions of Europe (SPIRE)
project.

QWE2000 -- Conference Presentation Summary

http://www.soft.com/QualWeek/QWE2K/Papers/7A.html (2 of 2) [9/28/2000 11:11:17 AM]

1

QWE 2000

SPI for Small Organisations using the
“SPIRE Approach”

Presented by: Jill Pritchet,
Centre for Software Engineering, Ireland

© Centre For Software Engineering

Presentation Objectives

• Introduce the SPIRE project
• Explain the role of the SPIRE Mentors
• Introduce the outputs from the project

– SPIRE Handbook & Case Studies
• Explain the benefits of process assessment
• Explain the “SPIRE approach” to SPI
• Outline some key results from the project
• Outline the future plans for SPIRE

2

© Centre For Software Engineering

Background to the project

• CEC funded ESPRIT/ESSI project, with partners
in 5 countries:
– Austria - ARC Seibersdorf; Ireland - CSE, Dublin; Italy -

Etnoteam, Milan; Sweden - IVF, Gothenburg; UK - SIF,
Belfast

• Objective: to lower the barriers preventing SSDs
from successful participation in SPI projects

SSD: a small software development unit with up to 50 software people, both small
software companies and small software units in larger user companies

© Centre For Software Engineering

How was this done?

• By convincing decision makers and change agents of
the benefits of SPI

• Educating participating SSD managers & staff in
practical SPI skills

• By using the “SPIRE Approach”
• Providing guidance from experts experienced in SPI, in

the form of Mentors paid by SPIRE
• Helping SSDs to maintain momentum in carrying out

their improvement project

3

© Centre For Software Engineering

The role of the Mentor

• Helped the SSDs to:
– carry out an assessment of their needs
– prepare a sound project plan for a cost-effective,

small SPI project (funded up to 15K Euro)
– implement the project
– evaluate the project results
– have confidence to apply the techniques on their

own later

© Centre For Software Engineering

The SPIRE Handbook

• The SPIRE Partners published the SPIRE
Handbook (now re-published) as a guidebook

• Purpose of the book:
– to provide a practical guide for those considering SPI

• The book is split into 3 Parts:
– Part 1 - Business Managers guide to SPI
– Part 2 - Champions guide to SPI
– Part 3 - Software Process and Best Practice Framework

4

© Centre For Software Engineering

Part 1 -
Business Managers guide to SPI

• For the decision makers whose leadership and
informed commitment of resources (money &
labour) is critical for SPI success

• It explains:
– the basics of SPI
– how to make a business case for investment in SPI

• It also gives guidance on how to support and
foster successful SPI

© Centre For Software Engineering

Part 2 -
 The Champions guide to SPI

• For the management change agent, the person
with responsibility for leading and managing the
improvement project

• It explains:
– how to follow the steps of a cycle of continuous

improvement
– how to handle the people and cultural issues which

impact success
– how to manage the improvement project

5

© Centre For Software Engineering

Part 3 - Software Process and
Best Practice Framework

• For the Managers and Software Engineers to
analyse the component processes and to identify
industry best practices to strengthen them

• It explains:
– the purpose of each process
– what it should cover

• It also gives guidance in the form of helpful hints
and pitfalls to avoid

© Centre For Software Engineering

Process Assessment

• SPIRE used scaled down SPICE assessments
• The assessments were carried out twice:

– at the start, to assist the SSDs to focus their
improvement project in the most beneficial
area, based on the business needs of the
organisation

– at the end of the projects, to confirm the level
of improvement achieved

6

© Centre For Software Engineering

Process Assessment continued

• Automated tools were used to make the
assessments quicker and easier
– Bootcheck
– Synquest

• The assessments were a low cost, but effective
mechanism for measuring the success of
individual projects

© Centre For Software Engineering

The SPIRE Approach

• The approach is an 8-step process used by all
the SSDs

• SSDs found it was an easy to understand
approach

• It helped them to get the most out of their
projects
Full detail can be found in the SPIRE Handbook

but to summarise the steps are:

7

© Centre For Software Engineering

The steps of the SPIRE Approach

Step 1 - Examine organisation needs
– so that you focus on the most beneficial area

Step 2 - Initiate process improvement
– treat it as a project and plan the improvement

Step 3 - Prepare and conduct process assessment
– consider appropriate tools

Step 4 - Analyse results and derive action plan
– start with something simple and quantify your goals

© Centre For Software Engineering

The steps of the SPIRE Approach

Step 5 - Implement improvements
– consider a pilot rather than “big bang” approach

Step 6 - Confirm improvements
– Was it a success? Do a second assessment.

Step 7 - Sustain improvement gains
– Systematically collect data to track project performance

Step 8 - Monitor performance
– Fine tune your skills

8

© Centre For Software Engineering

SPIRE CASE STUDIES

• To help others the most successful SPIRE projects
prepared Case Studies which are freely available
from the Web site: http://www.cse.dcu.ie/spire

• They are in a variety of languages & short and easy
to read

• They can be used as a valuable source of
information on real experiences

• Can help to convince Managers of the benefits of
SPI in small companies

© Centre For Software Engineering

Example Case Study - Cunav Technologies
(now NewWorld Commerce)

• Software Systems development and consulting
company

• Focus was in improving their requirements
analysis process

• Objectives were to:
– improve the ability to manage customer expectations
– deliver systems with significantly reduced need for

rework

9

© Centre For Software Engineering

Example Case Study continued

• What was achieved:
– a requirements analysis process was developed
– training in requirements gathering was provided for

their consultants
• Several key areas were improved:

– a decrease of 90% in the amount of rework required
– number of requirements related bugs fell
– accuracy of time and budget estimates improved

© Centre For Software Engineering

Statistics

To give you a feel for the project here are
some relevant statistics taken from the
European Analysis Report produced at the
end of the SPIRE project.

Note: The full report is available from the SPIRE web site

10

© Centre For Software Engineering

Size of Software Production Unit

1-10
64%

11-30
23%

31-50
13%

© Centre For Software Engineering

SSDs by industry sector

Service
18%

IT
77%

Manufacturing
5%

11

© Centre For Software Engineering

Extent to which SPI Skills can be
Applied in the Future

A lot
69%

Something
29%

Nothing
2%

© Centre For Software Engineering

Would the SSDs do another Improvement
Project Without External Funding?

Definitely
77%

Probably
21%

No
2%

12

© Centre For Software Engineering

Were the Objectives of Improvement
Plan Met by the SSDs?

Exceeded
13%

Fully Met
43%

Largely Met
40%

Partially Met
2%

Didn't Meet
2%

© Centre For Software Engineering

Staff Attitude Change

For all Regions:
The staff attitude score at the start averaged 0.58

The staff attitude score at the end averaged 1.02

There was a positive increase of +0.44

Therefore the SPIRE projects did not have a negative
impact on the participating companies staff

13

© Centre For Software Engineering

• Major impact on the 73 SSDs that took part
• They achieved worthwhile improvements in their

processes
• Improved their business and competitive position
• Management & key staff educated in SPI skills

which are being used to make further
improvements after the project ended

Achievements

© Centre For Software Engineering

Future Plans

• Two of the original partners are continuing the good
work done with SPIRE:
– CSE, Dublin, Ireland and Arcs Seibersdorf, Austria

• They are:
– setting up Training and Consulting for Software Companies

using the SPIRE Approach
– doing this in their own regions and also other parts of Europe

and North America
– looking at sub licensing the materials through suitable

agencies

14

© Centre For Software Engineering

CSE plans

Preparing a 1-day SPI for Managers
course
– aimed at convincing Managers of Small

Software Organisations that initiating an SPI
project is not only viable but cost justifiable

– based on Part 1 of the SPIRE Handbook

© Centre For Software Engineering

CSE plans continued

Developing a SPIRE Coaching Cluster
– group of companies attend training days to

learn the SPIRE approach
– mentor assigned to help them do an

assessment followed by implementation of a
focussed SPI project in-house

– based on Part 2 of the SPIRE Handbook
Both courses planned to be available in first quarter of 2001

15

© Centre For Software Engineering

Arcs Seibersdorf Plans

• Joint training venture, mainly in the German
speaking regions, using the SPIRE technology
(including tools & technologies of the Partners e.g.
ESI, Bootstrap Institute)

• Investing in a Benchmark service, balanced score
cards and a qualification for SPIRE mentors

• SPIRE being included as part of the post-graduate
MAS studies at the Danube University

© Centre For Software Engineering

Conclusions

• The SPIRE project has had a major impact in:
– raising the awareness of the benefits of SPI to small

software organisations
– providing real evidence that SPI is viable in these

operations
– educating a significant number of SSDs to a level

where they are able to continue SPI on their own
– raising the capability levels of the participant

companies

16

© Centre For Software Engineering

Conclusions

Proving that SPI can be
effective in many
different areas such as:

– Software Testing
– Configuration management
– Subcontractor management
– Project management
– GUI development
– Web site development
– Standard procedures
– Introduction of PSP
– Software Life Cycle process

model
– Requirements analysis etc.,

© Centre For Software Engineering

Recommendations

• Considering an SPI initiative? - look at the
compelling evidence from SPIRE

• Data is now available for successful SPI in small
organisations

• If funds allow consider using a Mentor
• Get a copy of the SPIRE Handbook (only 25 Euro)

it will help you to carry out your first SPI project
(see me or order from the web site http:/www.cse.dcu.ie/spire)

17

© Centre For Software Engineering

Finally

Go on give it a try, you have nothing to
lose, and you may be surprised at how
much you can gain in a very short time

frame!

© Centre For Software Engineering

Contact Information

Centre for Software Engineering
Jill Pritchet or Ian Lawthers
DCU Campus,
Glasnevin,
Dublin 9, Ireland

Tel: +353 1 700 5750
Fax: +353 1 700 5605
Email: jill@cse.dcu.ie or

ian@cse.dcu.ie

ARCS (Austrian Research Centers
Seibersdorf)

Erwin Schoitsch
Information Technologies
Forschungszentrum
A-2444 Seibersdorf, Austria

Tel: +43 2254 780 3117
Fax: +43 2254 72133
Email: erwin.schoitsch@arcs.ac.at

QWE2000 Conference Proceedings

Page 1 of 10

Software Process Improvement for Small Organisations using the
“SPIRE Approach”

Author: Jill Pritchet and Ian Lawthers
Centre for Software Engineering, Dublin City University Campus,

Dublin 9, Ireland
1. Summary
The paper shows how a focussed, pragmatic approach to process assessment and
improvement has yielded real benefits to a number of small to medium sized
companies involved in developing software in four European countries.

It describes the Software Process Improvement in Regions of Europe (SPIRE)
project. SPIRE was a project funded through the European Systems and Software
Initiative (ESSI), which started in March 1997 and ran for two years. SPIRE's
objectives were to lower the barriers preventing Small Software Developers (SSDs -
companies/departments of companies with fifty or fewer software staff) from
successful participation in SPI.

The SPIRE project used the SPIRE Approach, a low cost way to help small software
companies to implement their first SPI projects efficiently. The paper will explain
what the SPIRE Approach is, and how it was used in the project.

2. Introduction
When the 5 Partners set up the SPIRE project they recognised that in order for the
project to be a success they needed to find ways to enable SSDs to lower the barriers
that were preventing them from successful participation in SPI. This was achieved in
a number of ways by:

� Convincing decision makers and change agents of the benefits of SPI

� Educating participating SSD managers and staff in practical SPI skills, that
they would retain after the project ended

� Helping SSDs to maintain momentum in carrying through their improvement
 plans

� Providing guidance from experts experienced in SPI in the form of Mentors
paid for by the SPIRE project funding

The SPIRE project adopted the SPIRE Approach, which proved to be a very
successful way of helping small software companies to implement their first SPI
projects.

3. Results and achievements
SPIRE had a major impact on the 73 or so SSDs, which undertook focused process
improvement projects under the guidance of the SPIRE mentors. The impact was in
two ways:

� Firstly they achieved worthwhile improvements in their processes, which not only
improved their business but also their competitive position

QWE2000 Conference Proceedings

Page 2 of 10

� Secondly their management and key staff have been educated in the skills of
practical process improvement, with most of them applying the skills to make
further improvements after SPIRE finished.

4. The use of Mentors in SPIRE
Since the majority of participating SSDs had never tried an SPI project before; SPIRE
paid for experienced mentors to help guide them through each of the following:

– An assessment of their needs, to ensure they focused on an area for improvement
that would add value to their business, in a short time frame.

– The preparation of a sound project plan for a cost-effective, small SPI project
(funded by SPIRE to a maximum of 15K Euro).

– Implementation of the project, to ensure success.

– Evaluation of results, to give them the confidence to approach a similar activity
on their own, once SPIRE was over.

The use of Mentors was seen as one of the most significant factors in ensuring the
success of the projects.

5. Handbook
During the SPIRE project the Partners published the very successful SPIRE
Handbook, which is a guidebook, with the clear objective of meeting the practical
needs of busy managers and software engineers, working in real-world businesses.

At the time demand for the book far exceeded supply and as a result two of the SPIRE
Partners have recently re-published the Handbook.

The Handbook is split into 3 sections:

Part 1 is a Business Manager’s Guide to SPI. It addresses the management decision
maker, who may not even be a part of the software organisation in a software user
company, but whose leadership, and informed commitment of resources, both money
and labour, is critical for SPI success. It explains the basics of SPI, and how to make a
business case for investment in SPI. And it gives guidance on how to support and
foster successful SPI.

Part 2 is a Champion’s Guide to SPI. It addresses the management change agent,
who will take, or be given, responsibility for leading and managing the improvement
project. The champion has a key role in making improvement happen. Without a
highly motivated individual, acting with the support of business management, to
convey the vision of improvement and find ways round the barriers to change, the
chances of success are much reduced. This part explains how to follow the steps of a
cycle of continuous improvement, how to deal with the people and cultural issues
which impact success, and how to manage an improvement project.

Part 3 is a Software Process and Best Practice Framework. It helps the Managers
and Software Engineers making up the improvement project teams, to analyse the
component processes of their overall software process, and to identify industry best
practices to strengthen them. It explains the purpose of each process, what it should
cover, and gives guidance in the form of helpful hints and pitfalls to avoid. It is a
comprehensive framework, in that it examines in turn all the processes that you might
wish to improve.

QWE2000 Conference Proceedings

Page 3 of 10

6. Process Assessment
Another key factor that influenced the success of the SPIRE projects was the use of
scaled down SPICE process assessments (SPICE – Software Process Improvement
Capability dEtermination Standard - ISO/IEC TR 15504) for small organisations.

The assessments were carried out twice, once at the start of the project, in order to
assist the SSDs to focus their SPI improvement project in the most beneficial area
based on the business needs of the Organisation. The second assessment was carried
out at the end of the project to confirm the level of improvement achieved. This
proved to be a very low cost (but effective) mechanism for measuring the success of
individual projects.

To make the process of assessment as easy as possible the SPIRE Partners used an
automated tool, selected from either Bootcheck or Synquest.

7. The SPIRE Approach
The SPIRE approach is an 8-step process, which was used by all the SSDs that
participated. They found that it was easy to understand and that it helped them to get
the most out of their first SPI projects. The full detail can be found in the SPIRE
Handbook but in summary the 8 key steps are as follows:

Step 1 – Examine organisations needs
When you start a process improvement initiative for the first time it is an ideal
opportunity to steer managers and employees to discuss and then decide on which
business objectives the organisation intends to achieve. Failing to define such
objectives could easily lead to a failure of the entire improvement effort and to a
waste of the company’s efforts. An easy approach to begin defining the organisation’s
objectives is the SWOT analysis, which is an evaluation of the organisation’s
strengths, weaknesses, opportunities and threats.

Step 2 – Initiate process improvement
The only sure way to succeed with an SPI initiative is to treat it as a project in its own
right. It is essential that you establish proper Project Planning, which is then managed
in an efficient and effective manner during the life of the project. The organisation
must clearly define the objectives, scope, budget and time constraints for the SPI
initiative.

Step 3 – Prepare and conduct process assessment
If you don’t know where you started from how will you know that you have moved
forward? This is one of the key questions we asked each SSD to consider and to
enable them to answer “where they were starting from” we asked their Mentors to
help them undertake a process assessment.

Several assessment methods are available; the SPIRE project used the SPICE model,
which provides an accurate assessment of software-specific processes, and other
processes that support software development and maintenance.

A report is produced from the assessment, which can then be compared with a later
assessment carried out at the end of the project to establish the level of improvement
achieved.

QWE2000 Conference Proceedings

Page 4 of 10

In parallel with the SPICE assessment the SSDs, and their mentor, also completed a
staff attitude survey. The objective of the survey was to ascertain the level of
commitment from staff, which can have a major affect on the project success.

Step 4 – Analyse results and derive action plan
This step involves identifying which software processes are critical for the
achievement of business goals. This is done by ranking the processes according to
their relevance to business needs and to their capability level: processes that are very
relevant to business needs and get a low capability reading are those with highest
priority to improve, and where investments will be most beneficial.

In SPIRE the SSDs, with the help of their mentor, ranked their processes as either L
(low) M (medium) or H (high). They then matched this against their assessment
results to highlight the areas to consider for improvement.

In the example below Process P1 has been assessed at capability level 0 bit it is highly
relevant for the SSD in trying to achieve Business Need 1. This makes it an ideal
choice as a potential focus for an improvement project.

We recommend that you start with simple improvements that you are confident will
achieve results, rather than trying complex ones at your first attempt.

Example : The table below shows you how the results might be represented:

Business Needs Processes supporting
achievement of business needs

Relevance (H,M,L)

Need 1 Process 1 H

 Process 2 M

 Process 4 L

Need 2 Process 3 M

 Process 4 H

Need 3 Process 1 M

 Process 5 L

etc etc etc

H P1 P4

M P2 P3

L

 0 1 2 3

 Capability level

R
a
n
k
i
n
g

QWE2000 Conference Proceedings

Page 5 of 10

When you specify the improvement goals for the selected processes try to do so
quantitatively e.g. 20% reduction in failure rate or 10% improvement in timeliness.
This will make them easier to understand. It is also a good idea to validate the results
of the improvement actions against the initial goals using appropriate metrics.

Other things to consider in this step are the appropriate allocation of resources and the
identification of actions to be carried out to improve the target processes e.g.
definition of template or definition of steps for requirement specification etc.,

Step 5 – Implement improvements
The implementation can be done in a number of different ways depending on the
scope of the improvement project. In some instances a pilot might be a beneficial way
of experimenting with SPI. When the pilot has been a success it is much easier to roll
it out to the rest of the organisation.

You can of course define the process changes and then apply them to the whole
organisation in one go, but be careful, as this could cause more disruption to the
organisation, which may already be under pressure.

At this point it is appropriate to consider the risks associated with your selected
project. Document the risks in the Project Plan and what you propose to do to
minimise these risks. Ensure you have Senior Management commitment to the
improvement project before continuing.

If you have used a Mentor they will be able to assist you with the implementation of
your project. You (or you and your Mentor) must monitor and track progress of the
improvement activities. As with any project as soon as you realise a problem has
occurred that affects progress you must take appropriate action. Re-planning may be
required.

Capture the measurement data identified in the previous stage to be used for
evaluation of results and achievement of targets.

Step 6 – Confirm improvements
Now is the time to look back at what happened and to ascertain if your improvement
project was a success. Were the targets you set reached? Did the benefits you
expected come to fruition? Is the cost/ benefit ratio satisfactory?

We recommend that you also do a second assessment to evaluate whether the planned
capability improvements have been achieved. As before repeating the staff attitude
survey may prove beneficial but remember to compare like with like, if the staff that
originally were assessed are no longer in the organisation you can not compare earlier
results against the new ones!

Discuss the results with your Senior Management.

Step 7 – Sustain improvement gains
Now is the time to ensure that the benefits achieved can be maintained now that the
project has finished. Make sure that everyone, to whom it is relevant, is using the
improved process.

If you took the pilot project approach you can now extend it to other parts of the
organisation. Remember to plan the roll out, including assigning appropriate
resources, to ensure success. You may need to consider training needs, when to

QWE2000 Conference Proceedings

Page 6 of 10

implement, how you are going to validate the implementation and how you will
monitor results.

To ensure that the improved process will be followed and expected benefits realised,
systematically collect and use data to track project performance. Keep measurement
data simple and aligned to organisation business goals.

Step 8 – Monitor performance
Process improvement is a continuous activity, which supports your organisation to
evolve to meet its business goals. Therefore at the end of one improvement project is
the ideal time to think about the organisations objectives and to plan what to improve
next. Sometimes the first experience of process improvement can be time consuming
it is only with practice that you can get better at it. By reviewing each improvement
project on completion to identify what went well, and what could have been handled
better, that you will fine tune your skills, this is also a part of process improvement!

8. Case Studies
The experience gained in the most successful SPIRE projects were published as short
Case Studies aimed at decision makers in SSDs in 6 languages (German, Italian,
English, French, Spanish and Swedish). Data from all the projects was gathered in a
standardised way, to permit analysis from which valuable lessons regarding best SPI
practice for SSDs was derived and published as a report.

The results have been disseminated on paper, electronically and through workshops,
in the four participating regions, which were Ireland (North and South), Italy, Austria
and Sweden, and throughout Europe.

Those involved in the SPIRE projects felt that it was very worthwhile to them
personally as well as their organisation. The majority felt that they would now be
confident enough to undertake another SPI project internally without the funding from
the Commission. They felt there was sufficient real evidence now to convince Senior
Management of the benefits of SPI.

To illustrate this I have included below an overview from two of the SPIRE Case
Studies. The full set of SPIRE Case Studies can be downloaded from the SPIRE web
site: http://www.cse.dcu.ie

Case Study 1 – Cunav Technologies (now NewWorld Commerce)
Cunav Technologies is a software systems development and consulting company,
which provides IT resources and solutions to customers operating in a variety of
application areas. As we are continually involved in the development of specialised
software systems on behalf of our clients, an ability to elicit precise system
requirements from our customers obviously has a significant impact on our business.

Specifically, we saw that improving our requirement analysis process would
improve our ability to manage customer expectations and to deliver systems with
significantly reduced need for rework. As a result of our SPIRE project, a requirement
analysis process was developed and training in requirements elicitation provided for
Cunav consultants.

The initiative was very successful, as evidenced by improvements in several key
areas of our development process. The amount of rework and number of requirements

QWE2000 Conference Proceedings

Page 7 of 10

related bugs have both fallen and the accuracy of our time and budget estimates has
improved. Most importantly, we are in a position to understand the needs of our
customers and deliver top quality systems on time and within budget.

The most important thing learned is that software processes are fundamental to the
smooth running and success of a growing company such as Cunav. Software
requirements in particular are critical elements of any system and having an efficient,
consistent and cost effective means of handling these is of paramount importance.

Case Study 2 – Peregrine Systems Ltd.,
Peregrine Systems Ltd. is a successful and fast growing software development
company which provides a specialised range of Business Process Automation
application software products to clients in the financial services and government
industry sectors.

The company’s main business objective is the development and growth of its
customer base. The impact of this growth is that the organisation is becoming
increasingly involved in larger projects, therefore increasing the size of software
development teams. Management at Peregrine became aware that their current
approach to source code management would not be adequate to handle this change. It
was becoming increasingly necessary to introduce source code management
procedures and also the tools to support them. Additionally, a requirement was
identified for an improved defect reporting and tracking system.

The purpose of this project was to improve existing procedures for source code
management and defect control, and to identify and implement suitable tools to
support these procedures. The aim was to provide an improved level of service to an
increasing customer base.

The goals of the project were achieved over the period of the improvement project.
Tools to support source code management and defect control were evaluated,
selected, purchased and installed. In addition, appropriate procedures were developed
and implemented.

Peregrine’s capability in the areas of source code management and problem
resolution has increased significantly over the life of the project. This enabled the
company to handle the added burdens of growth in their customer base.

9. Future Plans
Since the end of the SPIRE Project two of the original Partners have been continuing
the good work done in SPIRE. The two Partners are:

Centre for Software Engineering
Jill Pritchet or Ian Lawthers

DCU Campus,
Glasnevin,
Dublin 9,
Ireland

Tel: +353 1 700 5750
Fax: +353 1 700 5605

Email: jill@cse.dcu.ie or ian@cse.dcu.ie

ARCS (Austrian Research Centers Seibersdorf)
Erwin Schoitsch

Information Technologies
Forschungszentrum
A-2444 Seibersdorf

Austria
Tel: +43 2254 780 3117

Fax: +43 2254 72133
Email: erwin.schoitsch@arcs.ac.at

QWE2000 Conference Proceedings

Page 8 of 10

These Partners have been setting up Training and Consultancy for Software
Companies in SPI using the SPIRE Approach. Each Partner is handling training in
their respective Regions as well as allocated Regions of Europe and North America.
The Partners will be looking, in the longer term, at sub licensing the SPIRE materials
in other Countries, if suitable interested agencies can be found.

Below is some detail about what each Partner is currently working on, for more
information contact them directly.

Centre for Software Engineering (CSE)
CSE is developing training in two different formats. The first is a one-day course
titled “SPI for Managers” this course is aimed specifically at convincing the
Managers of Small Software Companies that initiating a Software Process
Improvement project is not only a viable option but is also a cost justifiable one. The
course stresses the need for business leadership to ensure success and is based around
Part 1 of the SPIRE Handbook.

The second will take the form of a “SPIRE Coaching Cluster”. CSE has used
clusters for many years and has found it to be an ideal format for helping small
companies to achieve real results. A group of companies will attend training days
away from the office to learn an aspect of the SPIRE Approach. They will then be
given assistance from a Mentor to help them with an assessment followed by
implementation of a focussed SPI project in-house. Emphasis is given to the people
and cultural aspects of achieving a successful improvement project. This is based on
Part 2 of the SPIRE Handbook.
The courses are planned to be available in the first quarter of 2001.

SPIRE: Major StepsSPIRE: Major Steps
SPIRE-Partners Agreement

Basic Method

How do we want to progress SPIRE?

Method Service

Qualifications

Training

The SPIRE-Handbook

The SPIRE-Handbook

NEW •Assessment Tools,
•Databases,
•Benchmarks.....

•Criteria
•skills...

•Partners
•Employees

•Partners
•Interested People
•...for acquisition

•Certificate
•continuous
 Training...

•HM&S
•SQS....
•ARCS
•CSE

•SPIRE-P

•SPIRE-P
•national
 Institutes

QWE2000 Conference Proceedings

Page 9 of 10

Arcs (Austrian Research Centers Seibersdorf)
ARCS is creating a group of partners (joint venture) mainly in the German speaking
regions to exploit the SPIRE technology (in combination with tools and technologies
of the partners, ESI (European Software Institute) and BI (Bootstrap Institute)) both
directly and as a franchising business in Central Europe.

As well training and tools to support the SPIRE Assessments and Improvement
Processes Arcs is investing in a benchmark service, balanced score cards and a
qualification, licensing and certification scheme for “SPIRE mentors”. Later on
ARCS staff members active in the area of academic research will present the SPIRE
method as part of the post-graduate MAS-studies at the Danube University in
Krems/Lower Austria.

10. Conclusions
The experience and results generated and disseminated by SPIRE have had a major
impact in raising the awareness of the benefits of SPI in a significant proportion of the
100,000 or so European SSDs. The impact has been seen particularly within the 4
SPIRE regions (Austria, Ireland, Sweden and Italy), where it substantially increased
the proportion of SSDs undertaking SPI projects, but has also extended right across
Europe.

Specifically SSDs benefited by:

• Greater awareness of SPI and how beneficial it can be when done the right way

• Achieving worthwhile improvements in their processes, which has improved their
business and competitive position

• Educating their management and staff in the skills of practical process
improvement, with most of them planning to apply the skills to make further
improvements after the SPIRE project finished.

• Significant increases in the capability level of the processes they targeted on the
SPICE scale

• The effectiveness of the mentoring which helped stimulate them into taking SPI
action.

• Proving that SPI projects can be successful in many different areas, such as:

Software Testing Web Site development
Configuration Management Introduction of PSP
Subcontractor Management Software Life Cycle Process Model
Project Management Requirements Analysis
GUI Development environment Quality System Management
Standard Procedures

In addition the Mentors involved in the SPIRE projects benefited by:

• Direct experience gained from supporting the SSDs in implementation of their
SPIRE SPI projects.

• Use of the assessment tools e.g. Bootcheck

QWE2000 Conference Proceedings

Page 10 of 10

11. Recommendations
The experience of the SPIRE project clearly demonstrates the feasibility of SPI in
small software organisations. If you are considering an SPI project we recommend
that you look at the outputs from the SPIRE project, to learn from the experience, and
to ensure that you focus your project to have the most benefits for your organisation.

12. References:

Authors References

[The SPIRE Partners] The SPIRE Handbook (2000) – Better Faster, Cheaper Software
Development in small organisations - ISBN 1-874303-03-7 copies
available from Arcs, Seibersdorf or the SPIRE web site:
http://www.cse.dcu.ie/spire

[The SPIRE Partners]

The SPIRE Case Studies – available from the SPIRE web site
(see above)

[ISO] Software Process Improvement & Capability dEtermination
(SPICE) - ISO/IEC TR15504 1998

[Erwin Schoitsch] A Standardised Process Improvement Approach for the
Development of Dependable Software-Intensive Systems.
– European Software Day, Sept. 7, 2000.
– Proceedings of „European Software Day, Workshop at

EUROMICRO 2000 (G. Chroust, P. Grünbacher, Eds.), p. 59-
79. OCG Wien, 2000, ISBN 3-85403-200-5.

[Erwin Schoitsch,
Christian Steinmann]

Software Process Improvement – a major step to system
dependability and business success.
– Proceedings of the 3rd International Austrian – Israeli

Technion Symposium, Hagenberg/Linz, 26-27 April 1999.

[Bootstrap Institute] Bootcheck Tool – http://www.bootstrap-institute .com

[Haase, Mülleitner &
Steinmann GmbH]

Synquest Tool – http://www.hms.org/

QWE2000 Session 7I

Mr. Fernando T. Itakura, Ms. Silvia R. Verfilio
[Brazil]

(Crosskeys Systems Corporation)

"Automatic Support For Usability Evaluation Of A
Web Application"

Key Points

Review of different usability evaluation methods, mainly the methods implemented by
TOWABE

●

Reports on tools that also support usability evaluation●

Description of TOWABE functionalities and examples of its use●

Presentation Abstract

Interest in World Wide Web in connection with human-computer interaction (HCI)
has increased considerably over the last few years. Today there is a consense that
the quality of the global system is linked with the quality of his interface. So, the
development of quality interative systems demand HCI specific techniques. A key
concept in HCI field is usability, which is concerned with making systems efficient,
effective and easy to use. Usability evaluations are important to guarantee the global
quality of a Web application. There are several methods which have proved to be
useful in usability evaluation of traditional application. However, the environment in
which web aplications are developed and tested are not the same of tradicitional
aplications. Web applications can not be treated in the same way as a traditional
application because they have some peculiar characteristics. One of them is that the
development of a Web application is faster. In this sense, tools which support an
automatic usability evaluation has gained importance.

TOWABE, Tool for Web Application usaBility Evaluation, is a research tool with the
primary goal of automating and supporting Web usality evaluations. TOWABE is
based on three well known techniques: questionnaire, card sorting and expert
inspection. The tool has three modules: TCheck, TQuest and TCat. After a session
using the tool, reports can be automatically generated and some statistical models
are obtained from the collected data. This data can be used to compare results from
differents evaluation methods. TOWABE also offers a glossary and personalization
mechanisms.

About the Speaker

Fernando Takashi Itakura received his BS in Computer Science from UEL, Brazil in
1999 and is currently a masther student at Federal University of Paraná. He is

QWE2000 -- Conference Presentation Summary

http://www.soft.com/QualWeek/QWE2K/Papers/7I.html (1 of 2) [9/28/2000 11:11:21 AM]

member of CE-21: 101.08 - SC21:10 of ABNT. Since February he has been teaching
at UNIBEM. His research interests includes software quality, usability, software
testing techniques and Internet.

Silvia Regina Vergilio received the the MS (1991) and DS (1997) degrees from
University of Campinas, UNICAMP, Brazil. She is currently at the Computer Science
Department at the Federal University of Parana, where she has been a faculty
member since 1993. Her research interests are in the areas of Software Engineering:
Program Testing, Softare Validation and Verification and Software Development
Environments.

QWE2000 -- Conference Presentation Summary

http://www.soft.com/QualWeek/QWE2K/Papers/7I.html (2 of 2) [9/28/2000 11:11:21 AM]

1

Automatic Support for Usabili ty Evaluation of
a Web Application

Fernando Takashi Itakura and Silvia Regina Vergilio

Federal University of Paraná – UFPR

Brazil

Overview of Presentation

• Introduction

• Usability Evaluation Methods

• Usability Evalution Tools

• TOWABE

• Conclusions

2

Introduction
• What is usability?
• ISO 9241/11 definition

“Extent to which a product can be used by specified users
to achieved their goals with effectiveness, eff iciency and
satisfaction in a specified context of use”

Interface quality

Global system quality

• Usability and World Wide Web

• Usability Evaluations

Goals of Work

• Review of usability evaluation methods;

• Review of tools that support usability evaluations;

• Presentation of a tool that supports and automates usability

evaluations;

3

Usabilit y Evaluation Methods

• Heuristic Evaluation

• Questionnaire

• Usability Inspection via Checklist

• Focus Group

• Card Sorting

Heuristic Evaluation

• Evaluators examines the interface and judge its compliance

with recognized usabil ity principles (Heuristics).

• What is the adequate number of evaluator?

– Nielsen recommend three to five.

• I don’ t like it.

• Evaluators must explain why they don’t like it.

– It is important to indicate the respective heuristic.

4

Questionnaire

• a set of questions requiring a response which describes

past behaviors, the user expectations, attitudes and opinion.

• Important considerations:

– Designing a questionnaire is not writing a book.

– Questionnaire should be checked before answered in

the real test.

– Do not put many open-ended questions.

– Use discrete scales.

Usabilit y Inspection using Checklist

• Review of a system based on a set of guidelines.

the quality of the tool (checklist)

the quality of the evaluation.

• Potentialities:
– Anyone can perform the checkli st;

– Systematization of the evaluation;

– Reduction of subjectiveness;

– Identification of usabil ity problems frequently found.

5

Focus Group

• Moderator

• Representative users

• Stimulus

Card Sorting
• A categorization method.

• The proccess consist:

– List of all items that will be sorted;

– Write this list in cards;

– Give these cards to users;

– The users classify these items in groups;

– The users label the groups;

– A categorization model is obtained.

6

Usabilit y Evalution Tools

• QUIS

• Ergolist

• IBM UCD WORKBENCH

• BOBBY

• ERGOLIGHT USABILITY TOOLS

TOWABE - Motivations

• Most tools supports only one method;

• The evaluations methods are complementary;

• Comparasion among methods are desired;

• Combination of a formal, well-known and reliable

checklist (ISO 9241)- but not focused on World Wide Web

- and a checklist focused on World Wide Web.

7

TOWABE

• TOWABE - TOol for Web Application usaBility
Evaluation.

• It is based on three well-known techniques: questionnaire,
card sorting and usability inspections using checklist.

• It has three modules:
– TCheck

– TQuest

– TCat

• Two different groups:
– Evaluator group.

– General User group.

TOWABE - cont

• Passwords are provided to guarantee the distinction among

the groups and the integrity of the evaluation session.

• It is possible to obtain statistical models.

• It is possible to compare the results from different

evaluation session.

• Personalization mechanisms is avaliable.

• TOWABE identify the user characteristics.

8

TCheck module

• TCheck module provides a checklist to assess the usability
of Web applications.

• The checklist was developed based on:
– ISO 9241.

– BIR/1198.

YES NO N.A.

1. Links and buttons are recognizable.

2. Help information is task-dependent.

TQuest module
• The TQuest module implements a questionnaire

projected to assess the users' satisfaction.
• standard questionnaire is avaliable

– The Evaluator group is able to construct his
own personalized questionnaire.

9

TCat module

• It is based on Card Sorting method.

• It allows the Evaluator group to determine how well the
categories and items of the interface are understood by the
General Users group.

Conclusions

• TOWABE implements more than one method.
– This permits to compare the results obtained from different

methods.

• A checklist that combines a formal, well-known and
reliable checklist (ISO 9241), but not focused on World
Wide Web with other checklist focused on World Wide
Web BIR/1198 was obtained (TCheck checklist).

• Personalization mechanisms is available.

• Statistical models can be obtained automatically.

1

Automatic Support for Usabili ty Evaluation of a Web

Application

Fernando Takashi Itakura
 fitakura@onda.com.br

Silvia Regina Vergilio
sil via@inf.ufpr .br

Computer Science Department - C.P. 1601

Federal University of Paraná – UFPR
Centro Politécnico – Jardim das Américas

Curitiba- PR, Brazil.
CEP: 19081-970

Abstract

 The requirements for quality of Word Wide Web applications have increased considerably in the last years. In
this context, a key concept to ensure the quality of software interfaces is usability. Different usability evaluation
methods are found in the literature and tools, that support automatic usability evaluations based on these methods,
have gained importance. However most tools are based on only one method and comparisons among different
methods are not very easy. This work presents a tool for automatic usability evaluation, named TOWABE, based on
three well-known methods: questionnaire, card sorting and checklist. These methods are complementary and can
reveal different usability problems. After a session using the tool, reports can be automatically generated and some
statistical models are obtained from the collected data. This data can be used to design the interface and to compare
results from different evaluation methods. TOWABE also offers a glossary and personalization mechanisms.

1. INTRODUCTION

The interest in World Wide Web in connection with Human-Computer

Interaction (HCI) has increased considerably over the last few years. Today there is a
consense that the quality of the global system is related to the quality of its interface [4].
So, the development of interactive systems demands Human-Computer Interaction
specific techniques. A key concept in HCI field is usability, which is concerned about
making systems efficient, effective and easy to use.

These increasing requirements for software quality have lead the

community to produce several guidelines, standards and norms to guide the evaluation
of a software product or process [1], [8], [18]. The ISO 9241 is one of this standard,

2

which emphasizes ergonomic and usability requirements [8]. ISO 9241-11 defines
usability as an extent to which a product can be used by specified users to achieved
their goals with effectiveness, efficiency and satisfaction in a specified context of use.

Then, user performance can be measured by the accuracy and

completeness with which a user achieves specified goals (effectiveness) and by the
resources spent on this task (efficiency). User satisfaction can be measured by freedom
from discomfort.

ISO 9241-11 also emphasizes that usability is dependent on the context

of use [8]. The context of use consists of the users, tasks, equipment (hardware,
software and materials), and the physical and social environments in which a product is
used. Then, the level of usability achieved will depend on the specific circumstances in
which a system is used.

A Web application can have excellent quality of use for some people

and poor quality of use for others [12]. For example, a graphical user interface may use
a formal and technical language – which experts can understand and use successfully
and safely – but can be very frustrating for novice users because they are not familiar
with this language. In this sense usability evaluations are very important to guarantee
the global quality of a Web application.

In the literature, there are several methods that have proved to be useful

in usability evaluation of traditional applications. However, the environments in which
web applications are developed and tested are not the same of traditional applications.
Web applications can not be treated in the same way as a traditional application
because they have some peculiar characteristics. One of them is that the development
of a Web application is faster. When this characteristic is considered, tools that support
an automatic usability evaluation are fundamental.

The goal of this work is to present a tool named TOWABE (Tool for Web

Application Usability Evaluation) which supports automatic usability evaluation of
applications Web based on three well known methods: questionnaires, checklists and
card sorting. An evaluation session using the tool permits the comparison of results
obtained from different evaluation methods and the generation of reports. TOWABE also
offers a glossary and personalization mechanisms.

The paper is organized as follows. Section 2 presents a review of the

different usability evaluation methods, mainly the methods supported by TOWABE.
Section 3 presents similar works, reporting some tools that also support usability
evaluation and that are motivations for TOWABE implementation. Section 4 describes
TOWABE functionalities. Section 5 concludes the paper.

3

2. USABILITY EVALUATION METHODS

This section presents a review of usability evaluation methods. Using

different methods to evaluate a system is very important because they can help identify
different kind of usability problems. The methods presented must be viewed as
complementary.

2.1. Heuristic Evaluation

Heuristic Evaluation is a method for finding the usability problems in a

user interface design. During the heuristic evaluation a small set of evaluators examines
the interface and judges its compliance with recognized usability principles [14].

To perform heuristic evaluation each individual evaluator inspects the

application interface individually. Only after all evaluations have been completed are the
evaluators allowed to communicate and have their findings aggregated. The results of
the evaluation can be recorded either as written reports from each evaluator or by
verbalization of their comments to an observer as they go through the interface [14].
When the evaluators present the results it is not sufficient for evaluators to simply say
that they do not like something; they should explain why they do not like it with reference
to the heuristics. An important issue in heuristic evaluation is the number of evaluators.
In principle, individual evaluators can perform a heuristic evaluation of a user interface,
but studies recommended three to five evaluators.

A lot of heuristics was proposed by different authors, but Molich and
Nielsen [13] heuristics are the most known and were used in this work. Below ten
heuristics, extracted from [15] are presented.

1. Visibili ty of system status: the system should always keep users informed about
what is going on, through appropriate feedback within reasonable time.

2. Match between system and the real world: the system should speak the users'
language, with words, phrases and concepts familiar to the user, rather than system-
oriented terms. Follow real-world conventions, making information appear in a natural
and logical order.

3. User control and freedom: users often choose system functions by mistake and will
need a clearly marked "emergency exit" to leave the unwanted state without having to
go through an extended dialogue.

4. Consistency and standards: users should not have to wonder whether different
words, situations, or actions mean the same thing. Follow platform conventions.

4

5. Error prevention: error messages are very important to prevent a problem from
occurring in the first place.

6. Recognition rather than recall : make objects, actions, and options visible. The user
should not have to remember information from one part of the dialogue to another.
Instructions for use of the system should be visible or easily retrievable whenever
appropriate.

7. Flexibili ty and eff iciency of use: accelerators -- unseen by the novice user -- may
often speed up the interaction for the expert user such that the system can cater to both
inexperienced and experienced users. Allow users to tailor frequent actions.

8. Aesthetic and minimalist design: dialogues should not contain information that is
irrelevant or rarely needed. Every extra unit of information in a dialogue competes with
the relevant units of information and diminishes their relative visibility.

9. Help users recognize, diagnose, and recover from errors: error messages should
be expressed in plain language (no codes), precisely indicate the problem, and
constructively suggest a solution.

10. Help and do cumentation: even though it is better if the system can be used without
documentation, it may be necessary to provide help and documentation. Any such
information should be easy to search, focused on the user's task, list concrete steps to
be carried out, and not be too large.

2.2. Questionnaire

A questionnaire is a set of written questions requiring a written response
that describes past behaviors, the user expectations, attitudes and opinions towards the
system [3].

For being really able to generalize the conclusions, some important

principles should be met [3]:

• Designing a questionnaire is not writing a book. Long questionnaires

are very boring for the users, difficult to analyze, and in general, not
worth the cost.

• Questionnaire should be checked before answered in the real test.

• A questionnaire with many open-ended questions is not a good
questionnaire.

5

• Multiple choice questions are suited for those issues, which are
comprehensively, addressed (all the possible response alternatives
are known)

• Most usual rating scales are discrete scales. A well-designed
questionnaire very often produces very goods results, and can be
used to compare subjective opinions over different situations,
systems and development phases.

2.3. Usabili ty Inspection using Check list

Usability inspection using checklist is review of a system based on a set
of guidelines. In this method, the quality of the tool (checklist) will determine the
potentialities of the evaluation. Checklist well elaborated must produces uniform and
wide results [4].

The evaluation using checklists presents the following potentialities [4]:

• It can be performed by system developers, it is not necessary a

usability expert. The knowledge is intrinsic to the checklist;

• Systematization of the evaluation;

• It facilitates the identification of usability problem focused by the

checklist;

• It increases the effectiveness, once there is a subjective reduction;

• It decreases the evaluation cost because is a fast method and does

not require a usability expert.

This method offers the identification of a large number of small usability
problems that is frequently found in system interfaces [10].

2.4. Focus Group

Focus group is a data collecting technique where representative users –
normally 6 to 12 - are brought together to discuss issues relating to the system. A
usability engineer play the role of a moderator, who needs to prepare the list of issues to
be discussed beforehand and seek to gather the needed information from the discussion
[3].

6

The determination of the number of participants needs some precaution.
First, never select large groups, they are very difficult to manage and the users’
individual participation is poor. There is evidence that group size is inversely related to
the degree of participation.

This method depends essentially on the moderator style and skills. The

moderator needs to be skilled in group facilitation and communication to make a focus
group successful.

One interesting characteristic of focus group method is that the opinions

about a variety of issues are gerenarally determined not by individual information
gathering but through communication with others.

2.5. Card Sorting

Card Sorting is not a usability evaluation method, but is a categorization
method where users sort cards depicting various concepts into several categories [6].

The card sorting method starts writing a list of all items that will be

sorted and writing each item on a separate index card. After, the users receive the
cards, classify them into groups and finally label the groups created. The diverse groups
form a user categorization model to the system interface. The interface can be designed
according to this model.

3. RELATED WORKS

This section describes some usability evaluation tools that implement

some of the methods from last section. The TOWABE, presented in this work, is strongly
based on these methods and tools.

3.1. QUIS – Questionnaire for User Interaction Satisfaction

The Questionnaire for User Interaction Satisfaction (QUIS) is a tool
developed at the University of Maryland at College Park [16]. The QUIS was designed to
assess user’s subjective satisfaction with specific aspects of a human-computer
interface. The current version contains a demographic questionnaire, a measure of
overall system satisfaction, and hierarchically organized measures of eleven specific
interface factors such as screen factors, terminology and system feedback, learning

7

factors, system capabilities, technical manuals, on-line tutorials, multimedia, voice
recognition, virtual environments, internet access and software installation.

3.2. ERGOLIST

The Ergolist was developed by Labiutil – Usability Laboratory – at the
Federal University of Santa Catarina, Brazil [11] The Ergolist is a tool designed to
evaluate interactive software using Internet. Three modules compose the Ergolist. The
first module performs a systematic inspection of the interface quality, using eighteen
checklists that are based on specific ergonomic criteria. The second one shows in an
informal way how the checklist is composed. The last one presents ergonomics
recommendations that can be useful in the interface project.

3.3. IBM UCD WORKBENCH

IBM UCD WORKBENCH is a set of tools for User-Centered Design in

the development of products and applications. Currently, two tools compose the set:
UCD Satisfaction Survey and UCD Questionnaire Resources [7]. UCD Satisfaction
Survey uses the Web to gather requirements and satisfaction information from users.
The tool consists of an application that automatically generates layout, scripting, and
code for online surveys. It also collects and tabulates results dynamically on the Web.
UCD Questionnaire Resources provides a set of Web survey templates in the Net
Objects Fusion authoring environment. The templates are for determining customer
satisfaction, eliciting product requirements, identifying user tasks and use scenarios,
determining current feature usage, and evaluating icons and terminology.

There are in the literature other tools implementing the methods
mentioned in Section 2 [2], [5]. However most existent tools supports only one method.
This becomes the task of comparing information about evaluations using different
methods very hard. The TOWABE, described in next section, supports different
evaluation methods and considers their complementary aspects.

4. TOWABE

TOWABE – TOol for Web Application usaBility Evaluation – is a

research tool with the primary goal of automating and supporting Web applications
usability evaluations. TOWABE is based on three well-known techniques: questionnaire,
card sorting and expert inspection. The tool has three modules: TCheck, TQuest and
TCat. After a session using the tool, reports can be automatically generated and some
statistical models are obtained from the collected data. This data can be used to

8

compare results from different evaluation methods. TOWABE also offers a glossary and
personalization mechanisms.

Two different users group uses TOWABE: Evaluator and General User.

The first group is composed by experts in evaluation of web applications or by the
developers of the application being evaluated. The Evaluator group creates an
evaluation session and generally invites people to compose the second group. The
second group uses the software and collaborates with the evaluation session. Therefore,
sometimes a person, in a specific situation, will belong to Evaluator group, and in other
situation will belong to General User group. When an evaluator creates an evaluation
session the tool provides two passwords. The first will be used by Evaluator group to
enter again in the created session, and the second will provide access to the General
Users group.

4.1. TCheck module

The TCheck module provides a checklist to assess the usability of Web

applications. A glossary is also avaliable to easy the understanding of doubts that can
appear during checklist utilization.

The checklist implemented by TCheck was developed based on ISO

9241 [8] and BIR/1198 [1]. One important characteristic obtained from this combination
is a checklist that combines a formal, well-known and reliable checklist (ISO 9241), but
not focused on World Wide Web and a checklist focused on World Wide Web. The
complete checklist can be found in [9]. Figure 1 shows an example of a checklist item.
For each item there is three answer options: YES, NO, N.A. (not applicable).

The preparation of the evaluation report is supported by TCheck

module. All results of the evaluation process are saved to a text file where all the
recommendations are listed. When a NO option is checked TOWABE automatically put
the respective recommendation into text file.

 YES NO N.A.

1. Links and buttons are recognizable.
2. Help information is task-dependent.

Figure 1 – Example of a checkli st item.

4.2. TQuest module

The TQuest module implements a questionnaire, projected to assess

the users' satisfaction with specific aspects of the application interface being evaluated.

9

A standard questionnaire is avaliable, however the evaluator in the
Evaluator group is able to construct or use his own personalized questionnaire, some
questions can be enabled or not depending on the characteristics of the application, etc.
Of course, that this option must be used by very experienced evaluator in due to the risk
of using a no reliable questionnaire.

This module also generates two passwords, one for Evaluator group

and other for the General User Group. Evaluator password permits to get the results
obtained from evaluation. The General User Group password permits to modify the
questionnaire created by the evaluator.

Another important aspect is that TOWABE identifies the user invited by

the evaluator to participate of an evaluation session. Relevant characteristics as
knowledge, skill, experience, education, training, physical attributes and nationality are
report. So, statistical models can allow the evaluator to know the results from all users or
from a specific group with certain characteristics.

The TQuest questions are answered with 5-point scale. And there is a

plus option – No option – when the user for some reason do not wish to express or do
not have an option. It is also possible make some comments. The answer and the
comments are stored by TOWABE to generate the reports required by Evaluator group.
Figure 2 shows an example of two TQuest questions.

1. Remember where I am in the Website is very difficult.
Comments:

 O O O O O

2. The terminology used in the software reflects that of my work
environment.

 Comments:

 O O O O O

Figure 2 – TQuest question example

4.3. TCat module

The TCat module allows the Evaluator group to determine how well the

categories and items of the interface are understood by the General Users group.
Initially the evaluator provides the session name, the categories and the respective
interface items. With this information, TOWABE creates a baseline that will be used, in
the future, and will be compared with the user categorization model. This model is
obtained from the General Users group, during an evaluation session using TCat.

Completely
agree

Completely
disagree No option

10

In this moment, TOWABE also generates and supplies the two

passwords mentioned. Hence, the session is created and then the evaluator can invite
the users to utilize this specific session. The evaluator can obtain comparative data
automatically generated by the tool. Statistical data like number of users who
participated of the evaluation session, number of users who put the item in the same
category of the baseline and other statistical measures as standard deviation is given.

In TCat module when the evaluator invite a person to participate of an

evaluation session, TOWABE also identifies this user in the same way as the TQuest
Module.

5. CONCLUSIONS

This work presented a review of usability evaluation methods that can

be applied for usability evaluation of a Web application. Some tools that support these
methods were also presented. Most tools implement only one method. However, using
different methods to evaluate a system is very important because they can help identify
different kinds of usability problems. Considering these issues, a research tool –
TOWABE – is proposed with the primary goal of automating and supporting Web
different usability evaluation methods: questionnaire, checklist and card sorting. This
TOWABE characteristic permits to compare the results obtained from these different
methods.

The checklist implemented by the module TCheck is based on ISO

9241 [8] and BIR/1198 [1]. One important characteristic obtained from this combination
is a checklist that combines a formal, well-known and reliable checklist (ISO 9241), but
not focused on World Wide Web with other checklist focused on World Wide Web.
Besides of this, personalization’s mechanisms are available. This allows the users (the
evaluators) to create their own questionnaires considering for example specific issues of
the application being evaluated.

After a session, TOWABE users also obtain recommendations that can
improve the usability of the Web application; they can also get statistical models that will
help in the development of a Web application.

TOWABE is being implemented and a case study to evaluate data
obtained from TOWABE utilization is being planned.

11

REFERENCES

[1] BIR/1198 – Guia para Projetos de Aplicação para Web. Bhase Internal Report,

November, 1998, Londrina, PR- Brazil. (In Portuguese)

[2] Bobby. http://www.cast.org/bobby/index.html

[3] CEREZO, P. et al. USINACTS Tutorial. http://at.hhi.de/USINACTS/tutorial/intro.html.

[4] CYBIS, W. et al. Avaliação de Usabilidade de Software de Escritório: Uma

perspectiva ergonômica. Proc. II Seminário Desenv. Software de Acordo com
Padrões Internacionais de Qualidade e Produtividade, Curitiba, 2000. (in Portuguese)

[5] ErgoLight Usability Tools http://www.ergolight-sw.com/

[6] HOM, J. The Usability Methods Toolbox.

http://www.best.com/~jthom/usability/usable.htm

[7] IBM. E-business tools. http://www.ibm.com/ibm/hci

[8] ISO 9241: Ergonomic requirements for office work with visual display terminals

(VDTs), 1996.

[9] ITAKURA, F. Uma Ferramenta para Avaliação de Aplicações para Web. Master

Dissertation (in elaboration), Curitiba, 2000. (In Portuguese)

[10] JEFFREIES, R. et al. User Interface Evaluation in the Real World: A Comparison of

Four Techniques. In Proc. Conf. Human Factors i Computing Systems, CHI’91, pp
119-124, ACM Press, 1991.

[11] LABIUTIL. Laboratório de Utilizabilidade. http://www.labiutil.inf.ufsc.br (in Portuguese)

[12] MACLEOD, M. Usability: Pratical Methods for Testing and Improvement.

Proceedings of the Norwegian Computer Society Software '94 Conference.
Sandvika, Norway, 1- 4, 1994.

[13] Molich, R., and Nielsen, J. (1990). Improving a human-computer dialogue,

Communications of the ACM 33, 3 (March), 338-348.

[14] NIELSEN, J How to Conduct a Heuristic Evaluation.

http://www.useit.com/papers/heuristic/heuristic_evaluation.html

[15] NIELSEN, J. Ten Usability Heuristics. http://www.useit.com/papers/heuristic/heuristic_list.html

12

[16] QUIS. Questionnaire for User Interaction Satisfaction.
http://www.lap.umd.edu/QUIS/index.html.

[17] SMITH & MOSIER. Guidelines for Designig User Interface Software.

[18] STEIGER, P. Checklist to Assess Websites according to Usability Criteria.

http://www.swisschi.ch

QWE2000
Session

7M

Mr. Luis Filipe
D. Machado,

Ms. Kathia M.
de Oliveira &

Ms. Ana Regina
C. Rocha
[Brazil]
(Federal

University Of
Rio de Janeiro)

"Using
Standards And

Maturity Models
For The

Software Process
Definition"

Key Points

Software Process●

Software Quality●

Maturity Models●

Presentation Abstract

During the last years, the software product has increased in size and complexity,
assuming a critic and strategic role in the organizationsÝ business. In this scenario,
obtaining software products with quality, under the time limits and with the resources
allocated to the projects, became a challenge. Software process definition is a
fundamental requirement to guarantee the quality of software products.
Nevertheless, the effectiveness of such processes depends on their adequacy to the
characteristics of the organization and of the product whose development is desired,
as well as of the project. In an organization, different processes can coexist
adequately with different projects. To organize and discipline the software
development it is important to determine the fundamental activities that shall be
present in any defined process. Consequently, the definition of a standard process
establishes a common structure to be used by the organization in its software
projects, as it sets the basis for the definition of all processes. With basis on the
standard process one can define software processes for different projects. To

QWE2000 -- Conference Presentation Summary

http://www.soft.com/QualWeek/QWE2K/Papers/7M.html (1 of 2) [9/28/2000 11:11:28 AM]

develop this idea we have set up two main requirements: (i) the combined use of
ISO 12207 and maturity models (such as SPICE and CMM) and (ii) a three-step
approach that includes the definition of a standard process, its specialization for
different approaches of development and its instantiation for each specific project.

About the Speaker

Luis Filipe D. Cavalcanti Machado (filipe@cos.ufrj.br) received his MSc degree in
Computer Science from the Federal University of Rio de Janeiro in 2000. Now he is
a PhD student at the same institution. He is the author of 2 articles presented at
international congresses.

K¤thia Mar‡al de Oliveira (kathia@cos.ufrj.br) received her PhD degree in Computer
Science from the Federal University of Rio de Janeiro in 1999. She is research
associate at the Federal University of Rio de Janeiro. She is the author of 20 articles
presented at international congresses.

Ana Regina C. Rocha (darocha@cos.ufrj.br) received her PhD degree in Computer
Science from the Federal University of Rio de Janeiro. At present she is an associate
professor at the Graduate School of Engineering of the Federal University of Rio de
Janeiro. She is the author of 2 books and of more than 200 articles, which have
appeared in specialized magazines and/or were presented at national and
international congresses.

QWE2000 -- Conference Presentation Summary

http://www.soft.com/QualWeek/QWE2K/Papers/7M.html (2 of 2) [9/28/2000 11:11:28 AM]

1

QWE 2000 - Luis Fili pe Cavalcanti Machado

Using Standards and Maturity Models for
the Software Process Definition

Luis Fil ipe D. Cavalcanti Machado

Káthia Marçal de Oliveira

Ana Regina Cavalcanti da Rocha

{filipe, kathia, darocha}@cos.ufr j .br

COPPE -UFRJ

QWE - 2000
Brussels, BELGIUM

QWE 2000 - Luis Fili pe Cavalcanti Machado

Introdu ction

� Software engineering concerns
� Product quality
� Development process quality

� The number of defects present in software delivered for
testing is a direct function of the quality of the process used
to construct the software

� Tests can only detect 70% of the latent defects in the code
� Inspections can detect 80 - 90% of the errors prior to testing

But,
a good process avoids the presence of defects in
the product

2

QWE 2000 - Luis Fili pe Cavalcanti Machado

Process Quali ty

�
 ISO 12207

�
 ISO 9000-3

�
 CMM

�
 ISO/IEC TR 15504

�
 BOOTSTRAP

�
 TRILLIUM

Approaches:

QWE 2000 - Luis Fili pe Cavalcanti Machado

Usual Problems in Software Companies

� Lack of knowledge about ISO 9000-3, CMM and SPICE by managers and

developers
� Unsystematized and outdated Engineering Software Training
� No defined process – ad-hoc or managed development
� Diff iculties in introducing new technologies
� Diff iculty in managing projects
� Managers spend most of their time “ putting out fires”
� Unsatisfied managers and developers

3

QWE 2000 - Luis Fili pe Cavalcanti Machado

� Managers are star ting to recognize the need for a software
process defined for the company and followed by all

� Internationalization of the software industry ➨➨ Need to define
these processes adherent to international standards

� The definition, use and continued improvement of the software
process is becoming the main objective for organizations

The “ maturity movement”

� Main d ifficulties:
� Standards and models with different objectives and characteristics
� Understanding the many aspects of software engineering
� Lack of a generically applied software process

QWE 2000 - Luis Fili pe Cavalcanti Machado

	 Type of systems
	

 Application domains
	

 Organizations and teams
	

 Business constraints (schedule, cost,
 quali ty)

Software Process

Depends on

4

QWE 2000 - Luis Fili pe Cavalcanti Machado

Objective

■ Present a three-step model for the definition of software
processes, based on international standards, organization
and specific projects characteristics.

■ Present a tool suppor ting the definition of the standard
process for an organization, considering the ISO/IEC 12207
Standard and the matur ity models (CMM / ISO-IEC TR
15504).

QWE 2000 - Luis Fili pe Cavalcanti Machado

ISO/IEC 12207
Software Development Characteristics in an Organization
(Maturity Model)
(Maturity Level)
(Type of SDE)

Model for Software
Processes Definition

Instantiation for
Projects

INSTATIATED PROCESSES

SPECIALIZED PROCESSES

Standard Process
Definition

STANDARD PROCESS

Standard Process
Specialization

Type of Software
Development Paradigm
Development Characterisitcs

Project Characteristics
Team Characteristics
Product Quali ty Characterisitcs
Life Cycle Model
Methods
Tools
Resources Step

Product

5

QWE 2000 - Luis Fili pe Cavalcanti Machado

■ Define and organize some of the main factors influencing
the definition of a software process

■ Steps:

 Definition of the standard process

 Specialization of the standard process

 Instantiation for specific projects

■ The ISO/IEC 12207 Standard is used as a basis for
defining any software process

Model for Software Process Definition

QWE 2000 - Luis Fili pe Cavalcanti Machado

■ The basic process guiding the establishment of a common
process in the organization, describing the fundamental
elements which it is hoped are incorporated in any defined
process.

■ Set of software processes relevant to the context of the
organization.

■ Factors influencing the definition:

 The ISO/IEC 12207 Standard

 Software Development Characteristics in the Organization

 Maturity Model (ISO/IEC TR 15504 and CMM)

 Maturity Level

 Type of SDE

Definition of the Standard Process

6

QWE 2000 - Luis Fili pe Cavalcanti Machado

■ The ISO/IEC 12207 Standard and the matur ity models
define activities which shall be incorporated in a software
process.

■ To enable the combined use of these standards, a mapping
was set up, among the ISO/IEC 12207 Standard and the
matur ity models (ISO/IEC TR 15504 and CMM).

■ The mapping allows the software engineer to analyze each
activity to be defined, compar ing it with one or more
equivalent activities of the ISO/IEC 12207 Standard.

Definition of the Standard Process
(The ISO/IEC 12207 Standard and the Maturity Models)

QWE 2000 - Luis Fili pe Cavalcanti Machado

Combined use of ISO/IEC 12207 Standard
with the Maturity Models

Chosen Framework

ISO / IEC 12207

ISO/IEC TR 15504 CMM

MAPPING

� ISO/IEC 12207: Process, activities, tasks
� ISO/IEC TR 15504: Process, base pratices and
 management practices
� CMM : KPAs and Activities

7

QWE 2000 - Luis Fili pe Cavalcanti Machado

Configuration Management Process

• Identify configuration items
(SUP.2.BP3).
• Maintain configuration item
description (SUP.2.BP4).

• Establish configuration management
system (SUP.2.BP2).

ISO/IEC 12207
Activities

ISO/IEC TR 15504
Base Practices (BP)

CMM 1.1
KPAs and Activities

• Process implementation (6.2.1). • Develop configuration management
strategy (SUP.2.BP1).

• KPA Software Configuration
Management Activity 1.
• KPA Software Configuration
Management Activity 2.
• KPA Software Configuration
Management Activity 3.

• Configuration identification (6.2.2). • KPA Software Configuration
Management Activity 4.

• Configuration control (6.2.3). • Manage changes (SUP. 2.BP5).
• Manage product releases
 (SUP. 2.BP6).
• Maintain configuration item history
(SUP.2.BP7).

• KPA Software Configuration Management
Activity 5.
• KPA Software Configuration Management
Activity 6.
• KPA Software Configuration Management
Activity 8.

• Configuration status accounting (6.2.4.) • Report configuration status
(SUP. 2.BP8).

• KPA Software Configuration Management
Activity 9.

• Configuration evaluation (6.2.5). ___ • KPA Software Configuration Management
Activity 10.

• Release management and delivery (6.2.6).
• Manage the release and delivery of
configuration items (SUP. 2.BP9).

• KPA Software Configuration Management
Activity 7.

QWE 2000 - Luis Fili pe Cavalcanti Machado

Software Life Cyc le Process es

Primary
Processes

Supporting
Processes

Organization
Processes

• Acquisition (ISC)

• Supply (IS)

• Requirements elicitation (SC)

• Development (ISC)

• Maintenance (IS)

• Operation (IS)

• Documentation (ISC)

• Configuration management

 (ISC)

• Quality assurance (ISC)

• Verification (ISC)

• Validation (ISC)

• Joint review (ISC)

• Audit (ISC)

• Problem resolution (ISC)

• Defects prevention (C)

• Management (ISC)
• Infrastructure (ISC)
• Improvement (ISC)
• Training (IC)
• Project management (S)
• Quality management (S)
• Risk management (S)
• Organizational alignment (S)
• Human resource management (S)
• Measurement (S)
• Reuse (S)
• Process change management (C)
• Technology change management (C)
• Quantitative process management (C)
• Intergroup coordination (C)

Observations:
 (I) Process defined by ISO/IEC 12207; (S) Process defined by SPICE (ISO/IEC TR 15504)
(C) Process derived from KPA of CMM.

8

QWE 2000 - Luis Fili pe Cavalcanti Machado

Definition of the Standard Process
(Software Development Characteristics in the Organization)

■ Incorporate characteristics peculiar to each organization, in
the defined processes

■ Related character istics
�

 to the work environment
� to the knowledge and experience of the teams involved
� to the culture and experience of the organization in developing the

software

QWE 2000 - Luis Fili pe Cavalcanti Machado

■ Factors influencing specialization
� type of software (Expert systems, information systems,…)
� development paradigm (OO or structured)
� maturity model / level (teams with different capabilit y levels in

software engineering)
�

 type of SDE (Software Development Environment)

■ Specific activities may be added or modified in
accordance with the context for which the specialization
is being car r ied out

Specialization of the Standard Process

9

QWE 2000 - Luis Fili pe Cavalcanti Machado

Specialization of the Standard Process
(Type of Software)

 Interactive Software:
� Optimize the human-machine interaction, including commands and

functions which improve response times
� Optimize aspects of interface and interactions, including data types,

text size, graphics and colors use

 Different software types require different testing strategies:
�

Expert systems test
�

Object Oriented systems test
� ...

QWE 2000 - Luis Fili pe Cavalcanti Machado

Specialization of the Standard Process
(Maturity Model/Level))

Standard Process

Level 2

Level 3

10

QWE 2000 - Luis Fili pe Cavalcanti Machado

Instantiation for Specific Projects

■ Factors influencing instantiation:
� Project character istics (timetable, cost)
� Team characteristics (software development experience,

application domain experience)
� Life cycle model
� Product quality characteristics (established based on

quality criteria provided in ISO/IEC 9126 and on interviews
with the users)

�
 Methods, tools and resources

QWE 2000 - Luis Fili pe Cavalcanti Machado

Def-Pro Tool

Comparative analys is between the activities
of ISO/IEC TR 15504 and ISO/IEC 12207

Definition of a Standard Development
Process a dherent to Level 3 of the ISO/IEC

TR 15504

11

QWE 2000 - Luis Fili pe Cavalcanti Machado

Def-Pro Tool

Activity DefinitionDevelopment Standard Process Activities

QWE 2000 - Luis Fili pe Cavalcanti Machado

Conclusion

� The use of international standards in the area of software processes has become an

impor tant factor for organizations entering the so-called “ matur ity movement” .
� The combined use of the Standard and matur ity models, however r equires an

understanding of its differences and similar ities, which implies diff iculties in its use.

Mapping among these standards permits their combined use in the definition of

software processes.
� The proposed model considers the definition, specialization and instantiation of

software processes, allowing definition of basic activities which wil l make up the

standard process, as well as the definition of activities adequate for the different

development contexts and capabili ty levels in Software Engineer ing.
� Thè impor tance of knowledge acquired and modeled on software processes and

international standards, and the automated suppor t assisting the software engineer

in the definition of the software processes.

1

USING STANDARDS AND MATURITY MODELS FOR THE
SOFTWARE PROCESS DEFINITION

Luis Fili pe D. Cavalcanti Machado, Káthia M. de Oliveira, Ana Regina C. Rocha

Federal University of Rio de Janeiro, Graduate School of Engineering,
Computer Science Department, Caixa Postal 68511 – CEP 21945-970

Rio de Janeiro, Rio de Janeiro, Brazil
e-mail: fili pe@cos.ufrj.br; kathia@cos.ufrj.br; darocha@cos.ufrj.br

ABSTRACT

During the last years, the software product has increased in size and complexity, assuming a critic and
strategic role in the organizations’ business. In this scenario, the obtainment of software products with
quality, under the time limits and resources established in the projects, became a challenge. Software
process definition is a fundamental requirement to guarantee the quality of software products.
Nevertheless, the effectiveness of such processes depends on their adequacy to the characteristics of the
organization, of the product desired to be developed, and of the project. In an organization, various
processes can coexist adequate to different projects. To organize and discipline the software development
it is important to determine the fundamental activities that shall be present in any defined process.
Consequently, the definition of a standard process establishes a common structure to be used by the
organization in its software projects, as it institutes the basis for the definition of all processes. To develop
this idea we have set up two main requirements: (i) the combined use of ISO 12207 and maturity models
(such as SPICE and CMM) and (ii) a three-step approach that includes the definition of a standard
process, its specialization for different approaches of development and its instantiation for each specific
project.

Key-Words: Software Process, Software Quali ty, Maturity Models.

1. Introduction
Over the last few years, the software product has increased in size and complexity.

Organizations, in search of competitive advantages, have invested heavily in automating its
business processes. Greater responsibiliti es have been attributed to the software product, to the
point that software has assumed a criti cal and strategic role in organizations business. In this
scenario, it has become an increasing challenge to carry out software projects within the specified
time and with the scheduled resources. (ZAHRAN, 1998).

The experience of the software industry shows that when projects are unsuccessful, the
main reason lies in the lack of a disciplined software process, or that is, there is no mechanism to
enable product quali ty management and control. Following this same tendency, it is already
widely accepted that the quali ty of a software product is strongly determined by the quali ty of the
process used in its development and maintenance (PFLEEGER, 1998).

Although the importance of evaluations and continuous improvements in the processes are
currently widely discussed, the software engineers and organizations still have diff iculty in
defining processes, basically because a single generically applicable software process does not
exist (JACOBSON et al., 1998; ROCHA et al., 1999). The processes vary because there are
different types of systems, application domains, teams, organizations, and as well each has its
own business restrictions, such as timetable, cost, quali ty and reliabili ty (JACOBSON et al.,
1998). The definition of the software process is an activity requiring experience and involves the
knowledge of many aspects of software engineering. The combined use of standards and maturity
models contained in the literature, is an important factor when defining a process. Its use,

2

however, is not a simple activity, requiring a good understanding of standards, and as well the
characteristics appropriate to project for which the process is being defined.

With the advent of international standards and the highest preoccupation with software
quali ty, organizations adopt the ISO/IEC 12207 (1995) Standard and the maturity models, such as
CMM, TRILLIUM, BOOTSTRAP and SPICE (ZAHRAN, 1998; EMAM et al., 1998; PAULK
et al., 1997; ISO/IEC TR 15504, 1998) in the definition of software processes. In this context,
organizations have used maturity models as a guide to examine their software development
practices, and are continually improving them in order to reach the requirements imposed by the
ISO/IEC 12207 Standard (FERGUNSON and SHEARD, 1998). Capabili ty-level structuring of
the maturity models allows objectives to be set, and reached as a function of the improved
capacity on the part of the organization to improve its quest to reach the requirements stipulated
for the ISO/IEC 12207 Standard. Experiences in the literature have proven the success of this
approach, with the combined use of the ISO/IEC 12207 Standard and CMM (FERGUNSON and
SHEARD, 1998; MACHADO et al., 1999).

This article describes an approach to defining software processes based on the combined
use of the ISO/IEC 12207 Standard and maturity models, specifically CMM together with the
ISO/IEC TR 15504. This approach was applied in a model for the definition, specialization and
instantiation of software processes, with the objective of allowing the definition of processes
compatible with international standards and models. Section 2 presents an approach which allows
the combined use of the ISO/IEC 12207 Standard together with maturity models. Section 3
describes how the referred approach was incorporated into a model allowing software processes
to be defined, in line with the characteristics of the organizations and specifically, the projects,
and as well discusses some of the main factors involved with defining the software processes.
Section 4 details how the referred approach has been applied to a tool to assist the software
engineer in defining a standard process for an organization. Conclusions are then presented in
section 5.

2. Approach for the combined use of the ISO/IEC 12207 Standard with the
Maturity Models

The use of maturity models has been an interesting strategy, allowing organizations to
gradually reach the requirements imposed by the ISO/IEC 12207 Standard (FERGUNSON and
SHEARD, 1998; MAIDANTCHIK et al., 1999; MACHADO et. al., 1999). The referred
Standard defines a set of activities to be carried out by organizations involved in the acquisition,
development, operation, maintenance and supply of software products; it however does not
propose an approach for organizations to improve their software processes, and to adhere to it.
The maturity models, structured by capabili ty levels, would be a natural path for organizations
looking to establish action priorities with the view to improve their processes.

The purpose of ISO/IEC 12207 was to establish a common structure for the definition of
software processes. Both CMM and ISO/IEC TR 15504 were developed to evaluate processes
and determine their capabili ty, showing differences in the way the two models are used while
reaching this objective (ROUT, 1996; ROUT, 1998). Although with different objectives, either
ISO/IEC 12207 or ISO/IEC TR 15504 and CMM describe activities that need to be incorporated
into a software process. These standards describe such activities using different denominations
and detail l evels, which make diff icult their combined used in the process definition.

Therefore, in order for the process definition to adhere to ISO/IEC 12207 and to the
maturity models, an approach has been established for mapping the processes, key process areas,
activities and tasks included in the ISO Standard and in the Models. In the proposed approach,

3

ISO/IEC 12207 with its structure divided into li fe cycle processes, was used as a basis for the
definition of any software process, and a group of procedures was adopted to enable conformity
between the structure of these models and the referred Standard. A high-level mapping among the
standards had already been proposed in prior articles (ISO/IEC TR 15504, 1998; SEI, 1998), but
not at a suff icient level of detail to permit organizations to define their software processes. The
approach in this article proposes to establish a relationship among the international standards, and
also to permit this relationship to be used for automated support when defining the software
processes, as presented in section 4. Sections 2.1 and 2.2 below outline the procedures used to
permit mapping between the activities contained in the maturity models and in the ISO/IEC
12207 Standard. Section 2.3 presents the li fe cycle processes resulting from the proposed
approach, and as well an example of mapping between the activities of the ISO/IEC 12207
Standard and the maturity models.

2.1 Mapping the Future ISO/IEC 15504 Standard with the ISO/IEC 12207 Standard

The first group of documents from the SPICE project did not present a good compatibili ty
with the ISO/IEC 12207 Standard (EMAM et al., 1998). In later versions, care was taken to
establish a better fit between SPICE and the international standard for li fe cycle software process,
basically not to have two ISO standards presenting different concepts and definitions (EMAM et
al., 1998). Even so, ISO/IEC TR 15504 and ISO/IEC 12207 have structural differences, basically
motivated by the difference in scope between one and the other.

Based on the above, the following considerations were made to enable the combined use
of the ISO/IEC 12207 Standard with the future ISO/IEC 15504 Standard:

(a) The software life cycle processes to be considered are those defined by the ISO/IEC 12207
Standard, with the inclusion of the ISO/IEC TR 15504 Processes.

To attend to consideration (a), different ISO/IEC TR 15504 processes were analyzed,
classified into five types: (i) Basic: processes identical to ISO/IEC 12207; (ii) Extended:
expansions of ISO/IEC 12207 processes; (iii) New: processes outside of the scope of ISO/IEC
12207; (iv) Components: groups of one or more activities of the same ISO/IEC 12207
process; (v) Extended Components: groups of one or more activities of the same ISO/IEC
12207 process, with some additional concepts.

In this way, the “basic processes” and “extensions” of ISO/IEC TR 15504 were correlated
with the ISO/IEC 12207 processes. The “component processes” were created to manage a
greater level of detail i n the evaluation of processes. This detail i s not required in the scope of
the definition of software processes and “component processes” and “extended components”
are related with ISO/IEC 12207 activities or tasks. The “new processes” were added to the
processes already defined by ISO/IEC 12207.

(b) The base practices, scheduled in the evaluation model, are defined as activities and related
ISO/IEC 12207 activities and tasks. These practices are related to the software processes in
level 1, Performed, of ISO/IEC TR 15504.

(c) The management practices are incorporated as activities to each software process from
capacity level 1. These practices are also related to ISO/IEC 12207 activities and tasks.

4

2.2 Mapping CMM with the ISO/IEC 12207 Standard

Concentrating as it does on aspects related to software development CMM does not
present the process structures defined by the ISO/IEC 12207 Standard, nor does it cover all the
aspects related to the li fe cycle of a software product. The ISO/IEC 12207 Standard and CMM,
however, have a similarity in their definition of the activity groups which should be present in a
software process.

A key process area (KPA) defined by CMM, can contain activities present in more than
one ISO/IEC 12207 process. However, it is possible to establish a relationship between these
KPAs and ISO/IEC 12207 processes relating better to them (SEI, 1998; FERGUNSON and
SHEARD, 1998).

Some CMM key process areas do not present a correlation, nor do they represent an
extension of the processes defined by the ISO/IEC 12207 Standard (e.g. Defect Prevention and
Requirements Management). With the objective of standardizing the proposed approach, fitting
the CMM structure to the ISO/IEC 12207 standard, new li fe cycle processes were set up, related
to the KPAs without correspondence with processes defined in ISO/IEC 12207. The new
processes were given the same names as the original KPAs (table 1).

To allow the CMMs to be used combined with the ISO/IEC 12207 Standard, a mapping
was done between the activities and the key practices scheduled in the key process areas, and the
activities and tasks defined by the ISO/IEC 12207 Standard.

2.3 Life Cycle Processes and Mapping between the ISO/IEC 12207 Standard and the
Maturity Models

This resulted in the proposal of new li fe cycle structure processes individually or
collectively defined by ISO/IEC 12207, by the future ISO/IEC 15504 or by deriving from any
key process area (KPA) of the CMM. Such processes have been divided into three great process
classes, according to the ISO/IEC 12207 process classification. Table 1 ill ustrates the software
li fe cycle processes.

So that the process definitions may adhere to the ISO/IEC 12207 Standard and the
maturity models, a mapping was established among the processes, the activities and tasks
contained in the Standard and in the models. Although they have distinct objectives, the ISO/IEC
12207 Standard as well as SPICE and CMM describe activities which should be incorporated in a
software process. Referred models describe these activities using different definitions and detail
levels, hindering their combined use in the process definition. Referred mapping is described in
detail i n MACHADO (2000). Part of the mapping which refers to the Quality Assurance Process
is represented in Table 2.

5

Primary Processes Suppo rting Processes Organizational Processes

• Acquisition (ISC)

• Supply (IS)

• Requirements elicitation
(SC)

• Development (ISC)

• Maintenance (IS)

• Operation (IS)

• Documentation (ISC)

• Configuration
management (ISC)

• Quali ty assurance (ISC)

• Verification (ISC)

• Validation (ISC)

• Joint review (ISC)

• Audit (ISC)

• Problem resolution (ISC)

• Defects prevention (C)

• Management (ISC)
• Infrastructure (ISC)
• Improvement (ISC)
• Training (IC)
• Project management (S)
• Quali ty management (S)
• Risk management (S)
• Organizational alignment (S)
• Human resource management (S)
• Measurement (S)
• Reuse (S)
• Process change management (C)
• Technology change management (C)
• Quantitative process management (C)
• Intergroup coordination (C)

Observations:
 (I) Process defined by ISO/IEC 12207; (S) Process defined by SPICE (ISO/IEC TR 15504)
(C) Process derived from KPA of CMM.

Table 1 – Software Life Cycle Processes

ISO/IEC 12207
Activities

ISO/IEC TR 15504
Base Practices (BP)

CMM 1.1
KPAs and Activities

• Process
implementation
(6.3.1).

• Develop quali ty assurance
strategy (SUP.3.BP1).

• Establish quali ty standards
(SUP.3.BP2).

• Define quali ty records
(SUP.3.BP3).

• Report quali ty results
(SUP.3.BP6).

• Handle deviations
(SUP.3.BP7).

• KPA Software Quality Assurance -
Activity 1.

• KPA Software Quality Assurance -
Activity 2.

• KPA Software Quality Assurance –
Activity 3.

• KPA Software Quality Assurance –
Activity 6.

• KPA Software Quality Assurance –
Activity 7.

• Product assurance
(6.3.2).

• Assure quali ty of work
products (SUP.3.BP5).

• KPA Software Quality Assurance –
Activity 5.

• Process assurance
(6.3.3).

• Assure quali ty of process
activities (SUP.3.BP4).

• KPA Software Quality Assurance –
Activity 4.

Observations:
- The codification adopted is the one used by the standard and the models.
- BP – Base Practice: a software engineering or management activity that, when consistently performed,

contributes to achieve the purpose of a particular process (ISO/IEC TR 15504, 1998).
- KPA – Key Process Area: Each KPA identifies a cluster of related activities that, when performed

collectively, achieve a set of goals considered important for enhancing process capabili ty (PAULK et al.,
1997).

- SUP – Customer-Supplier Process Category (ISO/IEC TR 15504, 1998).

Table 2 – Quali ty Assurance Process – Example (not detailed) of mapping among ISO/IEC 12207,
ISO/IEC TR 15504 (SPICE) and CMM

6

3. Description of the Model for Definition of the Software Processes
The approach presented in section 2, for a combined use of the ISO/IEC 12207 Standard

with the maturity models was incorporated in a generic model for definition of software
processes for projects. The purpose of the model is to define and organize some of the main
factors influencing the definition of a software process, structured so as to obtain automated
assistance for process definitions.

When defining a software process, besides the ISO/IEC 12207 Standard and the maturity
models (CMM or ISO/IEC TR 15504), the following elements are also considered: the
characteristics of the organization (or only a part of the organization) for which the process is
being defined, the type of software development environment for which the process is being
defined (for example, DOSDE - Domain Oriented Software Development Environment)
(OLIVEIRA et al., 1999), the type of software (for example, information systems), the
development environment (for example, object oriented), the development characteristics (for
example, development with geographically distributed teams), the characteristics of the project
and of team, and the quali ty characteristics of the product. The model organizes the factors
involved in the definition of a software process in three steps: (i) Definition of the standard
process, (ii) Specialization of the standard process, and (iii) Instantiation for projects.

These steps result as software process products in different levels of abstraction. Figure 1
makes a schematic representation of the proposed model, where the steps involved in the
definition of a software process to a project are presented from a standard process and the
intermediate products obtained; as well as allocating the factors which influence the definition of
the process at the levels of abstraction proposed by the model.

The model can also be used just for the definition of a specific process for a project,
without considering the definition of a standard process. In this approach the same factors
influencing the definition of a software process are considered, although they are not established
intermediate products. Below are described the three steps involved in the definition of a software
process for a project, considering the definition of a standard process.

3.1 Definition of the Standard Process
In an organization, diverse projects can coexist, each with specific characteristics.

However, there is a group of fundamental elements which need to be incorporated in any defined
process. EMAM et al. (1998) define this group of fundamental elements as the standard process,
or in other words, the basic process which guides the establishment of a common process in the
organization. In this way, a standard process defines a single structure to be followed by all the
teams involved in a software project (MAIDANTCHIK et al., 1999) independently from the
software characteristics to be developed.

In the current literature, one notes a tendency to use standard process in the processes
definition. The ISO/IEC 12207 Standard (1995) and the maturity models, SPICE (ISO/IEC TR
15504, 1998) and CMM (PAULK et al., 1997), describe the definition of a standard process for
the organization as an essential factor in the search for maturity in software processes, with the
added requirement to obtain capabili ty at level 3 for CMM as well as for ISO/IEC TR 15504.
These standards and models also describe procedures to be used in the specialization of the
standard process for a project.

7

Instantiation for
Specific Projects

INSTANTIATED PROCESSES

SPECIALIZED PROCESSES

Standard Process
Definition

STANDARD PROCESS

Standard Process
Speciali zation

ISO/IEC 12207
Organization Software Development Characteristics
{Maturity Models}
{Maturity Level }
{Type of SDE}

Type of Software
Development Paradigm
Development Characteristics

Project Characteristics
Team Characteristics
Product Quality Characteristics
Life Cycle Model
Method s
Tools
Resources

Step

Product

Figure 1 – Model for Definition of Software Processes

The ISO/IEC 12207 Standard and the Maturity Models

The definition of the standard process of the organization must use the ISO/IEC 12207
Standard and the software development characteristics in the organization. This definition may
also consider one of the maturity models associated with the capabili ty level of the organization
in Software Engineering, and the type of SDE to be installed (SDE oriented or not to the
application domain).

The standard process of the organization is constituted by a group of software processes
(Table 1) relevant in the context of the organization projects. In this way, if an organization
produces software for internal use, it becomes unnecessary to define a standard supply process.

For each software li fe cycle process incorporated in the standard process, the following
should be defined (ISO/IEC TR 15504, 1998; OLIVEIRA et al., 1999): the main objectives and
criteria for concluding the process; the activities and sub-activities, with the identification of the
required professional type (the professional types considered are: software engineers, designers,
customers, project managers, operators and programmers); and finally, the products generated /
consumed and resources required.

8

Software Development Characteristics in the Organization

The definition of the standard process also considers the software development
characteristics in the organization. Considering that the main objectives of the software producer
organizations are to define, use and establish continued improvements in their software
processes, in order to reach these objectives it becomes fundamental that these organizations
direct their forces in the application of the methods and practices of software engineering, and
also take into consideration characteristics related to the work environment, to the knowledge and
experience of the teams involved, and to their own culture and organization experience in
developing software. When defining a software process, it is desirable that this is as appropriate
as possible for the teams using it; in this way, it becomes important to incorporate the
characteristics particular to each organization into the defined processes (ROCHA et al., 1999).

Type of SDE

Finally, the standard process to be defined can be oriented to the domain, when defining
the process for Domain Oriented Software Development Environments (DOSDE). With this, a
specific activity, called Domain Investigation, is incorporated into the standard process as a sub-
activity of all the activities making use of the domain theory defined in the DOSDE (as for
example, the analysis and project activities), with the objective to carry out the research and use
the required domain in the corresponding activity (OLIVEIRA et al., 1999).

3.2 Specialization of the Standard Process
The standard process is generic and shall be adapted to each project. This adaptation

involves a great number of factors, including the choice of the development paradigm, the
analysis of the characteristics of the project and of the team, the choice of the li fe cycle model,
the methods and the tools. Then, the adaptation of the standard process to a project, as suggested
by ISO/IEC 12207 and the maturity models, leads to a great variation of the abstract level, which
might not be an interesting practice.

Therefore, the specialization step proposed as the second of the three-step approach
consists of adopting the standard process to attend to different approaches of development, where
the following factors are generally considered: (i) the type of software scheduled to be developed
(for example, specialist systems or information systems); (ii) the development paradigm to be
adopted (for example, object oriented or structured) and (iii) the development characteristics.
Therefore, it is expected to reduce the abstract gap between the standard process and the project
process.

When specializing a standard process, activities are added or modified, in accordance
with the context of the purpose of the specialization. At the end of the specialization step, a
software process is obtained adhering to the type of software and to the development paradigm to
be adopted. The specialization considering a maturity model and a type of SDE can also be
carried out, as long as these characteristics have not been incorporated during the definition of the
standard process. In accordance with the model, the specialized process also allows its use by
diverse projects, provided it is seen to incorporate characteristics which attribute to it a certain
level of generali ty.

Type of Software

The type of software to be developed has an impact in the software process to be defined.
An interactive software, for example, requires inclusion in the development process of activities

9

that optimize the man-machine interaction. With the ample use of the World Wide Web, and the
expansion of e-business, security is a priority issue in interactive systems. In another approach, in
the development of information systems, it becomes a fundamental issue to guarantee the
adequacy of the business rules by the implemented procedures, as well as accuracy in the
information records and issues of reliabili ty and recovery after faults. Table 3 ill ustrates quali ty
guarantee activities particular to two specific types of software (MCMANUS, 1999).

Interactive Software
• Request Analysis Activity

�
 Optimize the human-machine interaction, including commands and functions which

improve response times
�

 Optimize interface and interaction aspects, including data types, text size, use of
graphics and colours

• Project Activity
�

 Promote inspections of project components to guarantee the adequacy of the
interactive system for issues relating to receptivity and presentation on screen

• Verification Activity
�

 Monitor the human-machine interactions, the use of menus, the “receptivity” on the
part of users, interfaces, etc.

Information Systems
• Request Analysis Activity

�
 Establish requests for the case of interruption in the functioning of the system

�
 Establish requests for recovery from faults

Table 3 – Example of Activities to Assurance Quali ty in accordance with the Type of Software
(MCMANUS, 1999)

Development Paradigm

In the specialization step, the development paradigm to be used should be chosen. This
choice is strongly linked to the type of software to be developed and to the technology used. The
choice of paradigm implies modifications in the definition of some activities of the standard
process previously defined. The analysis activity undertaken under the structured paradigm uses a
different approach to that used under the object oriented paradigm. Depending on the paradigm
chosen, these adaptations are adopted during the specialization step of the standard process.

Development Characteristics (Specialization in accordance with the Model/Maturity Level)

The model and maturity level can be incorporated during the specialization step of the
standard process, as long as this has been defined based only on the ISO/IEC 12207 Standard; in
which case the maturity models are not used. This approach is particularly useful when defining
software processes for projects where work teams have different software engineering skill
levels. In this case, the standard process would define a single structure to be followed by all the
teams involved in a software project (MAIDANTCHIK et al., 1999), later specialized in
accordance with the capabili ty level of the teams involved.

3.3 Instantiation for Projects
Finally, the last step of our approach, named instantiation, consists of incorporating the

specialized process characteristics related to the project, for which the process is being defined.
The following issues shall be considered in the instantiation step: characteristics of the project,
characteristics of the team, li fe cycle model, characteristics of product quality, methods, tools and
resources (human, software and hardware).

10

The Characteristics of the Project and of the Team, and Selection of the Life Cycle Model

In the definition of a software process for a project, it is necessary to find the selection
appropriate to a li fe cycle model. There are innumerous li fe cycle models in the literature and an
inadequate selection has a direct influence on the success of a project. When selecting a li fe cycle
model, the literature suggests a group of criteria influencing this selection, and values were
attributed in order to evaluate the adequacy of a li fe cycle model to a project (table 5). These
criteria and their values were applied to currently proposed li fe cycle models, and supply
guidelines on the adequacy of a li fe cycle model to the characteristics of a specific project. Table
5 shows some of the criteria encountered in the literature (ALEXANDER and DAVIS, 1991;
PRESSMAN, 1997; PFLEEGER, 1998; FALBO et al., 1999).

In the instantiation step, the activities and sub-activities of the development process
should be adapted to the chosen li fe cycle model. At this time, new activities will be able to be
added, as is the case of “ risk analysis” , scheduled in the Spiral li fe cycle.

Characteristics of Product Quality

The ISO/IEC 9126 Standard (1991) defines six quali ty characteristics which should be
evaluated in a software product, although, these characteristics don’ t need to be present in every
software product. The evaluation of level in which referred characteristics should be present in a
software product is determined by the objective of the application, and also by the evaluation of
the users. In general, guaranteeing the presence of a quali ty characteristic in a determined level
causes an increase in the cost of the project.

Based on evaluating the quali ty characteristics described in the ISO/IEC 9126 Standard in
relation to the product to be developed, BOEGH et al. (1993) propose that it is possible to
suggest techniques for evaluation of these characteristics. These suggestions are based on the
level of importance which the software engineer and by the end-product user attribute to each
quali ty characteristic, which will have an influence in the exactness of the evaluation techniques
to be applied.

Thus, five levels of importance were defined for the quali ty characteristics defined by the
ISO/IEC 9126 Standard. These levels are presented as follows: Not relevant, Little relevance,
Relevant, Very relevant and Necessary. In a project, the levels of importance for each quali ty
characteristic are determined during the survey of the requirements step.

During the instantiation step of a process for a project, the software engineer should
attribute for each quali ty characteristic defined in the ISO/IEC 9126 Standard, the required level
for the referred characteristic for the application to be developed. In accordance with the level
attributed, quali ty evaluation techniques are included in the process to be defined. Table 4 shows
the correspondence between the levels of importance and the evaluation techniques used for the
“Functionali ty” quali ty characteristic.

Levels of Importance Evaluation Techniques
Not relevant No technique

Little relevance Tests of “black box” type
Relevant Tests of “black box” type and document inspections

Very relevant Tests of “black box” type, document inspections, and tests of “white box”
type

Necessary Tests of “black box” type, document inspections, tests of “white box”
type and formal proof

Table 4 – Evaluation Techniques used in accordance with the Level of Importance of
“ Functionali ty” Quali ty Characteristic in the Produ ct

1
1

L
if

e
C

yc
le

 M
od

el
s

W
at

er
fa

ll
In

cr
em

en
ta

l
E

vo
lu

ti
on

ar
y

R
A

D
P

ro
to

ty
pe

P
er

so
na

l C
ri

te
ri

a
•

E
xp

er
ie

nc
e

of
 t

he
 u

se
rs

 in
 th

e
do

m
ai

n
of

 t
he

ap
pl

ic
at

io
n

Sp
ec

ia
lis

t
E

xp
er

ie
nc

ed
 o

r
Sp

ec
ia

lis
t

A
ny

E
xp

er
ie

nc
ed

 o
r

Sp
ec

ia
lis

t
A

ny

•
Fa

cil
it

y
of

 t
he

 u
se

rs
 in

 e
xp

re
ss

in
g

re
qu

ir
em

en
ts

H
ig

h
A

ve
ra

ge
 o

r
hi

gh
A

ny
H

ig
h

A
ny

•
E

xp
er

ie
nc

e
of

 t
he

 d
ev

el
op

m
en

t t
ea

m
 in

 th
e

d
om

ai
n

of
 t

he
 a

p
pl

ic
at

io
n

E
xp

er
ie

nc
ed

 o
r

Sp
ec

ia
lis

t
E

xp
er

ie
nc

ed
 o

r
Sp

ec
ia

lis
t

A
ny

E
xp

er
ie

nc
ed

 o
r

Sp
ec

ia
lis

t
A

ny

•
E

xp
er

ie
nc

e
of

 t
he

 d
ev

el
op

m
en

t
te

am
 in

 s
of

tw
ar

e
en

gi
ne

er
in

g
A

ny
A

ny
A

ny
Sp

ec
ia

lis
t

A
ny

C
ri

te
ri

a
re

la
te

d
to

 t
he

 P
ro

bl
em

•
L

ev
el

 o
f

m
at

ur
it

y
of

 t
he

 a
p

pl
ic

at
io

n
do

m
ai

n
E

st
ab

lis
he

d
A

ve
ra

ge
 o

r
E

st
ab

lis
he

d
A

ny
E

st
ab

lis
he

d
A

ny

•
C

om
pl

ex
it

y
of

 t
he

 p
ro

bl
em

Si
m

pl
e

Si
m

pl
e

or
 D

if
fi

cu
lt

A
ny

L
ow

A
ny

•
Fr

eq
ue

nc
y

of
 c

ha
ng

e
of

 r
eq

ui
re

m
en

ts
L

ow
L

ow
 o

r
A

ve
ra

ge
A

ny
N

on
e

A
ny

•
L

ev
el

of

m

ag
ni

tu
de

of

th

e
ch

an
ge

s
in

th

e
re

qu
ir

em
en

ts
N

on
e

L
ow

A
ny

N
on

e
A

ny

•
L

ev
el

 o
f

m
od

ul
ar

it
y

of
 t

he
 p

ro
bl

em
A

ny
A

ve
ra

ge
 o

r
H

ig
h

A
ve

ra
ge

 o
r

H
ig

h
H

ig
h

A
ve

ra
ge

 o
r

H
ig

h
C

ri
te

ri
a

re
la

te
d

to
 t

he
 p

ro
du

ct
•

Si
ze

 o
f

th
e

ap
pl

ic
at

io
n

S
m

al
l

A
ny

A
ny

A
ny

A
ny

•
L

ev
el

 o
f

co
m

pl
ex

it
y

of
 t

he
 a

p
pl

ic
at

io
n

L
ow

L
ow

 o
r

A
ve

ra
ge

A
ny

L
ow

 o
r

A
ve

ra
ge

A
ny

•
L

ev
el

of

im

p
or

ta
nc

e
of

th

e
in

te
rf

ac
e

re
qu

ir
em

en
ts

L
ow

L
ow

L
ow

L
ow

A
ny

C
ri

te
ri

a
re

la
te

d
to

 t
he

 r
es

ou
rc

es
•

A
va

ila
bi

li
ty

 o
f

h
um

an
 re

so
ur

ce
s

H
ig

h
A

ny
A

ny
A

de
qu

at
e

or
 H

ig
h

A
ny

•
L

ev
el

 o
f

ac
ce

ss
 to

 th
e

us
er

s
H

ig
h

A
ve

ra
ge

 o
r

H
ig

h
A

ve
ra

ge
 o

r
H

ig
h

H
ig

h
H

ig
h

C
ri

te
ri

a
re

la
te

d
to

 d
ev

el
op

m
en

t
•

A
p

pl
ic

ab
le

 to
 th

e
ne

ed
 o

f
de

liv
er

y
of

in
te

rm
ed

ia
ry

 p
ro

du
ct

s.
N

o
Y

es
Y

es
N

o
Y

es

•
L

ev
el

 o
f

te
ch

ni
ca

l r
is

ks
.

L
ow

L
ow

 o
r

M
o

de
ra

te
L

ow
 o

r
M

o
de

ra
te

N
on

e
L

ow
 o

r
M

o
de

ra
te

•
A

d
o

pt
ed

 p
ar

ad
ig

m
.

St
ru

ct
ur

ed
 o

r
O

O
St

ru
ct

ur
ed

 o
r

O
O

St
ru

ct
ur

ed
 o

r
O

O
St

ru
ct

ur
ed

 o
r

O
O

O
O

T
ab

le
 5

 –
 C

ri
te

ri
a

ap
p

lie
d

to
 L

if
e

C
yc

le
 M

od
el

s

12

Methods, Tools and Resources

During the instantiation step, methods, tools and resources (software, hardware and
human) should be defined for the project. This choice should be adherent for the paradigm
chosen and the type of software to be developed.

4. Def-Pro Tool
The purpose of the Def-Pro tool is to define a software process for an organization, based

on the ISO/IEC 12207 Standard, on the maturity models, on the capabili ty levels, on the software
development characteristics of the organization, on the type of SDE desired for instantiation, on
the type of software to be developed, on the development paradigm adopted, on the
characteristics of the project and team, and finally on the quali ty characteristics of the product to
be developed. The construction of Def-Pro involved the following steps: (i) the inclusion of
specific classes to represent the concepts of standards, maturity models, capabili ty levels,
organizations, software li fe cycle processes and standard processes; (ii) the conception of a
structure integrating the concepts involved in the ISO/IEC 12207 Standard and in the maturity
models; and (iii) the implementation of the Def-Pro tool.

The final tool product is the software process defined for an organization. The referred
process is composed of one or more software li fe cycle processes, as well as adherence to the
ISO/IEC 12207 Standard or to some maturity model or level. Figure 2 presents a simpli fied
model of the classes storing the knowledge about standards and maturity models, as well as the
software process defined by an organization.

Figure 2 – Class Diagram

Organization Activi ty

Organizati on

0..*

1

0..*

1

Maturity Model

Maturi ty Level

1

1..*

1

1..*Maturi ty Model Activi ty

10..* 10..*

ISO 12207 Activi ty

0..*0..* 0..*0..*
Maturi ty Level

Process

0..*

0..1

0..*

0..1

Process Activi ty

Software L i fe Cycle Process

1..*1 1..*1

1

1..*

1

1..*

Type of Process

0..* 10..* 1

Standard Process

0..*

1

0..*

1

ParadigmSpecial i zed Process

0..*1 0..*1

0..*

1

0..*

1

Type of Software

0..*

1

0..*

1

Resource

Artefact

Activi ty

0..*

0..*

0..*

0..*0..*

0..*

0..*

0..*

0..*

1..*

0..*

1..*

0..1

0..1

0..1

subactivi ty

0..1

0..1

0..1

0..1
pre-activi ty

0..1

13

Figure 3 ill ustrates the definition step for a standard development process adherent to
level 3 of the future ISO/IEC 15504 Standard. This tool requires the inclusion of activities
relating to maturity level 3, and has an option to allow the software engineer to include level 4
and level 5 activities.

Figure 3 – Definition o f a Standard Development Process
adherent to Level 3 of the future ISO/IEC 15504 Standard

Based on the approach proposed in Section 2, the tool allows the software engineer to
analyze each activity to be defined, comparing it with one or more activities equivalent to the
ISO/IEC 12207 Standard (Figure 4). This has been requested by the organizations and was
constructed based on the mapping between the ISO/IEC 12207 Standard and the maturity models.
If desired, the software engineer can change some activities in the maturity model for activities in
the Standard. This decision can be motivated by questions of nomenclature or by the need for a
greater level of detail . The mapping also defines the activities pertinent to the ISO/IEC 12207
Standard and not contemplated in the maturity models.

14

Figure 4 – Comparative analysis between the activities of ISO/IEC TR 15504 and ISO/IEC 12207

Finally, the defined development standard process activities, level 3 ISO/IEC TR 15504
are visualized (Figures 5 and 6). The coding presented corresponds to their use by the maturity
model included in the definition.

Figure 5 - Development Standard Process Activities

15

Figure 6 – Activity Definition

5. Conclusions

The definition and use of standards in software engineering are important practices for
homogenizing software development in projects and organizations. With the advent of
international standards and preoccupation with the quali ty of the software products being
generated, the organizations adopted the ISO/IEC 12207 Standard and maturity models in the
definition of software processes. In this sense, the ISO/IEC 12207 Standard as well as the
maturity models establish the definition of a standard process as the condition for establishing a
disciplined software process. The combined use of the Standard and the models, however, require
an understanding of their differences and similarities, which implies diff iculties in their use.

This paper presents an approach for the definition of software processes based on the need
to define a standard process for an organization, and on the importance of adequacy of such
process to the standards and maturity models. The model proposed in this paper considers the
definition, specialization and instantiation of processes, allowing the definition of basic activities
composing the standard process, as well as the definition of activities adequate under different
contexts of development and software engineering capabili ty levels.

To make this possible, a mapping of activities was developed between the ISO/IEC 12207
Standard and the maturity models (ISO/IEC TR 15504 and CMM), establishing a common
vocabulary in order to enable the definition of software processes adherent to both standards.
Referred mapping is an important subsidy for organizations using the approach of reaching
adherence to the ISO/IEC 12207 Standard using the capabili ty levels included in the maturity
models.

16

To supply automated support to the definition of software processes based on the
conceptual model proposed in section 3, a tool was implemented - Def-Pro. This tool uses the
approach presented in section 2, supporting the combined use of the ISO/IEC 12207 Standard
with maturity models, in the definition of software processes.

Other works in the context of software processes - whether or not using approaches based
on knowledge - which take account of modeling, definition, analysis and simulation of software
processes (CONRADI et al., 1994; VALLETO and KAISER, 1996; FALBO et al., 1999). The
approach presented in this work extends these proposals, considering knowledge of standards and
maturity models, as well as different levels of abstraction for software processes. The standard
process is the first level of abstraction and represents a requirement for the organizations feeling
the need to improve their software processes. There is as well as this the possibili ty to define
other processes in the software li fe cycle, as well as the development process, an important
characteristic which differentiates Def-Pro from the previous approaches.

The research in software processes points to the need to control and evaluate the
processes during and after their execution. In this context, tools which assist measurement during
the process are perspectives for the future. On the other hand, the evaluation of the level of
extension executed by an activity is taken littl e advantage of and accompanies the tendency of the
maturity models.

References

ALEXANDER, L. C., DAVIS, A. M., 1991, “Criteria for Selecting Software Process Models” . In: Proceedings of
the Fifteenth Annual International Computer Software & Applications Conference – COMPSAC 91, pp. 521-
528, Tokyo, Japan, September.

BOEGH, J., HAUSEN, H. L., WELZEL, D., 1993, “A Practioners Guide to Evaluation of Software” , In: Software
Engineering Standards Symposium, Brighton, Inglaterra, Agosto.

CONRADI, R., HAGASETH, M., LARSEN, J-O., 1994, “EPOS: Object-Oriented and Cooperative Process
Modelli ng” . In: Finkelstein, A., Kramer, J., Nuseibeh, B. (eds), Software Process Modelli ng Technology, pp.
33-70, Advanced Software Development Series Research Press Ltd.

EMAM, K. E., DROUIN, J. N., MELO, W., 1998, SPICE – The Theory and Practice of Software Process
Improvement and Capabilit y Determination, IEEE Computer Society, Edwards Brothers Inc., Estados
Unidos.

FALBO, R. A., ROCHA, A. R. C., MENEZES, C. S., 1999, "Assist-Pro: Um Assistente Baseado em Conhecimento
para Apoiar a Definição de Processos de Software". In: XIII Simpósio Brasileiro de Engenharia de Software,
Florianópolis, Santa Catarina, Brasil , October (in portuguese).

FERGUNSON, J., SHEARD, S., 1998, “Leveraging Your CMM Efforts for IEEE/EIA 12207” , IEEE Software,
pp.23-28, Setembro/Outubro.

ISO/IEC 9126, 1991, Information Technology – Software Product Evaluation – Quality Characteristics and
Guidelines for their use

ISO/IEC 12207, 1995, Information Technology – Software Life Cycle Processes.
ISO/IEC TR 15504, 1998, Parts 1-9: Information Technology - Software Process Assessment.
JACOBSON, I., BOOCH, G., RUMBAUGH, J., 1998, The Unified Software Development Process, Addison Wesley

Longman, Inc.
MACHADO, C., DE OLIVEIRA, L., FERNANDES, R., 1999, “Experience Report – Restructure of Process based

on ISO/IEC 12207 and SW-CMM in CELEPAR”, In: Proceedings of the 4 th IEEE International Software
Engineering Standards Symposioum, Curitiba, Paraná, Brasil , Maio.

MACHADO, L.F. D. C., 2000, Modelo para Definição de Processos de Software na Estação Taba, MSc Thesis,
COPPE/UFRJ, March (in Portuguese).

17

MAIDANTCHIK, C., DA ROCHA, A. R. C., XEXEO, G. B., 1999, "Software Process Standardization for
Distributed Working Groups". In: Proceedings of the 4 th IEEE International Software Engineering
Standards Symposioum, Curitiba, Paraná, Brasil , Maio.

MCMANUS, J. I., 1999, “How does Software Quali ty Assurance Fit In ?” . In: Shulmeyer, G. G., Mcmanus, J. I.
(eds), Handbook of Software Quality Assurance, 3 ed., chapter 2, Prentice Hall PTR.

OLIVEIRA, K.M, ROCHA, A.R, TRAVASSOS, G. T., MENEZES, C., S., 1999, “Using Domain-Knowledge in
Software Development Environments” . In: Software Engineering and Knowledge Engineering - SEKE 99,
Kaiserlautern, Alemanha, Junho.

PAULK, M. C., WEBER, C. V., CURTIS, B., CHRISSIS, M. B. (eds), 1997, The Capabilit y Maturity Model:
Guidelines for Improving the Software Process. Carnegie Mellon University, Software Engineering Institute,
Addison-Wesley Longman Inc.

PFLEEGER, S. L., 1998, Software Engineering Theory and Practice, Prentice Hall PTR.
PRESSMAN, R. S., 1997, Software Engineering: A Practitioner’s Approach, 4th edition, McGraw-Hill.
ROCHA, A. R. C., MAIDANTCHIK, C., OLIVEIRA, K. M., TRAVASSOS, G. H., XEXÉO, G., 1999, "Experience

in Defining, Using and Improving Software Process". In: Technical Report ES-507/99 - COPPE/UFRJ (in
Portuguese).

ROUT, T. P., 1996, “The SPICE Project: Past, Present and Future”, Software Process '96, Brighton, Dezembro.
ROUT, T.P., 1998, “SPICE and the CMM: is the CMM compatible with ISO/IEC 15504 ?” , AquIS’98, Venice,

Março.
SEI, 1998, "Top-Level Standards Map - ISO 12207, ISO 15504 (Jan 1998 TR), Software

CMM v1.1 and v2 Draft C". URL: http://www.sei.cmu.edu
VALETTO, G., KAISER, G. E., 1996, “Enveloping Sophisticated Tools into Process-Centered Environments” , Automated

Software Engineering Notes, v. 3, n. 3/4, pp. 309--345, Agosto

ZAHRAN, S., 1998, Software Process Improvement, Addison Wesley Longman Inc.

QWE2000 Vendor Technical
Presentation VT7

Mr. Matthew Brady
(McCabe & Associates UK Ltd)

"How to Test Better - Not Test
More"

Key Points

Most test programs are focussed on verifying that software conforms to the specification,
and operates without error under expected conditions.

●

However, functional combination means that there is almost an infinite number of possible
tests for any given application, and that the vast majority of these tests will be of little value.

●

Additionally, the assumption that testing based on functionality will be sufficient is incorrect
û in many software projects a full functional test program will often cover less than 60% of
the code.

●

Other techniques must be utilised to improve the validity and completeness of functional
tests, without adding a huge burden of new tests.

●

Presentation Abstract

Functional testing is often thought to be a straightforward logical process of
converting functional specifications into test scenarios.

However there are several major challenges faced by functional testers.

The initial challenges are associated with the task of deriving a full functional test set
and verifying that functional testing is complete. These challenges are in fact
impossible to overcome because functional combination means that there are almost
infinite scenarios which can applied during testing. It is therefore crucial to ensure
that a minimum set of functional tests is executed providing maximum benefit.

Secondly, functional testing is very frequently under considerable time pressure due
to slippage in earlier stages of the development process. This means that testing
often has to be cut short in order to deliver software on time. It is therefore critical to
ensure that tests are prioritised with important tests being performed early.

Additionally, the architecture and implementation of a software project influences the
nature and scale of the required testing.

How can we improve our testing to ensure that the critical parts have been
adequately tested without doubling or trebling the number of tests required?

QWE2000 -- Conference Presentation Summary

http://www.soft.com/QualWeek/QWE2K/Papers/VT7.html (1 of 2) [9/28/2000 11:11:33 AM]

McCabe & Associates promote powerful software analysis techniques and tools to
assess the risk associated with a particular test schedule and identify necessary
improvements. These techniques will be outlined during the presentation.

About the Speaker

Matthew Brady has worked for McCabe & Associates in the UK distribution office for
four years. During that time he has been involved in the implementation of McCabe
solutions in many organisations across Europe including the UK National Air Traffic
Centre, NEC, Nortel, Telefonica and Pace. He now heads up the consultancy and
support team for McCabe in Europe.

Prior to McCabe, he worked for Kinesix Corp. delivering real-time graphics solutions
to the aerospace and safety critical markets.

He graduated in 1987 in Mathematics from Manchester University

QWE2000 -- Conference Presentation Summary

http://www.soft.com/QualWeek/QWE2K/Papers/VT7.html (2 of 2) [9/28/2000 11:11:33 AM]

1

Making IT RightMaking IT Right

PresentationPresentation
 22nd November 200022nd November 2000

QWE2000QWE2000

How to Test Better -How to Test Better -
Not Test MoreNot Test More

Matthew BradyMatthew Brady

McCabe
Associates 22

McCabe & AssociatesMcCabe & Associates

�� 20 Year History20 Year History
�� Software Analysis Tools:Software Analysis Tools:

–– Software MeasurementSoftware Measurement
–– Testing ImprovementTesting Improvement
–– ComprehensionComprehension

�� Configuration Management ToolsConfiguration Management Tools

2

McCabe
Associates 33

Testing SoftwareTesting Software

�� How Can Software be Tested?How Can Software be Tested?
–– With Knowledge of FunctionalityWith Knowledge of Functionality

�� Black BoxBlack Box

–– With Knowledge of the CodeWith Knowledge of the Code
�� White BoxWhite Box
�� Developer TestingDeveloper Testing

Unit Level Testing

Integration Testing

System Test

Functional Tests/
User Acceptance Tests/
Requirements Testing

Regression Testing

White Box Testing Black Box Testing
Project Lifecycle

McCabe
Associates 44

RequirementsRequirements

ImplementationImplementation

Test
Scenarios

BlackBlack
BoxBox

SystemSystem

Software TestingSoftware Testing
functional functional testingtesting

Check ConformanceCheck Conformance
to Specificationto Specification

Execute
Tests

3

McCabe
Associates 55

Software TestingSoftware Testing

�� Deriving Functional TestsDeriving Functional Tests
–– How Many Combinations Exist?How Many Combinations Exist?
–– Which Combinations are Important?Which Combinations are Important?
–– How Many Combinations are there in YourHow Many Combinations are there in Your

Applications?Applications?
–– What is GoodWhat is Good

Enough?Enough?

McCabe
Associates 66

RequirementsRequirements

ImplementationImplementation

Test
Scenarios

BlackBlack
BoxBox

SystemSystem

�� Derive Tests from Requirements:Derive Tests from Requirements:
➙➙ Not Always Possible for ComplexNot Always Possible for Complex

SystemsSystems

➙➙ Functional Tests Are Often HighlyFunctional Tests Are Often Highly
DuplicateDuplicate

Functional TestingFunctional Testing

4

McCabe
Associates 77

�� When do you Stop Testing?When do you Stop Testing?
–– When Time Runs Out!When Time Runs Out!
–– Testing BoredomTesting Boredom

RateRate
of Errorsof Errors
DetectedDetected

No. of TestsNo. of Tests

Software TestingSoftware Testing

McCabe
Associates 88

Regression TestingRegression Testing

�� Change One Line of Code:Change One Line of Code:
–– How Many Tests Should Be Performed?How Many Tests Should Be Performed?
–– Should Complete Application be TestedShould Complete Application be Tested

Again?Again?
–– What is the Impact of a Change?What is the Impact of a Change?

#include “fred.h”

void
main(char **argv, int argc)
{
 int i;

 for (i=0; i++; i<=100)
 printf(“Value is %d\n”, i);
}

5

McCabe
Associates 99

Testing SoftwareTesting Software

�� How Do People Test Functionally?How Do People Test Functionally?
–– Manual ExecutionManual Execution
–– Using “Capture / Replay” ToolsUsing “Capture / Replay” Tools
–– Automation / ScriptingAutomation / Scripting

McCabe
Associates 1010

Testing SoftwareTesting Software

�� What is Capture/Replay?What is Capture/Replay?
–– Run More Tests - More Quickly - More EasilyRun More Tests - More Quickly - More Easily
–– Ability to Check OutputsAbility to Check Outputs

�� Determine Test OutcomeDetermine Test Outcome

–– Many Tools AvailableMany Tools Available

6

McCabe
Associates 1111

Software TestingSoftware Testing

�� Test AutomationTest Automation
–– Only Solves One ProblemOnly Solves One Problem

�� Ability to Re-Run Tests / Check OutputAbility to Re-Run Tests / Check Output

–– No Indication “When to Stop”No Indication “When to Stop”
–– Little Assistance with Deriving TestsLittle Assistance with Deriving Tests

McCabe
Associates 1212

�� Deriving TestsDeriving Tests
–– Creating a “Good” Set of TestsCreating a “Good” Set of Tests

–– Running TestsRunning Tests
–– Verifying TestsVerifying Tests

–– Verifying that Enough Testing was PerformedVerifying that Enough Testing was Performed
–– Providing Providing EvidenceEvidence that Testing was Good Enough that Testing was Good Enough

�� When to Stop TestingWhen to Stop Testing
�� PrioritisingPrioritising Tests Tests

–– Ensuring that Critical or Modified Code is Tested FirstEnsuring that Critical or Modified Code is Tested First

�� Reducing Test DuplicationReducing Test Duplication
–– Identifying Similar Tests That Add Little ValueIdentifying Similar Tests That Add Little Value

& Removing Them& Removing Them

Common Testing ChallengesCommon Testing Challenges

7

McCabe
Associates 1313

Software TestingSoftware Testing

Requirements Test
Scenarios

Implementation

Black
Box

7.6o-11s

Sub-System
or System

Static
Identification
of Test Paths

White
Box

Analysis

focussed focussed testingtesting

McCabe
Associates 1414

Software TestingSoftware Testing
Deriving Unit Level TestsDeriving Unit Level Tests

 function_test(y)
0 {
 x=3;
1 if (y < 4)
2 x=sin(y);
 else
3 x=cos(y);
4 x=x*x;
5 }

0

1

3

4

5

2

5.3o-5s

8

McCabe
Associates 1515

Example 1Example 1

McCabe
Associates 1616

ExampleExample 2 2

9

McCabe
Associates 1717

Software TestingSoftware Testing
Test DerivationTest Derivation

•• Flowgraphs Flowgraphs Visualise Visualise LogicLogic

•• Valuable for:Valuable for:
–– ComprehensionComprehension

–– Test DerivationTest Derivation

•• How Can Tests be DerivedHow Can Tests be Derived
Using Flowgraphs?Using Flowgraphs?

5.4o-7s

McCabe
Associates 1818

•• Complexity = 10Complexity = 10

Software TestingSoftware Testing

Means that 10 Minimum Tests will:Means that 10 Minimum Tests will:
•• Cover All the CodeCover All the Code
•• Test Decision LogicTest Decision Logic

10

McCabe
Associates 1919

Example 1Example 1

Complexity = 5Complexity = 5

McCabe
Associates 2020

ExampleExample 2 2

Complexity = 57Complexity = 57

11

McCabe
Associates 2121

Software TestingSoftware Testing
Complexity andComplexity and S Structuretructure

Function AFunction A Function BFunction B

Complexity = 20 Complexity = 18

5.17s

McCabe
Associates 2222

Software TestingSoftware Testing
EssentialEssential ComplexityComplexity

Function AFunction A

Complexity = 20

5.17s

Unstructure = 1
Function BFunction B

Complexity = 18

Unstructure = 17

12

McCabe
Associates 2323

Software TestingSoftware Testing
McCabeMcCabe Unit Level MetricsUnit Level Metrics

�� ComplexityComplexity
–– Simple / ScalableSimple / Scalable
–– Language IndependentLanguage Independent
–– Easy to MeasureEasy to Measure
–– Indication of Testing EffortIndication of Testing Effort

(No. of Tests)(No. of Tests)

�� Essential ComplexityEssential Complexity
–– ““UnstructureUnstructure””
–– Indicates Testing DifficultyIndicates Testing Difficulty

McCabe
Associates 2424

OO & Complexity?OO & Complexity?

6.4o-4s

�� Is Complexity Valid for OO?Is Complexity Valid for OO?
�� Complexity Should be Complexity Should be MUCHMUCH Lower in OO Lower in OO

SystemsSystems
�� High Complexity Occurs When Object ModelHigh Complexity Occurs When Object Model

is Arcane / Poorly Implementedis Arcane / Poorly Implemented

�� What About Essential Complexity?What About Essential Complexity?
�� Essential Complexity Should More Often beEssential Complexity Should More Often be

At a MinimumAt a Minimum
�� High Essential Complexity IndicatesHigh Essential Complexity Indicates

Structural ProgrammingStructural Programming

13

McCabe
Associates 2525

Building from the Unit UpBuilding from the Unit Up

�� Unit of CodeUnit of Code
�� FunctionFunction
�� ProcedureProcedure
�� SubroutineSubroutine
�� MethodMethod

6.4o-4s

�� Execution HierarchyExecution Hierarchy
�� Entire ProgramEntire Program

McCabe
Associates 2626

Building the TreeBuilding the Tree

6.4o-4s

�� Procedural LanguagesProcedural Languages
�� C / Fortran/ COBOLC / Fortran/ COBOL
�� Execution is EverythingExecution is Everything
�� Execution Tree is Simple to DetermineExecution Tree is Simple to Determine

�� Object Oriented LanguagesObject Oriented Languages
�� C++ / Java / Ada95C++ / Java / Ada95
�� What About Class Interaction / Overloading /What About Class Interaction / Overloading /

Late-Binding?Late-Binding?

14

McCabe
Associates 2727

Test ImprovementTest Improvement

�� Theoretical Testing MeasuresTheoretical Testing Measures
–– ComplexityComplexity
–– Essential ComplexityEssential Complexity
–– Program ComplexityProgram Complexity
–– Other MeasuresOther Measures

�� Real Testing MeasuresReal Testing Measures
–– CoverageCoverage
–– What is Coverage?What is Coverage?

McCabe
Associates 2828

Code CoverageCode Coverage

2 Tests Required2 Tests Required

test_func(int a, int b)
{
 if (a==b)
 op1();
 else
 op2();

 if (a==c)
 op3();
 else
 op4();
}

Total number of executable Total number of executable
lines of code = 11lines of code = 11

Test 1Test 1 : : 7 Lines Tested => 64 %7 Lines Tested => 64 %
Test Coverage ResultsTest Coverage Results

TEST 1TEST 1 1 (10) : 1 (10) : if (a==b) => Falseif (a==b) => False
6 (18): 6 (18): if (a==c) => Falseif (a==c) => False

TEST 2TEST 2 1 (10) : 1 (10) : if (a==b) => Trueif (a==b) => True
6 (18): 6 (18): if (a==c) => Trueif (a==c) => True

Test Paths ListingTest Paths Listing

Test 1Test 1 : : 7 Lines Tested => 64 %7 Lines Tested => 64 %
Test 2Test 2 : : 9 Lines Tested => 82 %9 Lines Tested => 82 %
Test 1Test 1 : : 7 Lines Tested => 64 %7 Lines Tested => 64 %
Test 2Test 2 : : 9 Lines Tested => 82 %9 Lines Tested => 82 %

Test 1 & 2 : 11 Lines Tested => 100 %Test 1 & 2 : 11 Lines Tested => 100 %

15

McCabe
Associates 2929

Code Coverage LimitationsCode Coverage Limitations

test_func(int a, int b)test_func(int a, int b)
{{
 if if (a==b) (a==b)
 op1 op1();();

 if if (a==c) (a==c)
 op2 op2();();
}}

�� Positive TestingPositive Testing
�� Test Application to Execute SomeTest Application to Execute Some

FunctionalityFunctionality

�� Negative TestingNegative Testing
�� Ensure that Application Does NOTEnsure that Application Does NOT

Perform Undesired FunctionalityPerform Undesired Functionality
�� 100% Code Coverage ONLY Tests100% Code Coverage ONLY Tests

the Execution of the Execution of LinesLines of Code of Code

a = ba = b

a = ca = c

"invisible"invisible""
branchesbranches

McCabe
Associates 3030

Branch CoverageBranch Coverage

2 Tests Required2 Tests Required

test_func(int a, int b)
{
 if (a==b)
 op1(); _>Branch 1
 else
 op2(); _>Branch 2

 if (a==c)
 op3(); _>Branch 3
 else
 op4(); _>Branch 4
}

Total Number Branches = 4Total Number Branches = 4

Test 1Test 1 : : 2 Branches Tested => 50 %2 Branches Tested => 50 %
Test Coverage ResultsTest Coverage Results

TEST 1TEST 1 1 (10) : 1 (10) : if (a==b) => Falseif (a==b) => False
6 (18): 6 (18): if (a==c) => Falseif (a==c) => False

TEST 2TEST 2 1 (10) : 1 (10) : if (a==b) => Trueif (a==b) => True
6 (18): 6 (18): if (a==c) => Trueif (a==c) => True

Test Paths ListingTest Paths Listing
11 22

33 44

Test 1Test 1 : : 2 Branches Tested => 50 %2 Branches Tested => 50 %
Test 2Test 2 : : 2 Branches Tested => 50 %2 Branches Tested => 50 %
Test 1Test 1 : : 2 Branches Tested => 50 %2 Branches Tested => 50 %
Test 2Test 2 : : 2 Branches Tested => 50 %2 Branches Tested => 50 %

Test 1 & 2 : 4 Lines Tested => 100 %Test 1 & 2 : 4 Lines Tested => 100 %

16

McCabe
Associates 3131

Coverage ComparisonCoverage Comparison

Code
Branch
Expanded Branch
Cyclomatic Path
Boolean

No of Tests
C

ov
er

ag
e

100%

0%

?Code CoverageCode Coverage
Achieves High Results WithAchieves High Results With
Minimum Effort - Little UseMinimum Effort - Little Use

Branch CoverageBranch Coverage
Relates More Linearly to NumberRelates More Linearly to Number
of Tests, & Increases theof Tests, & Increases the
Effectiveness of TestingEffectiveness of Testing

Expanded Branch CoverageExpanded Branch Coverage
Includes Compound LogicIncludes Compound Logic

Path CoveragePath Coverage
Is More Rigorous, RequiresIs More Rigorous, Requires
Greater Effort & Cannot Be 100%Greater Effort & Cannot Be 100%

Boolean CoverageBoolean Coverage
Adds Rigorous Testing of Compound Logic &Adds Rigorous Testing of Compound Logic &
Cannot Be 100%Cannot Be 100%. . Should be Used inShould be Used in
Conjunction with Another Form of CoverageConjunction with Another Form of Coverage

McCabe
Associates 3232

Execute
Code

Trace
Info

What is McCabe Test?What is McCabe Test?

Source Code

ParsingParsing

BuildBuild ExecutableExecutable

ImportImport

McCabe IQMcCabe IQ

Coverage
Reports

Execution
Diagrams

Untested
Paths

DatabaseDatabase

Instrumented
Source Code

ExportExport

17

McCabe
Associates 3333

Focused Software TestingFocused Software Testing

McCabe
Associates 3434

Focused Software TestingFocused Software Testing
quicklyquickly visualise visualise executionexecution paths paths

Code Executed During Test

18

McCabe
Associates 3535

Focused Software TestingFocused Software Testing
full graphicalfull graphical coveragecoverage

Comprehensive Coverage Reports

Paths Executed During Test

Code Executed During Test

McCabe
Associates 3636

Using CoverageUsing Coverage

�� Determine “Critical” CodeDetermine “Critical” Code
–– Complex/Unstructured?Complex/Unstructured?
–– Recently Modified?Recently Modified?
–– Functionally Important?Functionally Important?

�� Assess Coverage forAssess Coverage for
“Critical” Code“Critical” Code
–– Coverage Report for “Critical”Coverage Report for “Critical”

GroupGroup
–– Examine Untested BranchesExamine Untested Branches

32 67%
Runproc

39 52%
Search

56
My_Func1ion

CriticalCritical
CodeCode

48% Coverage48% Coverage

75% Coverage of Critical Code75% Coverage of Critical Code

19

McCabe
Associates 3737

ConclusionsConclusions
�� Assess Testing RiskAssess Testing Risk

–– Measure Software ComponentsMeasure Software Components

�� Derive Initial Tests Using Black Box TechniquesDerive Initial Tests Using Black Box Techniques
–– Functional TestingFunctional Testing

�� Examine Execution AchievedExamine Execution Achieved
–– Measure CoverageMeasure Coverage

�� Derive Additional CombinationsDerive Additional Combinations
–– Examine Untested Hierarchies / UnitsExamine Untested Hierarchies / Units

�� Focus on “Important” CodeFocus on “Important” Code
–– Do Not Try to Cover All The CodeDo Not Try to Cover All The Code

Making IT RightMaking IT Right

PresentationPresentation
 22nd November 200022nd November 2000

QWE2000QWE2000

How to Test Better -How to Test Better -
Not Test MoreNot Test More

Matthew BradyMatthew Brady

QWE2000 Session 8T

Tobias Mayer
(eValid, Inc.)

Browser-Based WebSite Testing
Technology

Key Points

99% of Websites (html, etc. pages) are viewed from a Browser.●

In testing such Websites, the Browser-based testing method is recommended for accuracy
and reliability.

●

The talk will demonstrate: Load Testing, User Interactivity Testing, Content Validation &
Verification, Download Timing, Rendering, and Security/e-commerce Issues in this context.

●

Presentation Abstract

Because 99%+ of Websites (html, etc. pages) are viewed from a Browser the
'Browser-Based Website Testing' approach is recommended as the best way of
testing a Website. This approach allows the Tester to view (and examine) a website
exactly as a User will view it. The User is the essential ingredient in the whole
Website/Viewer algorithm. Without the user, the Website has no useful purpose - Full
Stop! Other approaches offer only partial solutions to the Website Testing problem.
The Browser-based approach offers a full solution. This talk will promote
'Browser-based' technology and offer demonstrations of its practical application.

About the Speaker

Tobias Mayer is a senior software engineer at Software Research, Inc. He is
reponsible for the main design and implementation of the "eValid" Web Test engine.
Tobias has a (UK) BSc from South Bank University, London. He is a member of, and
OO Metrics consultant to, the Center for Systems & Software Engineering (CSSE) at
South Bank University. Tobias has presented and published a number of papers on
OO metrics, including papers at IEEE 'TOOLS' 1999 and British Computer Society
'SQM' 1999. During this year, Tobias has presented a number of seminars on
Website Testing strategies in the UK. He also presented the "Quickstart - Website
Testing" seminar at the 'Quality Week 2000' conference in San Francisco, June
2000.

QWE2000 -- Conference Presentation Summary

http://www.soft.com/QualWeek/QWE2K/Papers/8T.html [9/28/2000 11:11:40 AM]

1

QWE 2000 Slide 1Thursday 23 November 2000

Tobias Mayer
eValid, Inc.

email: mayer@soft.com

Browser-Based Web Site
Testing Technology

QWE 2000 Slide 2Thursday 23 November 2000

Summary of presentation
1. Testing a site prior to uploading

(~5 mins)

2. Testing a site after uploading
(~10 mins)

3. Testing Strategies …
(~15 mins)

4. A Test-Enabled Web Browser
(~15 mins)

Running time = 45 minutes

2

QWE 2000 Slide 3Thursday 23 November 2000

� What can be tested?
» HTML

» Links

» Applets

» Scripts

» Images

� Other Considerations...

Stage 1: Before the upload

QWE 2000 Slide 4Thursday 23 November 2000

� What can be tested?
– HTML

» Does it meet company/self-imposed formatting?

» Use of WebLint, HTMLTidy, etc.

» Spell Checkers

» Can HTML be tested like regular source code?

Stage 1: Before the upload

3

QWE 2000 Slide 5Thursday 23 November 2000

� What can be tested?
– Scripts

» Again, do they meet company/self-imposed formatting?

» Syntax...

» Logic...

Stage 1: Before the upload

QWE 2000 Slide 6Thursday 23 November 2000

� What can be tested?
– Links

» do they go where they are supposed to go?
» Can we actually test this prior to upload?

� Own site -v- some other site...

» What kind of error messages can we get?

Stage 1: Before the upload

4

QWE 2000 Slide 7Thursday 23 November 2000

� What can be tested?

– Applets (and other embedded executable objects)
» To what extent does an object interact with the HTML?

» Do objects execute correctly -
� As independent entities

� In relation to the Web site

» Executable objects should be fully tested prior to their
inclusion on the site.

Stage 1: Before the upload

QWE 2000 Slide 8Thursday 23 November 2000

� What can be tested?

– Images
» Do all images (gifs, jpegs, etc) exist at the correct locations?

» Does each image have the Width & Height values set?

» Check image sizes (i.e. byte size)
� Is an image going to seriously affect the download time?

� What methods can be used to reduce an image’s size?

Stage 1: Before the upload

5

QWE 2000 Slide 9Thursday 23 November 2000

� Other Considerations…
– Where will the site be positioned?

» Internet

» Intranet

» Local, browser-based app?

– Other considerations …?

Stage 1: Before the upload

QWE 2000 Slide 10Thursday 23 November 2000

� User Interactions

� Static / Dynamic Pages

� Test the site on a regular basis

� Use Automated testing

Stage 2: After the upload

6

QWE 2000 Slide 11Thursday 23 November 2000

� User Interactions
– What will the User try to do?

– Can the developer anticipate everything?
» Every possible user interaction?

» Are users always smart???

– How can the developer deal with “user
stupidity?”

Stage 2: After the upload

QWE 2000 Slide 12Thursday 23 November 2000

� Static / Dynamic Pages
– What is the difference?

– Which is harder to test. Why?

– Can dynamic pages actually be tested?
» How. What can be validated?

» How often?

» What can we learn?

Stage 2: After the upload

7

QWE 2000 Slide 13Thursday 23 November 2000

� Test the site on a regular basis
– Transaction Testing

– Content Validation

– Link Checking

– Load Testing

– ...

Stage 2: After the upload

QWE 2000 Slide 14Thursday 23 November 2000

� Use Automated testing
– Manual Testing:

» How many testers will be employed?

» How useful are they?

» What can they do that a robot-tester cannot do?

Stage 2: After the upload

8

QWE 2000 Slide 15Thursday 23 November 2000

� Server-Side Testing

� Client-Side Testing
– Browser-Level Testing

– Operating System-Level Testing

� What else is there…?

Stage 3: Testing Strategies

QWE 2000 Slide 16Thursday 23 November 2000

� Server-Side Testing
– Load Testing

» How many hits per (sec/millisec?)

» How many KB delivered per (sec/millisec?)

– Site Validation
» Can it be done at this level?

Stage 3: Testing Strategies

9

QWE 2000 Slide 17Thursday 23 November 2000

� Client-Side Testing
– How many times can you hit the server?

» What does this tell you?

– Validations:
� Visible Text

� Table Cells

� Images,

� etc...

Stage 3: Testing Strategies

QWE 2000 Slide 18Thursday 23 November 2000

Stage 3: Testing Strategies

� Client-Side Testing
– Passive Sites

» Provide information

» One-way ‘communication’

– Interactive Sites
» Provide & require information

» Two-way communication

10

QWE 2000 Slide 19Thursday 23 November 2000

� Client-Side Testing
– Static Sites

» Nothing changes from day to day unless the
developer explicitly changes it.

– Dynamic Sites
» Stuff changes all the time. Once created the

developer has little, or no, control...

Stage 3: Testing Strategies

QWE 2000 Slide 20Thursday 23 November 2000

Stage 4: A Test-Enabled Web Browser

11

QWE 2000 Slide 21Thursday 23 November 2000

Stage 4: A Test-Enabled Web Browser

QWE 2000 Slide 22Thursday 23 November 2000

Stage 4: A Test-Enabled Web Browser

12

QWE 2000 Slide 23Thursday 23 November 2000

Stage 4: A Test-Enabled Web Browser

QWE 2000 Slide 24Thursday 23 November 2000

Stage 4: A Test-Enabled Web Browser

13

QWE 2000 Slide 25Thursday 23 November 2000

Conclusions
1. Web sites become more and more

complex … hourly!
2. The challenge to test these sites

becomes greater and greater.

3. Client-side testing is best done
from the client perspective

Therefore...

4. Client-side testing is best done
from a Web Browser.

QWE2000 Session 8A

Mr. Gunthard Anderer [Germany]
(CMG ORGA - Team GmgH)

"Testing E-Commerce Systems - Requirements And
Solutions (8A)"

Key Points

The change of quality - requirements for e-commerce applications●

Discussion of the architecture of an complete e-commerce system●

The CMG TestFrame Environment as a solution●

Partners and their services●

Remaining problems●

Presentation Abstract

E-Commerce systems require higher quality and permanent monitoring. In this paper
the requirements are shown and an architecture for an automated testing - and
monitoring environment for e-commerce systems (including internet -, legacy- and
third party - applications) is proposed.

About the Speaker

Gunthard Anderer, Dipl.-Math., born 1951 in Nürnberg. Studied Mathematics and
Physics at University Erlangen - Nürnberg and Technical University München. Works
since 1978 as Systems Analyst, Project Manager and specialist for methods and
tools of software development. Since 1997 consultant at CMG, specialised in project
management and consulting for CMG's TestFRAME ® testing methodology.

QWE2000 -- Conference Presentation Summary

http://www.soft.com/QualWeek/QWE2K/Papers/8A.html [9/28/2000 11:12:28 AM]

Quality Week 2000 Bruxelles Testing e - commerce systems
requirements and solutions

© 2000 Gunthard Anderer, CMG Finance GmbH, Munich, all rights reserved Page 1

Testing of e- commerce
systems

 Requirements and solutionsRequirements and solutions

Gunthard Anderer, CMGGunthard Anderer, CMG

IntroductionIntroduction
• The speaker:

Gunthard AndererGunthard Anderer
Senior consultant for testing and project manager in variousSenior consultant for testing and project manager in various
CMG TestFrame CMG TestFrame projectsprojects
e-mail: gunthard.anderer@cmg.dee-mail: gunthard.anderer@cmg.de

•• CMGCMG
Independent global information and communication technology groupIndependent global information and communication technology group
ca. 12.000 employees worldwideca. 12.000 employees worldwide
more information:more information:
www.cmg.comwww.cmg.com

Quality Week 2000 Bruxelles Testing e - commerce systems
requirements and solutions

© 2000 Gunthard Anderer, CMG Finance GmbH, Munich, all rights reserved Page 2

AgendaAgenda
• Do e-commerce systems need more testing

than traditional IT - systems ?
• Technical structure and testing requirements

of Crazy-T-Shirts.com
• How to automate testing ?
• Partners, tools and toys
• The disaster of success

Some differencesSome differences
Issue E-commerce system Traditional IT- system

Visibility of faults, errors
and malfunctions

immediate, world wide limited

Back – up via personal none usually available

Customer escapes by mouse click physically leaving
 shop etc.

Competitors are a mouse click away in other place

System availabilty 24 h x 7 d partly limited to
business hours

Time for error recovery on the run = none out of business hours

Quality Week 2000 Bruxelles Testing e - commerce systems
requirements and solutions

© 2000 Gunthard Anderer, CMG Finance GmbH, Munich, all rights reserved Page 3

What does this mean ?What does this mean ?

• E - Commerce systems require
much higher quality !

• Quality has to be maintained 24 h x 7d !

• Automated Testing is a real requirement !

Example: Crazy-T-shirts.comExample: Crazy-T-shirts.com
Crazy-T-Shirts.com is a e-commerce business, where you can buy T-shirts

with funny pictures printed on them.
As a customer you can choose different quantities, prices, sizes and

colours of your shirt.
The picture on the T-shirt can be choosen among 2000 pictures in a

gallery, which are displayed as thumbnails and can be enlarged on
mouseclick.

If you want, you can send us a picture of your choice as graphics - file and
we print it on your shirt.

Payment is to be made via credit - card - a secure page for payment is
provided.

Delivery is by UPS.
The plain T-shirts are supplied by different suppliers .

Quality Week 2000 Bruxelles Testing e - commerce systems
requirements and solutions

© 2000 Gunthard Anderer, CMG Finance GmbH, Munich, all rights reserved Page 4

Technical structure of Crazy-T-Shirts.comTechnical structure of Crazy-T-Shirts.com

The Net

Firewall

The Net - Server

Production /
Business
Control
(UNIX)

Supplier A
(Net based)

Supplier B
UNIX, Telnet

Supplier B
MVS Client

T-Shirt printer

Bank - system
ViSA etc.

Transport
Service

customer

Some observationsSome observations
• Important is what the customer sees !
• Partly its testing web - pages !
• Its not only testing web pages !
• Performance bottlenecks are likely to be caused by legacy

or 3rd party systems !
• We do not know the influence of „ the net“ on performance !
• We have to test components on different platforms .
• Wrong data on the web page can cause a lot of damage !
• Accessability and performance can only be tested with the

running, productive system !

Quality Week 2000 Bruxelles Testing e - commerce systems
requirements and solutions

© 2000 Gunthard Anderer, CMG Finance GmbH, Munich, all rights reserved Page 5

Issues to be testedIssues to be tested
• Web - Page

Broken links ?Broken links ?
All frames correctly displayed on various browsers ?All frames correctly displayed on various browsers ?
Graphics displayed properly ?Graphics displayed properly ?

• Performance
Do pages build up in due time (8 sec) ?Do pages build up in due time (8 sec) ?
How is the response time, when features of „production / business control“How is the response time, when features of „production / business control“
or 3rd party systems are required ?or 3rd party systems are required ?

• 3rd party interfaces
Correct data delivered and received ?Correct data delivered and received ?
Correct function (with our parameters and data)Correct function (with our parameters and data)
AvailabilityAvailability

• Business process
Does the customer get what he ordered and do all other processes work asDoes the customer get what he ordered and do all other processes work as
expected ?expected ?

Stages of testing an e-commerce systemStages of testing an e-commerce system
• Before production

Web - pages (complete)Web - pages (complete)
ComponentsComponents
Integration of subsystems / 3rd party systemsIntegration of subsystems / 3rd party systems
Data propagationData propagation
Business process orientedBusiness process oriented
Basic performance testsBasic performance tests

• In production
PerformancePerformance
AccessibilityAccessibility
Business process (random test)Business process (random test)
Data propagation (random test)Data propagation (random test)

Quality Week 2000 Bruxelles Testing e - commerce systems
requirements and solutions

© 2000 Gunthard Anderer, CMG Finance GmbH, Munich, all rights reserved Page 6

Test environmentsTest environments
Development Integration Pre -production Production

A

C

B Change
package

Change
package

Change
package

Functional
correctness
of components

Functional
correctness
of integrated
system,
performance

Does it work
under
production
conditions ?

No test !

 E

-c
om

m
er

ce

Tr
ad

iti
on

al
 IT

-
 s

ys
te

m
s

sy

st
em

s

Same SameSame Permanent
test !

Example TestprocessExample Testprocess

• Go to the homepage of Crazy-T-Shirts.com
• Select a certain picture
• Select quantity, price, size and colour
• Key in Credit - Card Data
• Check order confirmation

• Check bank account - payment booked ?
• Check invoice - printed and ok ?
• Labels for UPS printed ?
• Shirt produced (feedback from shirt - printer there) ?
• If stock of plain T-Shirts low: Supplement order executed and ok ?
• Did UPS deliver in time ? Check in UPS - system !

Front - end

Back - end

Quality Week 2000 Bruxelles Testing e - commerce systems
requirements and solutions

© 2000 Gunthard Anderer, CMG Finance GmbH, Munich, all rights reserved Page 7

How to automate the testprocess ?How to automate the testprocess ?

CMG’s CMG’s integratedintegrated method for: method for:
test developmenttest development
test automationtest automation
test organizationtest organization

TES TF R A M E

• test development aimed at the
production of “clusters”

input and expected resultsinput and expected results
test language with “action words”test language with “action words”
in spreadsheetsin spreadsheets

• automatic execution by a
“navigation script”

written in the script language of thewritten in the script language of the
cast toolcast tool
general part: the enginegeneral part: the engine
specific part: the action wordsspecific part: the action words

How does TestFrame work ?How does TestFrame work ?

Quality Week 2000 Bruxelles Testing e - commerce systems
requirements and solutions

© 2000 Gunthard Anderer, CMG Finance GmbH, Munich, all rights reserved Page 8

Logical test description - the clusterLogical test description - the cluster
cluster Crazy-T-Shirts_01 printonlyfaile
author Gunthard Anderer
version 0.1
date 20.08.2000

Browser
Start IE

testcase C01T001 The Webside - Test
URL

Select page crazytshirts.com/pictures
picture name reference bitmap

Select picture mypicture.jpg mp001
quantity size price currency name adress

Input order 2 XL 10 EUR G.Anderer Munich
number Holder valid company

creditcard data 1234 2453 2667 6345 Test user01 01/01 VISA
ordernumber

check confirmation &keep[ordernumber01]

testcase C01T002 Test the back-end
Ordernumber

Check bank account &ordernumber01

check invoice &ordernumber01

etc.

Layout of the navigationLayout of the navigation

action
word

engine

action
word

action
word

action
word

action
word

action
word

target
system

interface layer

clusters

(cast tool)

Quality Week 2000 Bruxelles Testing e - commerce systems
requirements and solutions

© 2000 Gunthard Anderer, CMG Finance GmbH, Munich, all rights reserved Page 9

Integration of tools and controlIntegration of tools and control

The Net

Firewalll

The Net - Server

Production /
Business
Control
(UNIX)

Supplier A
(Net based)

Supplier B
UNIX, Telnet

Supplier B
MVS Client

T-Shirt printer

Bank - system
ViSA etc.

Transport
Service

Test -Center

The winds of changeThe winds of change
• Values change over time - your cluster has to change with

them
• You need data of the system under test at run time
• Tests consist of several parts and have to run in

discontinuous time frames
• You have to generate test input
• You have a lot of different target systems
• Functions and processes in the target systems change
• 3rd party systems can only be tested in production

Quality Week 2000 Bruxelles Testing e - commerce systems
requirements and solutions

© 2000 Gunthard Anderer, CMG Finance GmbH, Munich, all rights reserved Page 10

Partners - what for ?Partners - what for ?
• Set up your testing system with a partner

Don‘t invent the wheel another time !Don‘t invent the wheel another time !
Save time and money !Save time and money !

• Let your tests via „the net“ be executed
by a partner

Don‘t invest in infrastructure not much used !Don‘t invest in infrastructure not much used !
Tests from all over the world are too expensive !Tests from all over the world are too expensive !

The disaster of successThe disaster of success

The Net

Firewalll

The Net - Server
Production /

Business
Control
(UNIX)

Supplier A
(Net based)

Supplier B
UNIX, Telnet

Supplier B
MVS Client

T-Shirt printer

Bank - system
ViSA etc.

Transport
Service

Thousands of people want our products -
at the same time !

Emergency -
Exit

Quality Week 2000 Bruxelles Testing e - commerce systems
requirements and solutions

© 2000 Gunthard Anderer, CMG Finance GmbH, Munich, all rights reserved Page 11

Thank you for being
here !

… any questions ?

QWE2000 Session 8I

Mr. Eric Messin [USA]
(Vality Technology)

"Ensuring Data Quality for E- Commerce Systems"

Key Points

Why data entered through e-commerce is particularly prone to error●

How erroneous e-commerce data can wreak havoc on back-end databases●

How faulty e-commerce data diminishes the accuracy of front- AND back-end business
transactions

●

A high-level outline of technology solutions that address data quality in e-commerce●

How such solutions can enhance e-commerce ROI and overall business success●

Presentation Abstract

Today's cutting-edge businesses are launching e-commerce initiatives with an eye
towards working smarter, better, and faster. However, what needs to be addressed
first is a severe data quality problem in data entered through e-commerce that puts
front-end as well as back-end operations in jeopardy. This presentation will lay out
the imperatives of data quality in e-commerce, and outline the market for
corresponding technology solutions.

About the Speaker

As Sales Director of SouthWest Europe, Eric Messin spearheads all Vality sales
activities in that region - leading strategic sales and accounts, setting sales direction,
and guiding and developing the SouthWest European region sales team and pre-
and post-sales activities.

Mr. Messin has extensive business experience in sales and management positions.
Prior to joining Vality in 1999, Mr. Messin was Strategic Alliances Director at
Business Objects. Prior to this, he worked at IBM Europe, where he managed key
alliances in their Software organization, and IBM France, where he was in charge of
business development in trading room activities of the Financial sector. Mr. Messin
has also worked internationally, including a one-year stint in Japan and a position at
the Banque Indosuez (acquired by Credit Agricole) in New York.

Mr. Messin has spoken on the topic of business intelligence at such events as
E-business Intelligence Solutions (1997), Business Intelligence World (1998) and
IBM solutions (1999). He holds an MBA in Corporate Finance from Paris Dauphine

QWE2000 -- Conference Presentation Summary

http://www.soft.com/QualWeek/QWE2K/Papers/8I.html (1 of 2) [9/28/2000 11:12:39 AM]

University.
QWE2000 -- Conference Presentation Summary

http://www.soft.com/QualWeek/QWE2K/Papers/8I.html (2 of 2) [9/28/2000 11:12:39 AM]

1

Quality Week Europe 2000
 November 22-24, 2000

Ensuring Data Quality for
E-Commerce Systems

 The Hidden Role of Data Quality in E-Commerce Success

Eric Messin
Director of Sales

La Grande Arche Paroi Nord
92444 Paris La Defense

France
011-33-140-90-3518

www.vality.com

Quality Week Europe 2000
 November 22-24, 2000

E-Commerce: Fast Track To The
Promised Land?

• Electronic highway’s benefits
– Instant, global, two-way communication

• More buyers
• Seamless ties to partners, suppliers, customers

• Potholes in the electronic highway
– Easier, “unattended” access makes it more difficult to

provide customer service
– Increased volume of data = increased data variations,

misinterpretations and misrepresentations

2

Quality Week Europe 2000
 November 22-24, 2000

Obvious Challenges

• Shoppers’ product searches garner
– Too many irrelevant results; or
– No results at all

• Customers’ free-form data entries not easily
linked to back-end standards

• Internal systems’ data “not ready for prime
time”

Quality Week Europe 2000
 November 22-24, 2000

E-Commerce: Fast Track To The
Promised Land?

• The answer is a qualified “Yes”
• The key enabler is data quality
• E-commerce requires a common, data

quality solution – e-quality content
management

3

Quality Week Europe 2000
 November 22-24, 2000

Defining Data Quality In The E-
Commerce Context

• Data quality misconceptions
– Data is either right or wrong
– Data is either correctly or incorrectly

represented
• Misconceptions oversimplify the fact that

perception of data quality varies by user and
usage

Quality Week Europe 2000
 November 22-24, 2000

Data Quality Demystified: An
Example

• Order fulfillment, shipping, direct mail
• Marketing
• Contract administration

Name Street City Zip

DEC 216B Old County Rd Lincoln 01773-4603

Digital Equipment Corp 216 Old County Rd Ste B Lincoln 01773-4603

Compaq 216 Old County Rd Lincoln 01773-4603

4

Quality Week Europe 2000
 November 22-24, 2000

Data Quality Demystified

• Data quality not an absolute state
– It is a relative assessment of the degree of

usefulness and reliability for an intended
purpose

• The more user communities and business
processes served by the same data, the
greater the risk

Quality Week Europe 2000
 November 22-24, 2000

Data Quality Is Multidimensional

• Data quality has a time dimension
– Data values that are correct when recorded may

become liabilities in the future
• Marriages
• Mergers
• Zip code reassignments
• Area code expansions

– Historical representations often have intrinsic
and legal “correctness” that must be preserved

5

Quality Week Europe 2000
 November 22-24, 2000

Data Quality Is Multidimensional

• Data quality is contextual
– Data in internal systems may be inappropriate

to expose to a wide public
• Special discounts and negotiated terms
• Confidentiality
• Internal comments

– Data collected to assist delivery personnel may alienate
customers if exposed – “Mean dog in back yard”, “stone
deaf: holler at them”

Quality Week Europe 2000
 November 22-24, 2000

Data Denial

• Data quality problems have always existed
• Problems have been

– Masked or managed by business logic of
legacy applications

– Hidden by an intermediary
• E-commerce “pierces the veil” of

operational data

6

Quality Week Europe 2000
 November 22-24, 2000

E-Commerce Trends
Accentuating Data Quality Issues
• Breadth of user exposure
• Diversity and volume of source data
• Disintermediation
• Privacy and ethical issues

Quality Week Europe 2000
 November 22-24, 2000

Breadth Of User Exposure

• E-commerce is extending the exposure of
the relative nature of data quality

• Older operational data may be unclear or
inappropriate, particularly to user whose
perspective may be different than
anticipated

Example: 14-gauge GRN cable
Is it 14-gauge green cable or grounded cable?

7

Quality Week Europe 2000
 November 22-24, 2000

Diversity And Volume Of Source
Data

•Transactions must be quick and convenient
– Minimum of edit checking and verification
– Web data not easily reconciled with operational

data for analyses
• May even deliberately circumvent fraud and abuse

of purchasing policies

Example: Steve Brown, S Brown, Stephen
Brown, Steve Bron – Same customer? On
credit hold?

Quality Week Europe 2000
 November 22-24, 2000

Disintermediation

•E-commerce has a self-serve business model
– Positives: Speeds transactions, saves money
– Negatives: Loss of buffer or translator,

discrepancies left unresolved, loss of revenue
Example: I search for pants, you sell slacks.
An intermediary would automatically make
the translation and the sale – not any more!

8

Quality Week Europe 2000
 November 22-24, 2000

Privacy And Ethical Issues

• Misuse of private data is gaining increasing
publicity

• Not just a legislative issue – it’s also a data
quality issue
– Incorrect social security # reveals information
– Inability to identify unique customer reveals

financial data

Quality Week Europe 2000
 November 22-24, 2000

The E-Quality Content
Management (“eQCM”) Process

• When does it occur?
– Anytime that data is in motion
– Not a one-time “clean-up”
– Real-time data quality maintenance filters are

required
– eQCM must mediate the daily activity that goes

against your enterprise databases

9

Quality Week Europe 2000
 November 22-24, 2000

eQCM Control Points

Quality Week Europe 2000
 November 22-24, 2000

What Processes Are Involved?

• Context mediation
– Determination of business meaning of word or value

based on context
• Fuzzy searching

– Ability to perform quick and product retrieval of data
without a precise key

• Fuzzy matching
– Application of your business rules, and measure of

statistical certainty, to determine when to declare
critical relationships within the data, such as duplication
and affiliation

10

Quality Week Europe 2000
 November 22-24, 2000

What Does It Cost?
• Costs vary depending on the complexity of

the data and affected business processes
– Costs escalate in proportion to amount of

risk/reward
• High-dollar transactions necessitate very high data

quality

• WARNING: One size does not fit all
– For example, shrink-wrapped “data-cleansers”

designed to prepare bulk mailings will not
provide data quality for sales, marketing and
CRM efforts

Quality Week Europe 2000
 November 22-24, 2000

Conclusion
• You must have a requirement to manage

data quality whenever:
– Data is re-purposed or deployed for new

business purposes
– External data sources are integrated, linked or

queried
– Transactions of external origin are

synchronized with your Web-site or back office
– Users (prospects, customers, partners) search

your published databases

11

Quality Week Europe 2000
 November 22-24, 2000

Ensuring Data Quality for
E-Commerce Systems

 The Hidden Role of Data Quality in E-Commerce Success

Eric Messin
Director of Sales

La Grande Arche Paroi Nord
92444 Paris La Defense

France
011-33-140-90-3518

www.vality.com

QWE2000 Session 8M

Mr. Martin S. Feather, Mr. Tim
Kurtz [USA]

(NASA Glenn Research Center)

"Putting It All Together: Software
Planning, Estimating And

Assessment For A Successful
Project"

Key Points

Software Estimation●

Project Planning●

Assessment, Risk Mitigation●

Presentation Abstract

OBJECTIVE

How can project managers best incorporate estimation, planning, risk management,
corporate processes and resources into a coordinated, tailored approach to
developing and managing software? Large software efforts face the challenges of (1)
identifying software risks, (2) judiciously planning for IV&V, development & QA
activities to mitigate risks, (3) estimating cost & schedules of these plans, (4)
accommodating the priorities of the primary stakeholders while ensuring mission
success, (5) complying with standards & processes. This presentation will describe
and demonstrate a coherent approach and accompanying tool support that
addresses these challenges.

APPROACH

The first phase of the approach uses a user-friendly electronic interview to elicit
overall project characteristics. Behind the scenes, relevant portions of this data are
automatically fed into COCOMO II to yield cost and schedule estimates. The
COCOMO estimates, and other portions of the user-provided data, are then
combined with institutional practices and policies (for example, ISO 9001, CMM and
site-specific principles), yielding estimates of cost, schedule, and risk, and plans for
mitigating risk while conducting software development.

The second phase of the approach allows the user to scrutinize and tailor this
development plan. Key to this phase is the use of several cogent visualizations of
risks, mitigations, and their interrelationships. Through these visualizations the user
can both comprehend and customize the plan and its impacts (on cost, schedule,
and risk). The final phase of the approach combines all of the above to yield the

QWE2000 -- Conference Presentation Summary

http://www.soft.com/QualWeek/QWE2K/Papers/8M.html (1 of 3) [10/27/2000 9:24:26 AM]

outputs of this whole approach, namely:
Identified software risks. The risk lists will take into consideration risks
associated with software failures on previous NASA and aerospace missions
(lessons learned, failure reports, defect profiles, etc.). This includes the
identification of software components and intermediate deliverables by level
of system criticality.

●

An optimized plan that identifies software IV&V, development, and QA
activities that mitigate and eliminate software risk for a given project at
various times during the lifecycle.

●

Consistent cost and schedule risk reduction budget estimates that establish a
responsible balance between constrained project funding and the safe
implementation of software subsystems.

●

An equitably negotiated IV&V, Software Development, and QA plan that
includes the priorities of the primary stakeholders while maintaining a high
integrity program.

●

IV&V, QA, and project plans that are compliant with institutional policies, ISO
based Software Development Process Descriptions, and best practices from
(for example) CMM.

●

CONCLUSIONS

The elements of the approach have been successfully developed and applied
separately, in the form of NASA Glenn's AskPete tool
(http://tkurtz.grc.nasa.gov/PETE/Default.htm) and NASA JPL's DDP tool ("Scalable
Mechanisms for Requirements Interaction Management", Feather et al, in
Proceedings IEEE 4th Int. Conf. on Requirements Engineering, IEEE Computer
Society, 2000). Determination of the value of the combined approach is currently in
process. The added utility of a planning tool that combines estimation, tailorable
development processes, QA and IV&V estimates, and risk management based on
the integration of these disparate but related activities is believed to provide a
definite benefit to program managers.

About the Speaker

Tim Kurtz:

For the 13 years prior to joining Scientific Applications International Corporation
(SAIC), Tim worked for Defense Contract Management Command (DCMC). During
that time, he was the program manager for the Mk 48 ADCAP torpedo program at
DPRO Westinghouse and implemented the software quality assurance program and
monitored the transfer of software and development of test equipment for the Mk 50.
At DCMC Dayton he was responsible for training and overseeing the SQA activities
of Software Quality Assurance Specialists who monitored DoD software
development contracts and the development and maintenance of all Air Force
simulators. Trained in ISO 9000 auditing and Software Development Capability
Evaluation Training, Tim developed and implemented the ISO 9000 Qualification
Audit system for DCMC Dayton to provide second party ISO certification to defense

QWE2000 -- Conference Presentation Summary

http://www.soft.com/QualWeek/QWE2K/Papers/8M.html (2 of 3) [10/27/2000 9:24:26 AM]

contractors and provided software certification training for all Software Professional
Development Program applicants in DCMC.

Martin S. Feather:

For the last four years, Senior Engineer in NASA/JPL's Software Quality Assurance
Group. Prior to that, was a research scientist at Univ. of Southern California's
Information Sciences Institute for 15 years, and a research scientist with Principal
Investigator status on NSF and DARPA tasks at Computing Services Support
Solutions (Los Angeles) for 3 years. Holds BA and MA degrees in Mathematics and
Computer Science from Cambridge Univ., England, and PhD degree in Artificial
Intelligence from the Univ. of Edinburgh, Scotland. Has over 50 refereed publications
in the areas of automated support for early-phase lifecycle software development,
and is an active participant in the software engineering milieu.

QWE2000 -- Conference Presentation Summary

http://www.soft.com/QualWeek/QWE2K/Papers/8M.html (3 of 3) [10/27/2000 9:24:26 AM]

1

Research funded by NASA OSMA and GSFC IV&V Facility

Putting It All Together: Software
Planning, Estimation and Risk
Assessment for a Successful

Project

Tim Kurtz Martin Feather
SAIC NASA Jet Propulsion Lab
NASA Glenn Research Center Pasadena, CA, USA
Cleveland, OH, USA
http://tkurtz.grc.nasa.gov/pete

Quality Week 2000
Brussels, Belgium
November 23, 2000

Tim Kurtz Martin Feather
SAIC/NASA Glenn Research Center NASA Jet Propulsion Lab
Cleveland, OH, USA Pasadena, CA, USA 2

Research funded by NASA OSMA and GSFC IV&V Facility

Approach to Putting “it”
Together

Three phased approach
• Characterize the project

– COCOMO II
– ISO 9001 Development Processes
– IV&V Criteria

• Tune the Risk Strategy
• Planning and Implementation

2

Tim Kurtz Martin Feather
SAIC/NASA Glenn Research Center NASA Jet Propulsion Lab
Cleveland, OH, USA Pasadena, CA, USA 3

Research funded by NASA OSMA and GSFC IV&V Facility

Phase 1: Characterize the Project
Use Common and Specific Tools

• COCOMO Cost Estimation
• Software Control Level Matrix (tailored

version of DERA Size matrix)
• NASA Independent Verification and

Validation Criteria

Tim Kurtz Martin Feather
SAIC/NASA Glenn Research Center NASA Jet Propulsion Lab
Cleveland, OH, USA Pasadena, CA, USA 4

Research funded by NASA OSMA and GSFC IV&V Facility

Phase 1: Characterize the Project
Development Framework - COCOMO II

Factors derived from COCOMO II
• Cost of development
• Schedule
• Personnel requirements
• Size of project
• Software Reuse

3

Tim Kurtz Martin Feather
SAIC/NASA Glenn Research Center NASA Jet Propulsion Lab
Cleveland, OH, USA Pasadena, CA, USA 5

Research funded by NASA OSMA and GSFC IV&V Facility

Phase 1: Characterize the Project
Development Framework - Control Level

Characterization Factors from Control Level
• Organizational Complexity

– Customers (internal – multiple industries)
– Development site(s) (single – multiple sites)

• Technical Complexity
– Degree of Innovation
– Use of tools
– Interdependencies of Deliverables

• Consequence of Failure
– Safety Implications
– Business Implications

Tim Kurtz Martin Feather
SAIC/NASA Glenn Research Center NASA Jet Propulsion Lab
Cleveland, OH, USA Pasadena, CA, USA 6

Research funded by NASA OSMA and GSFC IV&V Facility

Phase 1: Characterize the Project
Determine Need for IV&V or Independent

Assessment
Factors From Independent Verification & Validation
• The need for IV&V is based on possible effect and

extent of failure of the software to perform as
intended.

Factors Used to Calculate:
• Resources (manpower) expended
• Investment (money) expended
• Effect of failure on personnel and equipment

4

Tim Kurtz Martin Feather
SAIC/NASA Glenn Research Center NASA Jet Propulsion Lab
Cleveland, OH, USA Pasadena, CA, USA 7

Research funded by NASA OSMA and GSFC IV&V Facility

Phase 1: Characterize the Project
Tailor Development Processes

User Software Design Development System
Testing Release Support

User
Requirements Design

User
Requirements

Release Support

Development Release

Development

CRITICAL/HIGH CONTROL
PROCESS:

MEDIUM CONTROL
PROCESS:

LOW CONTROL
PROCESS:

REQUIREMENTS

Tim Kurtz Martin Feather
SAIC/NASA Glenn Research Center NASA Jet Propulsion Lab
Cleveland, OH, USA Pasadena, CA, USA 8

Research funded by NASA OSMA and GSFC IV&V Facility

Phase 1: Characterize the Project
Build on Common Areas

• COCOMO II factors address
majority of the development
planning issues

• Control Level factors
overlap COCOMO II and
address additional
organizational and
performance issues

• Incorporating other areas of
interest, (i.e. IV&V,
Software Assurance), build
on COCOMO II and Control
level questions

5

Tim Kurtz Martin Feather
SAIC/NASA Glenn Research Center NASA Jet Propulsion Lab
Cleveland, OH, USA Pasadena, CA, USA 9

Research funded by NASA OSMA and GSFC IV&V Facility

Phase 1: Characterize the Project
Outcomes

• What the project will cost (personnel, money)

• How long the project will take

• What controls are required, What documents need
to be generated

• What activities need to be performed

• An initial set of risk mitigations based on the
project’s parameters

Tim Kurtz Martin Feather
SAIC/NASA Glenn Research Center NASA Jet Propulsion Lab
Cleveland, OH, USA Pasadena, CA, USA 10

Research funded by NASA OSMA and GSFC IV&V Facility

Phase 1: Characterize the Project
Identify Initial Mitigation Set Based on Control Level
Pac tId Pact Title

Percent
Time

Percent
Cost

Absolute
Cost

Absolute
Time

Low
Pact

Medium
Pact

High
Pact

Critical
Pact

P9 Requirements 0 0 $0.00 0 X X X X
P10 Authorization to proceed 0 0 $0.00 0 X X X X
P11 Identify design/coding standards 0 0 $0.00 0 X X X X
P12 Maintain Softw are Development Folder 0 0 $0.00 0 X X X

P13
Softw are Assurance review s Management
Plan

0 0 $0.00 0 X X X

P14
Implement Problem report and corrective
action system

0 0 $0.00 0 X X X

P15 Management Plan approval 0 0 $0.00 0 X X X X
P16 Documented requirements 0 0 $0.00 0 X X X X
P17 Peer review of requirements 0 0 $0.00 0 X X X
P18 Conduct formal inspection of requirements 0 0 $0.00 0 X
P19 Softw are Assurance review s requirements 0 0 $0.00 0 X X
P20 Requirements approval 0 0 $0.00 0 X X X X
P21 Peer review of plans 0 0 $0.00 0 X X
P22 Implement Formal configuration management 0 0 $0.00 0 X X
P23 Conduct Product Assurance Audits 0 0 $0.00 0 X X
P24 Conduct Formal Review s 0 0 $0.00 0 X X

P25
Document approval of requirements and
formal review

0 0 $0.00 0 X X

P26
Customer approval of certif ication
procedures

0 0 $0.00 0 X

P27 Conduct analyses of criticality and safety 0 0 $0.00 0 X
P28 Plan and schedule IV&V activities 0 0 $0.00 0 X

P29
Identify method for verif ication of safety
critical functions and requirements

0 0 $0.00 0 X

6

Tim Kurtz Martin Feather
SAIC/NASA Glenn Research Center NASA Jet Propulsion Lab
Cleveland, OH, USA Pasadena, CA, USA 11

Research funded by NASA OSMA and GSFC IV&V Facility

Phase 2: Tune Risk Strategy
 Terminology

• Risks - combination of likelihood (probability of
occurrence) and impact (how much damage it will
do if it occurs).

• PACT - risk mitigation, implementation of a PACT
will have some effectiveness in reducing one or
more risks
– Preventive measures
– Analyses
– process Controls
– Tests

Tim Kurtz Martin Feather
SAIC/NASA Glenn Research Center NASA Jet Propulsion Lab
Cleveland, OH, USA Pasadena, CA, USA 12

Research funded by NASA OSMA and GSFC IV&V Facility

Phase 2: Tune Risk Strategy
 Identify and Prioritize Specific Risks

• Identify project specific risks
– Start with the Software Engineering Institute’s Software

Risk Taxonomy as the base set of software development
risks

– Remove inapplicable risks and add project specific risks

Prioritize risks based on requirements

7

Tim Kurtz Martin Feather
SAIC/NASA Glenn Research Center NASA Jet Propulsion Lab
Cleveland, OH, USA Pasadena, CA, USA 13

Research funded by NASA OSMA and GSFC IV&V Facility

Phase 2: Tune Risk Strategy
 Identify Risk Mitigations

• An initial set of mitigations was identified based
on the characteristics of the project

• Adjust the mitigations based on available
resources and impact to the risks

Tim Kurtz Martin Feather
SAIC/NASA Glenn Research Center NASA Jet Propulsion Lab
Cleveland, OH, USA Pasadena, CA, USA 14

Research funded by NASA OSMA and GSFC IV&V Facility

Phase 2: Tune Risk Strategy
Estimate Risk Mitigation Effectiveness

• Each mitigation only affects a subset of risks
• Each risk is affected to a different degree
• The effect of a mitigation on a risk may need to be

adjusted from one project to another

8

Tim Kurtz Martin Feather
SAIC/NASA Glenn Research Center NASA Jet Propulsion Lab
Cleveland, OH, USA Pasadena, CA, USA 15

Research funded by NASA OSMA and GSFC IV&V Facility

Phase 2: Tune Risk Strategy
Tune Mitigations to Maximize Resources

• Select mitigations
– Which have a greater impact on a single risk
– Affect a range of risks

1.4.2

2.1.2

1.4.1

3.2 3.3 1.19 2.12 4.1 5.1 5.3

1.1 3.4 1.19 3.3

3.2 1.19 2.12 3.3 3.7 3.8 4.1

4.2 4.5 4.6 3.10

Risks Mitigations

Tim Kurtz Martin Feather
SAIC/NASA Glenn Research Center NASA Jet Propulsion Lab
Cleveland, OH, USA Pasadena, CA, USA 16

Research funded by NASA OSMA and GSFC IV&V Facility

1

10

100

1.4.2 1.1.2 1.4.1 1.4.3 1.7.1 1.7.3 1.2.2 1.1.5 1.1.1 1.2.4

Phase 2: Tune Risk Strategy
Tune Mitigations to Maximize Resources

Pareto risks to determine which have yet to be
mitigated to an acceptable level

9

Tim Kurtz Martin Feather
SAIC/NASA Glenn Research Center NASA Jet Propulsion Lab
Cleveland, OH, USA Pasadena, CA, USA 17

Research funded by NASA OSMA and GSFC IV&V Facility

Phase 2: Tune Risk Strategy
Outcomes

A tailored set of risk mitigations for the
project which includes

• A set of risks applicable to the project

• A set of risk mitigations applicable to the
project risks

• The costs of the risks and mitigations in
time and effort

Tim Kurtz Martin Feather
SAIC/NASA Glenn Research Center NASA Jet Propulsion Lab
Cleveland, OH, USA Pasadena, CA, USA 18

Research funded by NASA OSMA and GSFC IV&V Facility

Phase 3: Planning and Implementation
 Combine and Implement Mitigations

• Original estimates are supplemented based
on selected mitigation strategies

• Resulting impact on the project can be
reviewed and adjusted
– Budget
– Schedule
– SPA activities

10

Tim Kurtz Martin Feather
SAIC/NASA Glenn Research Center NASA Jet Propulsion Lab
Cleveland, OH, USA Pasadena, CA, USA 19

Research funded by NASA OSMA and GSFC IV&V Facility

Phase 3: Planning and Implementation
Develop Plans

• Project Development and Product
Assurance plans are developed based on
– Characteristics of the project
– Risks
– Risk mitigations
– Organizations development activities
– ISO 9001
– COCOMO II estimates

Tim Kurtz Martin Feather
SAIC/NASA Glenn Research Center NASA Jet Propulsion Lab
Cleveland, OH, USA Pasadena, CA, USA 20

Research funded by NASA OSMA and GSFC IV&V Facility

Phase 3: Planning and Implementation
Development Plan

• Start with a development plan for a Critical
Control project

• Tailor the plan to the appropriate level by
removing activities and deliverables that
don’t provide the needed cost/benefit ratio
for the effort.

• Address each development phase and
associated documentation

11

Tim Kurtz Martin Feather
SAIC/NASA Glenn Research Center NASA Jet Propulsion Lab
Cleveland, OH, USA Pasadena, CA, USA 21

Research funded by NASA OSMA and GSFC IV&V Facility

Phase 3: Planning and Implementation
Other Project Tasks

Software Product Assurance Plan
• Lists needed Software Product Assurance activities for the

level of control
• Provides Software Product Assurance effort estimates based

on the results
Level of IV&V
• Identifies if Independent Assessment or IV&V necessary for

the project
• Suggests activities and processes
• If IV&V is indicated: level and tasks should be negotiated

and documented in Software Management Plan

Tim Kurtz Martin Feather
SAIC/NASA Glenn Research Center NASA Jet Propulsion Lab
Cleveland, OH, USA Pasadena, CA, USA 22

Research funded by NASA OSMA and GSFC IV&V Facility

Phase 3: Planning and Implementation
Outcomes

• Development Plan based on:
– control level
– documentation requirements
– risk

• Product Assurance Plan based on:
– development activities

• Risk mitigation activities based on:
– control level
– risks
– resources

12

Tim Kurtz Martin Feather
SAIC/NASA Glenn Research Center NASA Jet Propulsion Lab
Cleveland, OH, USA Pasadena, CA, USA 23

Research funded by NASA OSMA and GSFC IV&V Facility

Summary for Putting It All
Together

• Provided approach for managing software
development

• Described a process
– Coordination between factors
– Tailoring to specific project needs

• Presented a Framework, incorporating
– Estimation
– Corporate Processes and Resources
– Risk Management
– Planning

RESEARCH FUNDED BY NASA OSMA AND GSFC IV&V FACILITY �

3XWWLQJ�LW�$OO�7RJHWKHU��6RIWZDUH�
3ODQQLQJ��(VWLPDWLQJ�DQG�
$VVHVVPHQW�IRU�D�6XFFHVVIXO�
3URMHFW�

Tim Kurtz
Science Applications
International Corporation,
NASA Glenn Research Center
21000 Brookpark Rd, MS 501-4
Cleveland, Ohio 44135, USA
Tim@bfsng.com
http://tkurtz.grc.nasa.gov/pete

Martin S. Feather
Jet Propulsion Laboratory,
California Institute of Technology
4800 Oak Grove Drive
Pasadena, CA 91109, USA
Martin.S.Feather@Jpl.Nasa.Gov

2EMHFWLYH�

How can project managers best incorporate estimation, planning, risk management,
corporate processes and resources into a coordinated, tailored approach to
developing and managing software? Large software efforts face the challenges of (1)
identifying software risks, (2) judiciously planning for IV&V, development & QA
activities to mitigate risks, (3) estimating cost & schedules of these plans, (4)
accommodating the priorities of the primary stakeholders while ensuring mission
success, (5) complying with standards & processes. This paper describes a coherent
approach and accompanying tool support that addresses these challenges. The
approach consists of three phases. The first phase characterizes the project, the
second phase balances the risks in the project with the resources available to
mitigate them and the last phase combines the results into plans for controlling the
project. Two tools, Ask Pete, developed at NASA Glenn Research Center and DDP,
developed at the NASA Jet Propulsion Lab, combine to assist project managers in
completing the activities in these phases.

RESEARCH FUNDED BY NASA OSMA AND GSFC IV&V FACILITY �

&KDUDFWHUL]H�WKH�3URMHFW�

The first phase of the approach uses a user-friendly electronic interview to elicit
overall project characteristics. Behind the scenes, relevant portions of this data are
automatically fed into COCOMO II to yield cost and schedule estimates, and into
other matrices to yield control level determinations and IV&V estimates. The
COCOMO estimates, and other portions of the user-provided data, are then
combined with institutional practices and policies (for example, ISO 9001, CMM and
site-specific principles), yielding estimates of cost, schedule, and risk; and plans for
the development effort, oversight and risk mitigation while conducting software
development.

Figure 1, Change to Control Level Shown in Status Bar

(VWLPDWH�&RVW�DQG�6FKHGXOH�

Determine the SLOC estimate using COCOMO II to scale the level of effort and
develop an estimate of the cost and schedule based on what is known about the
project, personnel, organization and resources. The COCOMO II questions form the
foundation for this phase, providing much of the information needed for the control
level and IV&V effort determinations. These initial schedule estimates form the basis
for planning the project. The responses can be tuned, to a degree, to adjust the time
and resources required to complete the project. Tradeoffs and the effects of software
reuse can be examined by monitoring the Ask Pete status bar, see Figure 1.

'HWHUPLQH�WKH�'HYHORSPHQW�)UDPHZRUN�

Using the matrix in Table 1, identify the risks in three areas. These areas lay the
foundation for identifying the level of control that must be implemented to minimize
risk while optimizing the use of resources and maximizing the likelihood of successful
project completion.

,GHQWLI\�2SHUDWLRQDO�5LVNV�

Identify the operational risks to the equipment, and personnel and the mission if the
software should fail or be degraded. These risks can directly impact the chances for
mission success.

RESEARCH FUNDED BY NASA OSMA AND GSFC IV&V FACILITY �

Operational risks deal mainly with what will happen if the software fails during its
functional use. Identify effects of the failure on personnel, the platform the software
controls or operates as well as other equipment which may be negatively affected by
adverse behavior and the ability for the mission to be successfully completed. As
shown in the accompanying matrix, these risks can be large enough to require the
imposition of Critical Control on the project irrespective of the magnitude of the other
risks.

• Table 1, Control Level Matrix

Factor 1 2 3 4 5
Resourcing
Software cost annualized over
life of project (including all civil
servants and contractors)

$100K - $500K $500K – 1M $1M - $2M $2M - $20M $20M and up

Organizational Complexity
Project development location Own Group Several Groups,

most at GRC
More than 2 other
sites

More than 3 other
sites

Numerous sites

Customers Self Other in own
Directorate or one
customer group,
low number of
users

Within GRC Within NASA Entire Industry or
multiple industries

Developers Software
experience level

All team qualified
and experienced

Most team
members qualified
and experienced

Half the team
qualified and
experienced

Few team
members
experienced

Experienced staff
not available

Technical Complexity
Test Risk No testing required Minimum Testing Standard testing

required
Integrated Testing Major testing effort

required (e.g.
IV&V)

Degree of Innovation Well proven,
known to GRC

Proven with some
GRC experience

Proven, but new to
GRC

Partially proven
with some
pioneering

Pioneering

Software development tool
availability

All software
development tools
already
purchased/in-
house/familiar with

Majority of the
software
development tools
are purchased /in-
house/familiar with

Software
development tools
must be identified
and purchased
and learned

Majority of
software
development tools
must be obtained,
remainder
developed

All software
development tools
must be
developed

Interdependencies of
deliverables

Simple standalone Some Integration Integrated Highly integrated Fully integrated

Safety Implications * (see NASA STD 8719.13A, NASA GB-1740.13 & NHB 1700.1 (V1-B))
Potential Damage to carrier
vehicle, major equipment, or
system itself

No damage Small/minor
damage to
equipment, or to
system itself,
mission still
possible

Repairable/
recoverable
damage to system
and little or no
damage to any
related or
surrounding
systems

Loss of system,
and/ or damage
to any critical
surrounding
systems or
carrier vehicle

Loss of carrier
vehicle (e.g.
space craft,
aircraft, major
satellite)

Potential Injury to personnel No injury Minor injury Injury Severe injury or
temporary
disability

Loss of life or
permanent
disability

Business Implications
Consequence of Failure Minor loss of

Customer
Confidence

Unsatisfied
Customer

Damage to GRC
Reputation

Damage to NASA
reputation

Significant
impact to USA

Schedule Pressure No time pressure Little effort to meet
milestones

Nominal effort to
meet milestones

Aggressive effort
to meet milestones

Time critical

 |------Low control software -----|
 |-- Medium control software--|
 |----------- High control software ----------|

RESEARCH FUNDED BY NASA OSMA AND GSFC IV&V FACILITY �

,GHQWLI\�2UJDQL]DWLRQDO�5LVNV�

Identify the risks to the development team and organization in successfully
completing the project or if the software should fail or otherwise perform adversely.

Organization risks are concerned with the amount of resources committed to the
project, the cohesiveness, quality and experience of the development team(s), the
exposure the completed project will be subjected to, and the effect on the public’s
perception of the organization if the software or development effort should fail.

,GHQWLI\�'HYHORSPHQW�5LVNV�

Identify development risks that could affect successful completion of the project.
Successful completion is defined as on time, within budget and with the proper
functionality.

Development risks include the level of testing or IV&V required, the incorporation and
development of new technologies, the availability and use of development tools and
the amount of integration which must be achieved with other software or systems.

Figure 2, Control Level Phases

'HWHUPLQH�7DLORULQJ�RI�'HYHORSPHQW�3UDFWLFHV��,62�������&00�

3URFHVVHV��

Organizations that have implemented ISO 9001 processes need to tailor the
processes to the requirements of the project. Smart organizations have a

RESEARCH FUNDED BY NASA OSMA AND GSFC IV&V FACILITY �

documented plan for tailoring their activities to fit the scope of a project just as they
have a method for tailoring the documentation requirements of the project. Table 2
shows the tailoring of documentation to control level development used with the
control level processes in Figure 2

Figure 2 illustrates the tailoring function based on the required control level. Large,
complex, risky projects, requiring High or Critical Control are developed with a typical
waterfall life cycle approach with requirements, design, development and testing
phases. Projects under this control level would typically be characterized by
selections from the right two columns of the table. Flight Software for the
International Space Station power system or an application to be used across the
aeronautics industry would be two good examples.

Medium control levels utilize a development life cycle that includes system testing as
part of the Development phase and combines User and Software Requirements
Analysis into one activity. The same functions are performed as for a High control
project but the phases are not as rigorously defined and controlled and
documentation requirements are slightly reduced.

Low control levels combine the Design and Development phases into one. Again the
same functions are performed but even less rigorously defined and only minimum
documentation requirements are imposed.

Table 2, Documentation Requirement by Control Level

Key: ▲ Required ❒ Optional
Software Documentation for: Low Medium High Critical

Management Plan ▲ ▲ ▲ ▲

 Development Activities Plan ▲ ▲ ▲ ▲

 Verification Plan ▲ ▲ ▲ ▲

 Validation Plan ▲ ▲ ▲ ▲

 Organizational and Technical Interface Descriptions ▲ ▲ ▲ ▲

 Acquisition Activities Plan ❒ ❒

 Training Development Plan ▲ ▲

 Assurance Plan ▲ ▲ ▲

 Risk Management Plan ❒ ▲ ▲

 Configuration Management Plan ▲ ▲ ▲

 Delivery and Operational Transition Plan ▲ ▲

Product Specification ▲ ▲

 Concept documentation ▲ ▲

 Requirements documentation ▲ ▲ ▲ ▲

 Design documentation ▲ ▲ ▲ ▲

 Version description ❒ ▲ ▲

 User’s guide ❒ ❒ ❒ ❒

 Operational Procedures Manual ❒ ❒ ❒ ❒

Procedures

 Testing Procedures ▲ ▲ ▲ ▲

 Safety Assurance Procedures ❒ ▲

 Security and Privacy Procedures ❒ ▲

 Certification Procedures ❒ ❒ ▲

RESEARCH FUNDED BY NASA OSMA AND GSFC IV&V FACILITY �

8WLOL]H�5HVXOWV�RI�3UHYLRXV�6WHSV�

Utilizing the estimates and the risks to the project and the organization that have
been identified provides a basis for tailoring the development processes that will be
followed. Many of the questions answered during the estimation process were also
asked again during the control level identification process. By integrating the two
activities into one you assure consistency in the results when the two are combined.
Use these results as the basis for tailoring the ISO 9001 processes. Be even more
efficient by combining them into a single application which provides an initial
development cost and schedule estimate, a compilation of processes that will reduce
the risks to the project, organization and provide the best path to success, a
development plan, a quality assurance plan, schedule and estimate and an IV&V
assessment.

Additional decision making matrices can be added to this process, i.e. NASA NPG
2820 contains an appendix for containing the criteria for implementing Independent
assessments or IV&V on a project. What you will find when incorporating additional
decision matrices to the COCOMO/Control Level foundation described above, is that
many of the factors in the new matrix have already been addressed. The IV&V
matrix included 15 decisions but only required the addition of four new questions to
the interview process and tweaking the existing reports to incorporate the new
results.

$GMXVW�5HVRXUFHV�DQG�3URMHFW�

Having done all that, based on what you thought you knew about the project, did it
agree with your initial assessment? Now that the data gathering is done, it’s time to
look at what happened when all the parts were combined. Is it an elephant, a horse
or something out of mythology?

If you find that it’s not what you initially expected, then the next step is to look at what
can be changed to make it more familiar or achievable. If cost or time required to
develop is the issue, adjust the COCOMO factors. If the risks are too high or the
controls too stringent, adjust the Control Level factors. Too expensive and
controlled? Adjust the factors that affect them both first. Once, you’ve done all that
you rationally can, then decide is it something your organization wants to attempt, or
should you pass on it. If you decide to continue, document the decisions that you
made and be prepared to act on them.

For example, if your project estimate is over the budget allowed and you planned on
using a programming team with little experience (6 months) with the intended
platform, and the languages and tools being used (1 year). By using a more
experienced team with one year experience with the platform and three years
experience with the language and tools, the estimated cost for the project will drop
from $317,000 to $265,000.

RESEARCH FUNDED BY NASA OSMA AND GSFC IV&V FACILITY �

Table 3, Requirements Phase Risk Mitigations

&UHDWH�,QLWLDO�0LWLJDWLRQ�6HW

Most, if not all, development efforts share the same or similar risks, and luckily, many
of the activities performed during development are forms of risk management or
mitigation, i.e. requirements reviews, formal inspections, testing, etc.. Using a
standard process that tailors your development activities you can easily identify an
initial set of mitigation activities for the project as shown in Table 3.

The table includes a list of all possible mitigation activities that could be performed
during the Requirements phase. It also identifies which of the activities are required
based on the control levels. These activities, selected for the project’s control level,
then become the initial mitigation set. Associated costs for these activities can also
be identified. This will assist when determining if additional activities should be
performed based on the cost to implement an activity versus the cost of the risk
occurring or the cost of implementing a less expensive activity.

2XWFRPHV�RI�WKH�)LUVW�3KDVH�

As a result of this phase, you know

• What the project will cost
• How long the project will take
• What controls are required
• What documents need to be generated

Pac tId Pact Title
Percent

Time
Percent

Cost
Absolute

Cost
Absolute

Time
Low Pact

Medium
Pact

High Pact
Critical
Pact

P9 Requirements 0 0 $0.00 0 X X X X
P10 Authorization to proceed 0 0 $0.00 0 X X X X
P11 Identify design/coding standards 0 0 $0.00 0 X X X X
P12 Maintain Software Development Folder 0 0 $0.00 0 X X X

P13 Software Assurance reviews Management Plan
0 0 $0.00 0 X X X

P14
Implement Problem report and corrective action
system

0 0 $0.00 0 X X X

P15 Management Plan approval 0 0 $0.00 0 X X X X
P16 Documented requirements 0 0 $0.00 0 X X X X
P17 Peer review of requirements 0 0 $0.00 0 X X X
P18 Conduct formal inspection of requirements 0 0 $0.00 0 X
P19 Software Assurance reviews requirements 0 0 $0.00 0 X X
P20 Requirements approval 0 0 $0.00 0 X X X X
P21 Peer review of plans 0 0 $0.00 0 X X
P22 Implement Formal configuration management 0 0 $0.00 0 X X
P23 Conduct Product Assurance Audits 0 0 $0.00 0 X X
P24 Conduct Formal Reviews 0 0 $0.00 0 X X

P25
Document approval of requirements and formal
review

0 0 $0.00 0 X X

P26 Customer approval of certification procedures
0 0 $0.00 0 X

P27 Conduct analyses of criticality and safety 0 0 $0.00 0 X
P28 Plan and schedule IV&V activities 0 0 $0.00 0 X

P29
Identify method for verification of safety critical
functions and requirements

0 0 $0.00 0 X

RESEARCH FUNDED BY NASA OSMA AND GSFC IV&V FACILITY �

• What activities need to be performed
• An initial set of risk mitigations
• Additional risk mitigations which might be selected. If their costs have been

identified then you can compare what their cost to the project might be versus the
risks they address.

,GHQWLI\�DQG�0LWLJDWH�5LVNV�

The second phase of the approach allows the user to scrutinize and tailor the initial
risk mitigation plan developed by the first phase.

This second phase brings into play pre-assembled knowledge that relates the risk
mitigations of the development plan to known software development risks. Several
visualizations of this information enable to user to comprehend the interrelationships
between risks and mitigations. Through these visualizations the user can better
comprehend the risk landscape, and make a judicious choice of development
activities. The main goal of this phase is to develop a risk mitigation plan that
minimizes risk subject to the constraints on the software development effort (notably,
schedule and cost).

Upon conclusion of this phase, the tailored development is transferred back to the
Ask Pete tool for report generation.

In the subsections that follow we describe the main steps of this second phase,
notably:

• Identify Risks
• Prioritize Risks
• Identify Risk Mitigations
• Estimate Risk Mitigation Effectiveness
• Select Risk Mitigations

,GHQWLI\�5LVNV�

The tool is pre-populated with a detailed taxonomy of software development risks
taken from the Software Engineering Institute (SEI). A snapshot of a fragment of this
taxonomy is shown in, Figure 3:

RESEARCH FUNDED BY NASA OSMA AND GSFC IV&V FACILITY �

Figure 3, Risk Taxonomy

The user can tailor this risk taxonomy by discarding risks, and by adding new ones.

Discarding risks: For example, the user might discard a risk that is clearly
irrelevant to the project at hand, but should be prepared to justify this action.
The tool provides capabilities appropriate to support this practice, by offering a
means to switch between views of retained and discarded risks, and by
allowing the user to attach commentary to any risk (whether discarded or not).
Thus a review team could quickly locate which risks had been discarded by
the project team, and scrutinize their justifications for doing so.

Adding new risks: Users can add new risks, presumably risks not present in
the SEI risk taxonomy. This enables them to extend the capabilities of the tool
to operate on their specific concerns.

This hybrid approach of supplying pre-populated information, together with allowing
for user customization, is a recurring theme of this phase. In this particular step of risk
identification, the pre-populated risk taxonomy serves as a checklist to remind users
of the broad spectrum of risks associated with software development, while the
option to add new risks is a means by which users can add risks specific to their
task/project/institution.

The net result of this step is a set of software development risks of concern to the
task at hand.

3ULRULWL]H�5LVNV�

It is standard practice to evaluate risk as the combination of likelihood (probability of
occurrence) and impact (how much damage it will do if it occurs). Our approach
follows this practice – each individual risk has an a-priori likelihood figure (the
probability of occurrence were nothing done to inhibit that risk), and separate rating of
impact. For rating the impact, we offer a choice between a simple scheme in which
the users directly assert their estimations of each risk’s total impact, and a more
elaborate scheme in which users relate risks to project requirements, and derive the
impact from these relationships.

RESEARCH FUNDED BY NASA OSMA AND GSFC IV&V FACILITY ��

This more elaborate scheme requires further input from the users:

• Identifying the project requirements (which can be individually weighted to
reflect their relative importance)

• Quantitatively relating the risks to the requirements that they impact –
briefly, the impact of a risk on a requirement is a measure of how much of
that requirement would be lost were that risk to occur.

Once these inputs have been provided, the tool automatically computes the total
impact of a risk as the sum of the impacts on the weighted requirements.

Advantages of this more elaborate scheme derive from the creation of explicit
traceability between risks and requirements: it serves as a disciplined way to make
estimates of risk impact, and it results in an understanding of which requirements are
most at risk. For example, it is possible to use this information to justify a
renegotiation of the requirements themselves, in the case that some of the
requirements are seen to be at risk, and mitigation of that risk is particularly
expensive. Most importantly, this process allows multiple experts’ knowledge to be
combined to yield a consistent risk prioritization.

However, elaborating the requirements, and relating them to the extant risks, is a
time-consuming process. In the cases where the users already have a good
understanding of the relative impacts of the risks, they may prefer to follow the
simper scheme and enter those values directly.

The net result of this step is a task-specific prioritization of the previously identified
software development risks.

,GHQWLI\�5LVN�0LWLJDWLRQV�

Recall that the first phase of the approach had yielded a set of suggested risk
mitigation activities. The second phase presents to the user all the possible risk
mitigation activities known to the first phase, indicating which of these have been
suggested for this particular project. These mitigations, like the risks, are organized
into a taxonomy for ease of scrutiny and navigation. In the figure below, suggested
activities are indicated by the presence of check marks as shown in Figure 4.

RESEARCH FUNDED BY NASA OSMA AND GSFC IV&V FACILITY ��

Figure 4, Mitigation List

The user can tailor this mitigation list by discarding mitigations, and adding brand
new ones unknown to the first phase. Observe again the hybrid of pre-populated
knowledge, in the form of a checklist of known activities, and the option for
augmenting this with task-specific additions. Refining the selection from this universe
of activities is to be addressed in the last step of this phase.

There are costs associated with performing mitigations. Most notably, budget and
schedule are constrained resources in almost all software development efforts, and it
is important to know how a suggested set of mitigations will consume these. The first
phase of our approach yields cost and schedule estimates for each of the mitigation
activities, and these estimates are carried over into this second phase. If users
choose to add in additional mitigations, it is their responsibility to provide the costing
information.

The net result of this step is a set of risk mitigation activities from which the users can
choose.

(VWLPDWH�5LVN�0LWLJDWLRQ�(IIHFWLYHQHVV��

Typically, a mitigation will affect only a subset of all the risks, and of those, some
more than others. Our approach accommodates this. Mitigations are cross-linked to
the risks they mitigate, and associated with those links are quantitative estimates of
the effectiveness of those mitigations.

The tool is pre-populated with quantitative effectiveness links between the Ask Pete
universe of activities, and risks of the SEI software development risk taxonomy. We
have made reasonable estimates of these effectiveness values, which we expect to
refine as our experience base grows. Figure 5 shows a fragment of this cross-linking
of activities to risks. Activities are the rows, and risks the columns. The numerical
values in the white-background cells denote the effectiveness of the activity on the
risk; this can range from 0.0 (not effective whatsoever) to 1.0 (fully effective at
mitigating that risk). An empty cell is equivalent to an entry of 0.0

RESEARCH FUNDED BY NASA OSMA AND GSFC IV&V FACILITY ��

Figure 5, Effectiveness Links

The users can adjust the effectiveness values, and annotate them with justifications
as they do so. For example, the users might judge that formal inspections will be
more effective than the pre-populated data would suggest, because they have an in-
house team that is skilled in their application, and past experience has shown their
high effectiveness in this area.

If the users have added new risks and/or new mitigation activities, then they will be
required to cross-link those new items. For example, if the users add in a mitigation
of using model checking (an effective analysis technique that has emerged from the
formal methods research community over the last decade or so), they will have to
assess which risks it mitigates (e.g., flaws in protocols), and how effective it is at
doing so.

The net result of this step is a quantitative cross-linking of mitigations to the risks they
address.

6HOHFW�0LWLJDWLRQV��

The primary purpose of this second phase is to allow the users to optimize the
suggested program of activities suggested by Ask Pete. The steps up to this point
have served to gather much of the key information upon which this optimization is
based. However, optimization is not an automated step, rather, the users
themselves are expected to explore the options and choose accordingly.

Several visualizations of this information enable to user to comprehend the
interrelationships between risks and mitigations. Through these visualizations the
user can better navigate the risk landscape, and be supported in making their
judicious choice of development activities. A fragment of one of these visualizations
follows.

RESEARCH FUNDED BY NASA OSMA AND GSFC IV&V FACILITY ��

Figure 6, Risks and Mitigation Activities

Figure 6 shows graphically the risks, and for each risk, the activities available to
mitigate that risk.

Each risk is displayed as one of the red-colored rectangles in the leftmost column,
labeled with the risk number (e.g., 1.4.2) from the corresponding risk taxonomy. The
width of the red bar is proportional to the logarithm of the risk. They have been
automatically sorted into descending order, hence the width of the red bars
diminishes towards the lower part of the figure.

The row to the right of each risk’s rectangle displays the activities available to
mitigate that risk, labeled with the mitigation number (e.g., 3.2) from the
corresponding mitigation taxonomy. If there are too many mitigations to fit into one
row, they spill over into a second row, and so on. Each activity has a small check box
showing whether or not that activity has been selected, and through which the user
can toggle that selection. The width of the turquoise rectangle is proportional to the
effectiveness of that mitigation at reducing that risk, for example, mitigation 3.2
alongside risk 1.4.1 (the third row) has a relatively wide rectangle, indicating that it is
highly effective at reducing that particular risk; in contrast, 3.2 alongside risk 1.4.2
(the top row) has a relatively narrow rectangle, indicating that it has only a small
effect at reducing that risk.

The tool uses a variety of dynamic techniques to provide further detail, highlight
selected items of focus (e.g., the border around risk 1.4.1 and its two rows of
mitigations), etc.

In general, there is a non-trivial amount of information that users must take into
account to make judicious selection of risk-mitigating activities. It does not appear to
be feasible to display all this relevant information in one view. Instead, the tool’s
several visualizations offer a variety of forms of presentation, and a variety of means
to focus in on different subsets of the information.

RESEARCH FUNDED BY NASA OSMA AND GSFC IV&V FACILITY ��

The net result of this step, and therefore of this entire second phase, is the selection
of a set of activities together with the costing information associated with those
activities. In the course of this second phase, the users could have adjusted the
recommended selection that emerged from the first phase in several ways:

• Unselecting originally recommended activities
• Selecting additional activities from base set of mitigation activities
• Adding activities that were not options for the first phase to suggest
• Adjusting the cost and schedule estimates that were made by the first phase.

While the users are making their customizations during this second phase, they may
record rationale for these actions. For example, if the users give a risk a relatively low
priority, they may wish to record their justification for doing so. Similarly, if they alter
the effectiveness and/or cost values of a risk mitigation activity, they again may wish
to record a justification (e.g., assert that the cost would be higher than usual because
they do not have any staff on hand already trained in that activity, and so would need
to expend additional time and budget if they were to apply activity). Such user-
supplied justifications are recorded as textual notes, and retained in the database.
Users are not required to supply these, but are encouraged to do so both to serve as
a reminder to themselves for future reference, and to serve as descriptive rationale to
others (e.g., independent revivers of the project plan).

The information of the selected activities and adjusted cost and schedule estimates is
transferred to the third phase for generation of various plans and reports, discussed
next.

&RPELQH�DQG�,PSOHPHQW�0LWLJDWLRQV�

Once the risk mitigation has been tailored in the second phase, the results replace
the initial mitigations from the first phase. New mitigations are added and rejected
mitigations are removed. The resulting costs of the mitigations in time and money
are totaled and presented with the project estimate and control level information. The
results are then incorporated in various plans, tailored to the particular project.

3XEOLVK�3ODQV�

Currently one report and two types of plans can be generated based on the results of
this methodology, a Development Plan and a Product Assurance Plan. The report
specifies the results of the planning and estimation activities, providing COCOMO II
values, Control level, documentation requirements, IV&V recommendation and a
narrative describing the development activities to be performed based on the control
level. Each of the plans utilize these results by tailoring a detailed plan for a critical
control project and removing irrelevant requirements and information. These plans
should be further tailored by the project manager to add information relevant to the
project and organization, i.e, personnel, unique processes, etc. The majority of the

RESEARCH FUNDED BY NASA OSMA AND GSFC IV&V FACILITY ��

tailoring can be performed in the templates used to generate the Product Assurance
Plan.

Once this is completed, the plans should be made available to pertinent people and
organizations.

'HYHORSPHQW�3ODQ�

The development plan, based on MIL-STD-498 and Data Item Description DI-IPSC-
81427, addresses each of the development phases and documentation to be
generated by the project.

3URGXFW�$VVXUDQFH�3ODQ�DQG�/HYHO�RI�,9	9��,QGHSHQGHQW�$VVHVVPHQW�

RU�,9	9�

The Product Assurance Plan addresses typical product assurance activities that
should be performed during each of the phases and estimates the amount of time
required to perform these tasks and evaluations. It also identifies the level of IV&V
the project requires from independent assessment to full IV&V activities.

&RQFOXVLRQV�

This approach combines all of the above to yield the outputs necessary to put
together a successful project, namely:

• Identified software risks. The risk lists will take into consideration risks
associated with software failures on previous NASA and aerospace
missions (lessons learned, failure reports, defect profiles, etc.). This
includes the identification of software components and intermediate
deliverables by level of system criticality.

• An optimized plan that identifies software IV&V approach,
development, and QA activities that mitigate and eliminate software
risk for a given project at various times during the lifecycle.

• Consistent cost and schedule risk reduction budget estimates that
establish a responsible balance between constrained project funding
and the safe implementation of software subsystems.

• An equitably negotiated IV&V, Software Development, and QA plan
that includes the priorities of the primary stakeholders while
maintaining a high integrity program.

• IV&V, QA, and project plans that are compliant with institutional
policies, ISO based Software Development Process Descriptions, and
best practices from (for example) CMM.

RESEARCH FUNDED BY NASA OSMA AND GSFC IV&V FACILITY ��

The implementation of the tool support for the above process accommodates existing
best practices for the various elements of project planning, estimation and
assessment.

$FNQRZOHGJPHQWV��

The research described in this paper was undertaken by Science Applications
International Corporation (SAIC), and the Jet Propulsion Laboratory, California
Institute of Technology, under contracts with the National Aeronautics and Space
Administration, and by NASA Glenn Research Center. Reference herein to any
specific commercial product, process, or service by trade name, trademark,
manufacturer, or otherwise, does not constitute or imply its endorsement by the
United States Government, the Jet Propulsion Laboratory, California Institute of
Technology, NASA Glenn Research Center, or SAIC.

The authors gratefully acknowledge the contributions, guidance and assistance of
Steve Cornford, Robert Dugas, Marcus Fisher, Michael Greenfield, Frank Huy, Hoh
In. Jim Kiper, Tim Larson, Kenneth McGill, Tim Menzies, Burton Sigal, and Siamak
Yassini with special appreciation to John Kelly and Martha Wetherholt for their
support of the research.

QWE2000 Vendor Technical
Presentation VT8

Ruud Teunissen
(Gitek)

TWeb: Testing e-Business
Applications

Key Points

Key Points to be supplied.

Presentation Abstract

Abstract to be supplied.

About the Speaker

Since 1989 Ruud Teunissen is employed in the testing world. He has been involved
in a large number of ICT projects and has performed several functions within the
testing organisation: tester, test specialist, test advisor, test manager, etc. Based on
his experience, Ruud participated in the development of the structured testing
methodology TMap® and is co-author of several books on structured testing. The
last years Ruud is involved in implementing structured testing within organisations on
the Belgian and Dutch market. At this moment Ruud is working in Belgium for Gitek
n.v. as Manager Testen. Ruud is frequently speaking in Benelux and Great Britain.

QWE2000 -- Conference Presentation Summary

http://www.soft.com/QualWeek/QWE2K/Papers/VT8.html [10/12/2000 11:37:06 AM]

E-business testing Novembre 2000

Gitek nv Sint Pietersvliet 3 B-2000
Antwerpen 1

E-Testing
what e-xpertise do you need?

Ruud Teunissen
Gitek nv interaction through software

http://www.gitek.be
gitek@gitek.be

Agenda

• Internet (r)evolution
• Why test e-business?
• How to test e-business?

E-business testing Novembre 2000

Gitek nv Sint Pietersvliet 3 B-2000
Antwerpen 2

From simple functionality ...

… to complex functionality

E-business testing Novembre 2000

Gitek nv Sint Pietersvliet 3 B-2000
Antwerpen 3

Internet (infra)structure 1

WAP

Browser

Web server
(with firewall)

Application
server

Mobile phones

TCP/IP

Database
server

WAP-server

Internet (infra)structure 2

Traditioneel

Back-office
systemen

KantorenInternet

E-business testing Novembre 2000

Gitek nv Sint Pietersvliet 3 B-2000
Antwerpen 4

Internet (infra)structure 2

Back-office
systemen

Internet Voice
Response

KantorenInternet

Internet (infra)structure 2

Back-office
systemen

Internet Voice
Response

KantorenInternet

Multi Channel Architecture

Middleware

E-business testing Novembre 2000

Gitek nv Sint Pietersvliet 3 B-2000
Antwerpen 5

Agenda

• Internet (r)evolution
• Why test e-business?
• How to test e-business?

E-business risks

• Site is too slow or is down
• User unfriendly
• Hacker attack
• Infrastructural restrictions (browsers!)
• Insufficient organisation
• Faulty processing

E-business testing Novembre 2000

Gitek nv Sint Pietersvliet 3 B-2000
Antwerpen 6

Why test e-business?

• Historically: little testing
• Increasing risks
• Necessity of testing increases:

Testing gives insight in quality of software
• Test strategy =

testing versus risks (for every quality attribute)
• Risk = chance of failure * damage

Risk: chance of failure factors

• Ever increasing complexity
– integration with back-office
– more functionality

• Time-to-market, “delivery due yesterday”
• Insufficient knowledge and experience:

– developers and testers
– customer
– specific aspects like security and usability

• Insufficient documentation
• New working method for organisation
• Unknown users, hardware, software
• Continuous change

E-business testing Novembre 2000

Gitek nv Sint Pietersvliet 3 B-2000
Antwerpen 7

Risk: damage factors

• Damage gets higher
– more transactions
– transaction is of higher value
– missing "market share", because users

• can’t find site
• don’t do business
• lose confidence and don’t return

Agenda

• Internet (r)evolution
• Why test e-business?
• How to test e-business?

E-business testing Novembre 2000

Gitek nv Sint Pietersvliet 3 B-2000
Antwerpen 8

Testing Strategy

Aim: To detect the most important defects
as soon as possible at the lowest price!

Aim: To detect the most important defects
as soon as possible at the lowest price!

Dependencies:
• Risks (necessity)

- business
- project
- test

• Quality attributes
• Available resources

Test strategy

determine importance
quality attributes

determine importance
subsystems

determine test
techniques

risks

E-business testing Novembre 2000

Gitek nv Sint Pietersvliet 3 B-2000
Antwerpen 9

Example quality attributes:
Amazon.com

Portability

Security

Time behaviour, Reliability
Usability
User friendliness

Quality attributes

• Which are (in general) of importance?

Dynamic
security (functionality)
accuracy (f)
suitability (f)
usability
reliability
time behaviour (efficiency)
resource utilisation (e)

Static
interoperability (f)
maintainability
portability
operability (usability)

ISO 9126

E-business testing Novembre 2000

Gitek nv Sint Pietersvliet 3 B-2000
Antwerpen 10

Test basis

Test basis

• Not readily available
• Kinds:

– Requirements (business scenarios, use cases)
– FD/TD (often very “light”)
– Norms & standards
– External references

• Much “digging” required,
interviews

• Sometimes measuring
i.s.o. testing

Test techniques

• Many checklists

• Informal techniques: error guessing, DFT
• Performance test
• Security: audit, hacker software, penetration test
• Usability

– lab with simulation
– SUMI and WAMMI checklists

E-business testing Novembre 2000

Gitek nv Sint Pietersvliet 3 B-2000
Antwerpen 11

Test environment

development
environment

test
environment

production
environment

Test automation 1

• Test execution:
– performance (also peak)
– functionality (regression)
– portability to browsers (versions and settings)
– monitoring

• Scanning HTML-scripts to check:
– syntax
– portability (browsers)
– size of images
– spelling
– external links

examples:

www.w3c.org

E-business testing Novembre 2000

Gitek nv Sint Pietersvliet 3 B-2000
Antwerpen 12

Test automation 2

• Test tools
– Load & Stress
– Internet specific C&Pb, big brands + new brands
– challenges:

• moving pictures with applets, and so on
• number of changes in pages

– HTML-check tools (some free, some cheap via the Web)

Knowledge and skills

• Testing
• Business: specs often missing!
• Internet, system and architecture: what is standard?
• Test tools: Capture&Playback + Load&Stress + HTML-

tool
• Specific (for instance, security and performance)

E-business testing Novembre 2000

Gitek nv Sint Pietersvliet 3 B-2000
Antwerpen 13

TESTING as control activity

And we keep on testing …
the production test

• Periodically testing:
• Performance monitoring
• Integrity check
• Security monitoring
• and so on

Test levels in master test plan

Master test plan

Integration test

System test

Acceptance test

Program test

Production test

NEW: production test during exploitation phase

E-business testing Novembre 2000

Gitek nv Sint Pietersvliet 3 B-2000
Antwerpen 14

Test trends

• More mature development process
– More requirements and specifications
– More test environments
– Configuration management

• TMap keeps helping...
– Life-cycle model with testing strategy
– Techniques
– Infrastructure with tools
– Organisation

Conclusion

• E-business testing requires its own test approach
– Focus on testing non-functional quality attributes
– Test automation very important
– Black-box testing and white-box testing mix

• Specific kinds of e-xpertise necessary

THANK YOU!
THANK YOU!

QWE2000 Session 9T

Dr. Rainer Stetter [Germany]
(Software Factory & ITQ GmbH)
http: www.itq.de, email: stetter@sf.com

"Test Strategies for Embedded Systems (9T)"

Key Points

Real life example (control system), project running from 1997 to 2000●

Detailled discussion of every project phase●

Recommendation of approaches, measures and tools●

Presentation Abstract

Embedded Systems are used more and more in the field of mechanical engineering.
This situation leads to an increasing demand for efficient test strategies for
Embedded Systems. In my presentation I would like to demonstrate our approach
with a real life example. In the example IËll discuss the test strategy for a PC104
based control system for a material testing machine.

About the Speaker

At the Technical University, Munich I studied mechanical engineering and as I was
interested in software engineering I took some classes in computer sciences. While I
was doing my PhD in developing a robot simulation system, which I got in 1993, I
improved my knowledge in software engineering. From 1993 until 1997 I was
working as a Research & Development Manager at Zwick Company, Ulm - Germany.

Since 1997 I have been one of the General Managers of Software Factory GmbH,
Munich. In addition, since 1998 I have been working with the Munich based firm itq
GmbH as a General Manager. Together, Software Factory GmbH and itq GmbH
form the Software Quality Center. With some partners of the Technical University of
Munich and VDMA (German Machinery and Plant Manufacturers' Association), we
work on approaches to improve the quality especially in the field of embedded
systems.

Since 1998 I'm Vice President of the VDMA Software department.

QWE2000 -- Conference Presentation Summary

http://www.soft.com/QualWeek/QWE2K/Papers/9T.html [9/28/2000 11:12:59 AM]

http://www.itq.de/
mailto:stetter@sf.com

Test Strategies for Embedded Systems

Dr.-Ing. Rainer Stetter
www.itq.de

2

Test Test Strategies forStrategies for
EmbeddedEmbedded Systems Systems

3

Test Test Strategies forStrategies for
EmbeddedEmbedded Systems Systems

Example: Material Testing

4

Test Test Strategies forStrategies for
EmbeddedEmbedded Systems Systems

Quality Requirements
• Safety critical

– Medical devices
– Life and health

• Quality Requirements according to the FDA
– stable and detailed process
– Validation plan

5

Test Test Strategies forStrategies for
EmbeddedEmbedded Systems Systems

Phases of the Validation Plan
• Splitt whole process into different phases

– Requirements Engineering
– Specification/Design
– Implementation
– Test

• Module
• Integration
• Acceptance
• System

– Deployment

6

Test Test Strategies forStrategies for
EmbeddedEmbedded Systems Systems

Time schedule (first version)

3.Q.97 4.Q. 97 1.Q.98 2.Q.98 3.Q.98 4.Q.98 1.Q.99 2.Q.99 3.Q.99 4.Q.99 1.Q.00 2.Q.00
7 8 9 10 11 12 1 2 3 4 5 6 7 8 9 10 11 12 1 2 3 4 5 6 7 8 9 10 11 12 1 2 3 4 5 6

 Test preparation

SW

SW & HW
Requirements
Engineering

Specificati
on

Validation
prototype

Commissioning series,
production release

Deploy
ment

HW
Specification

external
sppplier

Prototype Production
development

Implementation TestDesign

7

Test Test Strategies forStrategies for
EmbeddedEmbedded Systems Systems

Extract of a validation plan
Validation activity Reference Responsible

1 2 3 4

1. Definition of the user functions of the software x
..\..\..\Analyse\review\A1-Funktionen der
SW.doc uss-kr

2. Definition of the required input data x
..\..\..\Analyse\review\A2-Eingaben der
SW.doc uss-kr

3. Definition of the required output data x
..\..\..\Analyse\review\A3-Ausgaben der
SW.doc uss-kr

4.
Definition of limits, defaults, special input which have to be accepted by
the software x

..\..\..\Analyse\review\A4-Bereiche für Ein-
Ausgaben.doc uss-kr

5. Definition of the required performance x
..\..\..\Analyse\review\A5-Performance der
SW.doc uss-sj

6. Definition of the external interfaces and the user interface x
..\..\..\Analyse\review\A6-Schnittstellen der
SW.doc uss-hib

7. Definition of error classes x
..\..\..\Analyse\review\A7-Definition von
Fehlerklassen.doc uss-kr

8. Definition of the reactions on error classes x
..\..\..\Analyse\review\A8-Reaktion auf
Fehler.doc uss-kr

9. Definition of the system environment x
..\..\..\Analyse\review\A9-
Betriebsumgebung.doc uss-sj

10. Definition of safety requirements, functions and features x
..\..\..\Analyse\review\A10-Sicherheit der
SW.doc uss-bi

11. Software hazard analysis x
..\..\..\Analyse\review\A11-SW-
Gefahrenanalyse.doc uss-bi

12. Traceability of system and software requirements x
..\..\..\Analyse\review\A15-Quercheck-System-
SW.doc uss-sj

13. Design of the system test plan x ..\..\..\Analyse\review\A17-Systemtestplan.doc sf-rs

14. Design of the acceptance test plan x
..\..\..\Analyse\review\A18-
Abnahmetestplan.doc sf-rs

Rating

8

Test Test Strategies forStrategies for
EmbeddedEmbedded Systems Systems

Requirements Engineering
• Descripition of Requirements

– Prose – Non-formal (50 pages)
• Formalisation subsequently, but not detailled enough

– both forms are sensible
• Prose – Management
• Formalized – Test

• Hazard Analysis
– of the system with special focus on software

• Test plans
– Almost impossible to do in a sensible way

• Trial and error group

9

Test Test Strategies forStrategies for
EmbeddedEmbedded Systems Systems

Specification and Design
• Specification

– One modularized document (500 pages) in prose
• No additional work for hardware group

– Written from developers for developers
• Inconsistent level
• Not formal enough
• Hard to develop test procedures

• Test
– Structure and elements of tests were designed
– Planning of the integration test

• Software design
– Guideline for software design
– UML with weekly design reviews

10

Test Test Strategies forStrategies for
EmbeddedEmbedded Systems Systems

Structure of the test activities
Module test Integration test

System and
Acceptance test

HW

SW

Drive system

Safety door

...

HW -prototype

HM 99 1.4.20003 / 99

In krem en ta l-M odu l

P C 104 - M odu l

M ainboard

Pow er
sup ply

Pow er
s u p p ly S S

tes tX pe rt
SS

Dis play -
SS

Mod u l S S

Bedien -
fe ld

M ainboard

Po w er
su pp ly

Pow er
s upp ly SS

tes tXper t
SS

Dis p lay -
SS

Modu l SS

Be dien -
fe ld

Inkrem en tal-M o du lPC 104 - M odul

An triebs -
steu eru ng sb oard

Ma in b oard

Po we r
sup ply

Pow er
sup ply SS

t es tXp er t
SS

Deb ug -
SS

Dr ucker -
SS

Sch utz t ür
- SS

Display -
SS

Mod ul SS

An tr ieb s
s teu er ung

SS

Ve rket tung
SS

Ser vo -
s teue ru ng

10V -
A na log

Ink - Dre h-
imp uls

Schn itts te llen zu Se rvo

Ha upt scha lte r
SS

A ntr iebss chü tz
SS

Siche r heitsbe dien-
e lemen te SS

B ed ie n-
feld

Taste n & Notaus

H a upt-
sc halter

A ntr iebs
- s c hütz

End-
s cha lte r

End scha lte r
SS

Ser vo & M otor

Ink rem e nta l-Modul
D MS -M odul

if(Prüfkraft>=Grenzkraft){
Blockiere_Schutztür()

}

for (i=1;i< pos;i++){
fahre_nach(i);

}

if (a > b) {
Fehlermeldung();

}

Software
New electronics

for(i=1;i< pos;i++){
fahre_nach(i);

}

Review 2 / 99 9 / 99

Control unit

11

Test Test Strategies forStrategies for
EmbeddedEmbedded Systems Systems

Structure of integration test plan

1st exam.
electro-

magnetical
tolerance

electro-
magnetical
tolerance

Electr/ Mech.
Safety

elect. current
1st examinat.

Functional
safeness

Climatical
influences

(1st)

Climatical
influences

(2nd)

Drive
1st examinat.

Force sensor
1st

examination

Force sensor
2nd exam.

Other functions
1st

examination

Vibration /
Noise

SW
test program

Start
1st

prototype
2nd

prototype
 3rd

prototype

12

Test Test Strategies forStrategies for
EmbeddedEmbedded Systems Systems

Implementation
• Organisation

– Daily check in and build

• Weekly code reviews
– Social aspect

• Code is no longer a personal secret
• Same philosophy / style of coding

– Technological aspect
• Only low level errors

– Reading was too fast -> Tom Gilb

• Test
– Development of test procedures and approaches

13

Test Test Strategies forStrategies for
EmbeddedEmbedded Systems Systems

Number of Modules and Lines of Code vs. Time

0

10000

20000

30000

40000

50000

60000

07
.08

.98

28
.08

.98

18
.09

.98

09
.10

.98

30
.10

.98

20
.11

.98

11
.12

.98

15
.01

.99

05
.02

.99

26
.02

.99

17
.03

.99

26
.03

.99

09
.04

.99

21
.04

.99

07
.05

.99

28
.05

.99

18
.06

.99

09
.07

.99

30
.07

.99

20
.08

.99

10
.09

.99

01
.10

.99

22
.10

.99

12
.11

.99

03
.12

.99

24
.12

.99

14
.01

.00

04
.02

.00

25
.02

.00

17
.03

.00

0

50

100

150

200

250
Li

ne
s

of
 C

od
e

N
um

ber of M
odules

NOM

 LOC_all

NOM = Number of Modules

LOC_all = Lines of Code

14

Test Test Strategies forStrategies for
EmbeddedEmbedded Systems Systems

Integration test
• Theory and practice in planning

– Delays of software or hardware
• Very hard time
• A lot of improvisation

• Design of test plans
– Have to be modular -> flexibility to adapt to new situation

• Control
– Regular tracking is very important
– Visible and understable even for the management

• Code Coverage (starting with module testing)
– Whole system not testable at once
– Had to be divided into parts

15

Test Test Strategies forStrategies for
EmbeddedEmbedded Systems Systems

Tracking of integration test

Integration step 1
Integration step 2

Integration step 3

16

Test Test Strategies forStrategies for
EmbeddedEmbedded Systems Systems

System and acceptance test
• Test environment

– Most critical aspect
• New hardware was not available in required numbers
• Old machines had to be modified

– System and acceptance test ran concurrent

• System reliability and defect tracking
– Very detailled tracking
– Wide ranging set of tests on technical aspects

• Humidity
• Lack of electronic current
• Different temperatures
• Safety

17

Test Test Strategies forStrategies for
EmbeddedEmbedded Systems Systems

Tracking of the tests

Di 02. Mai

time 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22

Mi 03. Mai

time 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22

Do 04. Mai

time 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22

Fr 05. Mai

time 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22

2021 2189

2227 2021
2003 2304

2291

2022
2189 2072 0 1787 1787 1787 1787

2072

2348 2126

2348
2250 2258

1787 2251

2347 2021

1787 2304 2003 2201

2289 1519

2015 1932
1828 22912227 1828 2021 2021

2291 2021
2350

2251
2250 1920

2072 2258 2258

2291
2021

EV5.0a.40

V-QMCLLQ-S

18

Test Test Strategies forStrategies for
EmbeddedEmbedded Systems Systems

Overview of efforts

0

2

4

6

8

10

12

Ap
r 9

7
M

ai
 9

7
Ju

n
97

Ju
l 9

7
Au

g
97

Se
p

97
O

kt
 9

7
No

v
97

De
z

97
Ja

n
98

Fe
b

98
M

rz
 9

8
Ap

r 9
8

M
ai

 9
8

Ju
n

98
Ju

l 9
8

Au
g

98
Se

p
98

O
kt

 9
8

No
v

98
De

z
98

Ja
n

99
Fe

b
99

M
rz

 9
9

Ap
r 9

9
M

ai
 9

9
Ju

n
99

Ju
l 9

9
Au

g
99

Se
p

99
O

kt
 9

9
No

v
99

De
z

99
Ja

n
00

Fe
b

00
M

rz
 0

0
Ap

r 0
0

M
ai

 0
0

Ju
n

00

Deployment

Mechanics

Test

Electronics

Software

Project manager

Analysis Specification
Design

Implementation Test

19

Test Test Strategies forStrategies for
EmbeddedEmbedded Systems Systems

Length of phases vs. manpower in phases

Comparison of Length and Capacity

0%

5%

10%

15%

20%

25%

30%

35%

40%

45%

Analysis Specification/Design Implementation Test

Length
Capacity

20

Test Test Strategies forStrategies for
EmbeddedEmbedded Systems Systems

Test effort

Effort vs. test effort

42,0

17,6

0,0

5,0

10,0

15,0

20,0

25,0

30,0

35,0

40,0

45,0

whole project sum test

M
Y (42%)

Effort test performance vs. test
preparation

3,6

14,1

0,0

5,0

10,0

15,0

20,0

25,0

30,0

35,0

40,0

45,0

performance preparation

M
Y

(20%)

21

Test Test Strategies forStrategies for
EmbeddedEmbedded Systems Systems

Lessons learned (I)
• Validation plan

– gave structure for the whole project
• Most useful for the early phases

– Responsibility for disliked activities
• Some bureaucratic overhead

– Reviews very helpful
• Phases
• Design and coding

• Design
– UML is sensible
– No completion of design without coding

22

Test Test Strategies forStrategies for
EmbeddedEmbedded Systems Systems

Lessons learned (II)
• Test

– To start test planning early is very hard, but sensible
• Modular design of test/test procedure is very important

– Re-useability of test patterns in critical situations

– Tracking through all phases -> management
• Test procedures
• Defects and realibility

– Environment
• You never have enough

23

Test Test Strategies forStrategies for
EmbeddedEmbedded Systems Systems

Conclusion
• Embedded Systems <-> inter-disciplinary teams

– Need to encourage communication
• Modules won‘t understand each other,
• if people don‘t talk with each other

• To work in a structured and planned way
– Doesn‘t prevent all problems
– But makes it easier to handle them

• Think before you work !
– Life will be easier

Test Strategies for Embedded Systems

25.09.00 www.itq.de Seite 1/9

__

__

“Test Strategies for Embedded Systems”
Dr.-Ing. Rainer Stetter

ITQ – IT & Quality GmbH, Munich
http://www.itq.de

Introduction:
Embedded Systems are used more and more in the field of mechanical engineering. This
situation has lead to an increasing demand for efficient test strategies for Embedded
Systems. On the basis of a real life example I want to discuss our approach for testing
embedded systems.

Example: Control System for Material Testing Machines
Material testing machines are used in a broad area. Any material has to be tested once
before it’s used in any construction. Therefore there is a high safety and security demand
for the control system of a material testing machine. The control system which is to be
discussed has to collect all machine data in real time which are used for the determination
of the actual control parameters. The real time operating system used is VxWorks. The
software runs on a standardized PC module with a 486 processor. The processor has to
supervise ten input channels at the same time which are refreshed every two ms. For the
design of the software we used UML, based on Rose98 including the code generation and
the round trip engineering component.
The development process is to be validated by the FDA because this kind of machine is
used for testing medical devices, too. According to the FDA demands we used a validation
plan to manage all project activities. The validation plan describes all activities which have
to be fulfilled in a project, including all phases from the requirements engineering up to the
point of the product release.

Fig. 1: Overview of the project schedule

3.Q.97 4.Q. 97 1.Q.98 2.Q.98 3.Q.98 4.Q.98 1.Q.99 2.Q.99 3.Q.99 4.Q.99 1.Q.00 2.Q.00
7 8 9 10 11 12 1 2 3 4 5 6 7 8 9 10 11 12 1 2 3 4 5 6 7 8 9 10 11 12 1 2 3 4 5 6

 Test preparation

SW

SW & HW
Requirements
Engineering

Specificati
on

Validation
prototype

Commissioning series,
production release

Deploy
ment

HW
Specification

external
sppplier

Prototype Production
development

Implementation TestDesign

Test Strategies for Embedded Systems

25.09.00 www.itq.de Seite 2/9

__

__

Fig. 1 gives an overview of the project. The project was splitt into several phases. The
preparation of the test started quite early and ran parallel to all other activities until the start
of test phase.

According to the validation plan we had to work on a software hazard analysis in the
requirements engineering phase to show how the system would react in the case of a
severe software fault. This analysis influenced the system design in general. Because we
couldn’t guarantee an error free software system we had to provide a (mechanical)
hardware backup component for any potential safety critical situation. Otherwise we would
have had to use a two-processor system which was out of the question because of the
additional costs. Another validation activity in this phase was planning the structure of the
system and the final acceptance test. Even though you can read about software testing in
almost any publication, that consideration of the test process should begin at a very early
point in the project, we experienced that it is very hard to this in a effective way.

The description of the requirements was written in prose in a non-formal style. After a
review of the requirements specification through the test group we formalized them
subsequently. In the test phase we had to go through the experience that the level of
formalization used wasn’t detailed enough because the requirements were hard to test. To
improve the testability of the requirements we will strengthen formalization. But you still
need some requirements written in prose because it’s hard to convince management or
marketing people to read heavily formalized requirements.

After a review of the requirements engineering phase, in which all validation plan activities
were discussed in detail, the design phase was started.

In the specification and design phase we had to determine in more detail which system
function had to be implemented in hardware (electronics) or in software. In this phase it was
quite difficult to keep the hardware and software team in touch. Both of these groups were
ready to go into details even though their main job at that time was to determine the
interfaces.

The specification document was written in prose, too. It contained about 500 pages. To
admit concurrent working of several persons we organized the document to be modular. To
write a specification document was neither new nor additional work for the hardware group.
They were used to work in this way. To convince the software team not to start with more
exciting things was quite hard. In the test phase we had to repeat the experience that our
work could have been better. Once more we had found out that the specification should be
more formal to make it easier to develop good test procedures and test cases, in addition
we had to recognize that the level of abstraction was inconsistent.

For the software design we introduced UML. As a matter of fact, the use of the Rose98 was
very helpful. The sequence diagrams were especially useful because in this view the
dynamic behaviour of the system was quite easy to model. After a period of familiarization,
the software engineers worked in small groups interactively with the tool. This was very
efficient because the communication between the software engineers was highly

Test Strategies for Embedded Systems

25.09.00 www.itq.de Seite 3/9

__

__

stimulated. In addition the software design was reviewed weekly. The design reviews were
continuously attended by a member of the test team.

In this phase the test team worked on the design of all test activities. The structure and the
interdependencies of the test activities are shown in fig. 2.

Fig. 2: Structure of the test activities

To describe a module test for hardware modules was quite easy. Due the OO-design of the
software it was almost impossible to design a module test for the software. Therefore we
decided to run code reviews and to do code coverage tests through the implementation
phase to reduce risks and improve software quality. According to the module test plan an
initial version of an integration test plan was developed. For the visualization of the
interdependencies of the modules and the different test procedures we used a flow chart
graphic, see fig. 3.

Module test Integration test
System and
Acceptance test

HW

SW

Drive system

Safety door

...

HW -prototype

HM 99 1.4.20003 / 99

Inkrem en ta l-M odul

PC 10 4 - M odu l

M ainboard

Po w er
supply

Po w e r
s up p ly SS

te s tXp er t
SS

Dis pla y -
SS

Mo d u l SS

B edien-
feld

M ainboard

P ow er
su pply

Pow er
s upp ly SS

tes tXpert
SS

Dis p lay -
SS

Modu l SS

B edien-
fe ld

Inkremental-ModulPC 104 - M odu l

A ntriebs-
s teuerungsboard

M ainb oard

Po we r
supp ly

Po w e r
su p ply S S

tes tXp e r t
S S

De bu g -
SS

Dr uc ke r-
S S

S ch u tztü r
- SS

Dis pla y -
SS

Mo du l SS

A ntr ie bs
ste u e ru n g

SS

V e r kettu n g
S S

Se r vo -
s te ue r un g

1 0 V -
A na lo g

In k- Dr e h-
imp uls

Sc hnittste llen zu Ser vo

Ha u pts c ha lte r
S S

A ntr ie bs s c hü tz
S S

Sic h er h e its b e die n -
e leme n te S S

B edien-
fe ld

T aste n & N ota us

H aupt-
schalter

A ntriebs
- schütz

E nd-
schalter

En ds c ha lte r
SS

S ervo & M otor

In krem enta l-M odul
DM S-M odul

if(Prüfkraft>=Grenzkraft){
Blockiere_Schutztür()

}

for (i=1;i< pos;i++){
fahre_nach(i);

}

if (a > b) {
Fehlermeldung();

}

Software
New electronics

for(i=1;i< pos;i++){
fahre_nach(i);

}

Review 2 / 99 9 / 99

Control unit

Test Strategies for Embedded Systems

25.09.00 www.itq.de Seite 4/9

__

__

Figure 3: Structure of the integration test plan

During the implementation phase the different levels of the test plans were detailed. The
weekly code reviews were attended by a member of the test team, too. Together with the
software engineers the test team worked on the preparation of the white box tests. For the
calculation of the code coverage we used CodeView. At the beginning of the project we
planned an almost 100% coverage. After a while we figured out that it was more helpful to
concentrate on some critical modules than to try to do all at once.

At the beginning of the implementation phase we thought that we already designed around
90 % of all needed classes (modules). But we had to figure out in the first weeks of the
implementation that there was still a lot of detail work to be done. Therefore there is a steep
increase of the number of classes in fig. 4 at the very beginning. After some weeks there
was a stabilization of the number of modules. On the other hand there was a more or less
steadily increasing number of lines of code.

1st exam.
electro-

magnetical
tolerance

electro-
magnetical
tolerance

Electr/ Mech.
Safety

elect. current
1st examinat.

Functional
safeness

Climatical
influences

(1st)

Climatical
influences

(2nd)

Drive
1st examinat.

Force sensor
1st

examination

Force sensor
2nd exam.

Other functions
1st

examination

Vibration /
Noise

SW
test program

Start
1st

prototype
2nd

prototype
 3rd

prototype

Test Strategies for Embedded Systems

25.09.00 www.itq.de Seite 5/9

__

__ Fig.4: Number of modules (classes) and lines of code vs. time

The test phase started with the testing of some hardware modules. This period was quite
tough because on one day the situation occurred that a hardware module was completed
but the corresponding software wasn’t finished. On the next day for another module the
software was finished but the hardware was delayed. Looking back over this period we had
to learn to accept that even with the best planning some improvisation can’t be avoided. To
be flexible in this situation you have to design your test procedures quite modularly. It has
been our experience that the templates which are suggested by the IEEE were a good
basis for tailoring our own templates.

After getting to a certain level of maturity in the basic modules we started with the
integration of the system. To track the progress of the integration we used a coloured flow
chart graphic.

0

10000

20000

30000

40000

50000

60000

07
.08

.98

28
.08

.98

18
.09

.98

09
.10

.98

30
.10

.98

20
.11

.98

11
.12

.98

15
.01

.99

05
.02

.99

26
.02

.99

17
.03

.99

26
.03

.99

09
.04

.99

21
.04

.99

07
.05

.99

28
.05

.99

18
.06

.99

09
.07

.99

30
.07

.99

20
.08

.99

10
.09

.99

01
.10

.99

22
.10

.99

12
.11

.99

03
.12

.99

24
.12

.99

14
.01

.00

04
.02

.00

25
.02

.00

17
.03

.00

0

50

100

150

200

250

Li
ne

s
of

 C
od

e

N
um

ber of M
odules

NOM

 LOC_all

NOM = Number of Modules

LOC_all = Lines of Code

Test Strategies for Embedded Systems

25.09.00 www.itq.de Seite 6/9

__

__

Fig.5: Progress tracking of the integration

(released modules are shown in green, unreleased modules are shown in red)

The basic idea of our approach is shown in fig. 5. For every module which is represented by
a rectangle in the plan we tracked general information, such us the version, the date of
release, the name of the person who released the module and the test procedures which
were the basis for the release of the module. In addition we defined in advance which
modules had to be tested in each integration step. In matching every integration step there
were some integration test procedures which had to be performed. Through this
visualization we always had a good overview of the actual situation. This was especially
helpful in discussions with the management. After getting to the final point of the integration
test we started with the system test. To do the system test we used a modified machine
from a previous generation. After some weeks we got a pre-release of the new hardware
module (mechanical and electronic components) so we could start the acceptance test
concurrently with the system test.

Fig 6: Tracking of the system performance and the occurrence of defects

Integration step 1
Integration step 2

Integration step 3

Di 02. Mai

time 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22

Mi 03. Mai

time 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22

Do 04. Mai

time 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22

Fr 05. Mai

time 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22

2021 2189

2227 2021
2003 2304

2291

2022
2189 2072 0 1787 1787 1787 1787

2072

2348 2126

2348
2250 2258

1787 2251

2347 2021

1787 2304 2003 2201

2289 1519

2015 1932
1828 2291 2227 1828 2021 2021

2291 2021
2350

2251
2250 1920

2072 2258 2258

2291
2021

EV5.0a.40

V-QMCLLQ-S

Test Strategies for Embedded Systems

25.09.00 www.itq.de Seite 7/9

__

__

The system performance and the defect rate were tracked by a spreadsheet with the format
shown in fig. 6. The green colour shows that the system ran without any problems. All
defects are marked by a rectangle. The colour of the rectangle identifies the severity of the
defect and the most likely contaminated module. The number in the rectangle refers to the
defect identifier in the error database.

Based on this type of spreadsheet and some other interpretations of the test results the test
team could come to the decision whether or not the product was ready to release.

Effort:
The whole project was designed to learn how to manage projects of this type. One of the
key questions of project management is, which effort has to be invested in which phase and
of which team. According to this goal we measured not only technical aspects but also
some management aspects. Figure 6 shows the progression of the ongoing project. The
effort of the project staff was measured in percentage of theoretically available man power.
We found out that a realistic percentage of real working on the project is for developers
about 60-70%.

Figure 6: Overview of the efforts

The shape of the curves indicates that the product release worked quite well because there
is a decline of the effort at the end of the project. Projects which end in a crisis have
normally a steep increase in the effort by about two thirds of the theoretically estimated end
date.

0

2

4

6

8

10

12

Ap
r 9

7
M

ai
 9

7
Ju

n
97

Ju
l 9

7
Au

g
97

Se
p

97
O

kt
 9

7
No

v
97

De
z

97
Ja

n
98

Fe
b

98
M

rz
 9

8
Ap

r 9
8

M
ai

 9
8

Ju
n

98
Ju

l 9
8

Au
g

98
Se

p
98

O
kt

 9
8

No
v

98
De

z
98

Ja
n

99
Fe

b
99

M
rz

 9
9

Ap
r 9

9
M

ai
 9

9
Ju

n
99

Ju
l 9

9
Au

g
99

Se
p

99
O

kt
 9

9
No

v
99

De
z

99
Ja

n
00

Fe
b

00
M

rz
 0

0
Ap

r 0
0

M
ai

 0
0

Ju
n

00

Deployment

Mechanics

Test

Electronics

Software

Project manager

Analysis Specification
Design

Implementation Test

Test Strategies for Embedded Systems

25.09.00 www.itq.de Seite 8/9

__

__

Figure 7: Length of phases vs. manpower in phases

Fig. 7 compares the lengths of the periods of time with the manpower invested in the
different phases. The first phases seem to be quite long, but a look at the percentage of the
manpower spent shows that the first phases needed only a small portion of the whole effort.
We spent about 25% of the overall effort for requirement engineering and design but
needed about 40% of the time. We think this ratio is quite realistic, because there is a big
demand for interdisciplinary discussion in the first phases. These discussions are the basis
for decisions and important decisions normally need time.

Finally we compared the test effort with the overall effort. In addition we figured out how
much we invested in test preparation and test performance. The results are shown in fig. 8.
The overall effort was about 42 man years. In test activities we spent about 42%. 20% of
the test effort was needed for preparation, the rest to perform the tests.

Comparison of Length and Capacity

0%

5%

10%

15%

20%

25%

30%

35%

40%

45%

Analysis Specification/Design Implementation Test

Length
Capacity

Test Strategies for Embedded Systems

25.09.00 www.itq.de Seite 9/9

__

__

Figure 8: Test effort

Summary:
The project described ran from July 1997 to completion some months ago with a delay of
only about 4 weeks. This result underlines the fact that collateral test activities conducted
through the whole project are very helpful. But on the other hand it demonstrated that it may
be quite hard to do meaningful test planning in a very early phase of the project. It’s fairly
predictable that the basic test approach might be quite wrong. Therefore it’s very important
that the structure of the test documents is modular to give the flexibility of adapting your test
procedures very quickly to real circumstances.

Finally, we can conclude that the strategy of using a validation plan was very sensible.
Firstly it gave the whole project a certain framework and some regulations. Secondly it
forced us to start our test activities in a very early phase of the project which was eventually
one of the preconditions for project success.

We spent a long period of time and a lot of money to prepare and plan the project in a
sensible and serious way. In the eyes of the management this philosophy takes too much
time for things which you can’t see. Therefore it’s very important to inform the management
regularly and in a way which is understandable for non-insiders. Otherwise you are quite
soon forced to work on getting understandable results rather than to spend time for
thinking. Even though everybody knows that life is easier if think before you act.

Effort vs. test effort

42,0

17,6

0,0

5,0

10,0

15,0

20,0

25,0

30,0

35,0

40,0

45,0

whole project sum test

M
Y (42%)

Effort test performance vs. test
preparation

3,6

14,1

0,0

5,0

10,0

15,0

20,0

25,0

30,0

35,0

40,0

45,0

performance preparation

M
Y

(20%)

Effort vs. test effort

42,0

17,6

0,0

5,0

10,0

15,0

20,0

25,0

30,0

35,0

40,0

45,0

whole project sum test

M
Y (42%)

Effort test performance vs. test
preparation

3,6

14,1

0,0

5,0

10,0

15,0

20,0

25,0

30,0

35,0

40,0

45,0

performance preparation

M
Y

(20%)

QWE2000 Session 9A

Dasha Klyachko [UK]
(Allied Testing)

"Specifics of E-Testing: Difference Between
Traditional and On-Line Software Development and Its

Effect on Testing (9A)"

Key Points

Software testing●

Changes in the testing process●

Software life cycle●

Presentation Abstract

This paper first reviews the difference between the software development process for
the traditional and on-line applications found through the series of interviews with
web developers and development managers. It then suggests the consequent
changes in the testing process and outlines several new features of e-testing.

The theoretical framework is based on the analysis of the system life-cycle (SLC)
(Yourdon, 1989, Clarke, 1997) and its modifications influenced by the changing
business needs, effects of globalisation and standardisation of underlying
technologies. The consequent conclusions about changes in the testing process is
based on the author's work experience and interactions with the colleagues in the
industry.

The paper might be of interest to the practitioners planning and executing testing of
on-line applications.

About the Speaker

Dasha Klyachko

Dasha is doing her PhD at the London School of Economics. Her academic research concentrats
on Outsourcing in the IT industry (E-commerce in particular). Research interests include web
certification methodologies and specifics of the development and testing for on-line applications.

Dasha also is a founder and a managing director of Allied Testing - an outsourcing company
specialising in on-line testing of Internet-based applications. Prior to founding Allied
Testing, Dasha spent most of her career in California as a software testers/developor and system
analyst.

QWE2000 -- Conference Presentation Summary

http://www.soft.com/QualWeek/QWE2K/Papers/9A.html (1 of 2) [9/28/2000 11:13:15 AM]

Dasha lives in London, married, has a daughter.

QWE2000 -- Conference Presentation Summary

http://www.soft.com/QualWeek/QWE2K/Papers/9A.html (2 of 2) [9/28/2000 11:13:15 AM]

 1

Specifics of e-testing: difference between traditional and on-line
software development and its effect on testing

Dasha Klyachko
Director of Allied Testing, LLC

PhD researchers at the London School of Economics,

24 Redcliffe Mews, London SW10 9JU
+44 (0) 7887 647 813

dasha@alliedtesting.com, d.klyachko@lse.ac.uk

Abstract
This paper aims to identify differences between traditional information
systems and e-commerce systems from the point of view of software testing.
The paper presents taxonomy of these differences and describes consequent
changes in testing techniques. I have tried to create a four-dimensional
framework of changes and make these dimensions as "orthogonal" as it is
possible on the relatively limited set of data for the industry.

This article draws on my practical experience and on series of formal
interviews with web developers and development managers. It is a survey
article with which I am opening the discussion, defining the common ground
for us to continue searching for a model defining place of a testing industry
inside the vast area of information systems.

Keywords: software testing, web testing, testing process, software life cycle.

 2

1 Introduction

I will define e-testing as ‘testing of e-commerce applications’ where e-commerce
means ‘conducting business on-line by means of Internet enabled communications’.

Testing has always been an important area of the software development process.
Changes in the technological and business environment and development of e-
commerce applications require new testing methodologies. This paper aims to
identify differences between traditional information systems and e-commerce systems
from the point of view of software testing. It presents taxonomy of these differences
and describes consequent changes in testing techniques.

In part 2 of this paper I identify four differences between traditional information
systems and e-commerce systems from the point of view of software testing. In part 3
I describe consequent changes in testing process. In part 4 I discuss new trends and
the future changes in e-testing.

2 Categories of changes between traditional testing and testing of on-
line applications

The paper considers four types of changes:

1. Software life cycle and project structure changes (including outsourcing of
development and testing work)

2. Externalisation of internal systems and sequential changes in operating
requirements

3. Changing role of web systems - the iceberg effect
4. Media and system complexity.

2.1 Software life cycle and project structure changes

The experience of four decades of commercial software projects has resulted in a
conventional approach to the management of application development, namely the
system life-cycle (SLC) [1], [6]. Conventionally, SLC is divided into the following
phases: project planning, requirements analysis, system design, construction,
implementation, operation. There are various interpretations of the SLC. Some
project management methods curtail the requirements analysis phase (these are
typically based on IEEE standards and have a heavy 'software engineering' flavour).
It is also common to release an application first to a small set of users in order to
identify problem missed during the construction and implementation stages. Testing

 3

conventionally followed the SLC through all the phases. Testers participated in the
reviews of requirements and design, in the unit and system testing.

The competitive advantage is often huge for the first-comers. Therefore, e-commerce
companies rush to the market at the expense of quality. Aggressive development
deadlines often result in skipped requirements analysis stages. Prototypes are often
released as production systems. Thus, testing is left out of initial stages of SLC. To
offset lack of requirements analysis companies often perform usability assessments
allowing users to contribute to the product requirements lists. Testing shifts to the
later stages – to user acceptance and system testing. Moreover, even this type of
testing is often squeezed to a minimum.

Externalisation of systems makes pilot projects rare and difficult to implement.
Therefore, increasing importance of the usability testing. (I considered this change as
part of the SLC changes because pilot projects are part of SLC. Another place for it
would be under the system externalisation changes).

2.1.1 Outsourcing of development

Outsourcing of development often leads to incomplete testing coverage. There are
two testing arrangements possible when development is done by a 3rd party.
According to one arrangement the 3rd party shares testing responsibilities with the
client's internal testing department. In this case, an internal testing department is
responsible for integration testing and the 3rd party – for a functional testing of a new
component. Co-ordination challenges between internal and external testing groups
result in incomplete test coverage. They also decrease involvement of testers at
different stages of SLC. For example, a development agency is not involved in the
requirements analysis and system integration stages, while the internal testing team is
not involved in the system testing. Achieving accord between the internal and
external testing teams at the beginning and the end of the development stages is
always difficult and seldom lasting.

According to another arrangement the 3rd party fully assumes testing responsibilities
for the system. In this case a formal testing stage is often substituted for an informal
procedure with developers executing ad-hoc tests on each other's code. More
advanced development agencies hire internal test specialists or outsource testing to
one or more testing companies.

2.1.2 Outsourcing of testing work

With complexity and diversity of technologies increasing, e-testing becomes more
specialised. For instance, functional testers and security testers are likely to need

 4

different set of skills. The same goes for load -, log - and usability testers. Along
with the deeper specialisation of services we also notice appearance of commoditised
testing functions. On-line companies offer usability or load assessments.
Specialisation and commoditisation increase the role of outsourcing in testing. Often,
several companies specialising in different areas test the same product. Assuming
there are enough service providers, the outsourcing solution is appealing. It decreases
costs to a development company and eliminates the risk of failure [4], [5].

2.2 Externalisation of internal systems and the consequent changes in
the operating requirements

The scope and reach of web-based applications have greatly increased, comparing to
those of traditional systems. Customers, from in-house representatives changed to
external users. Thus, the externalisation resulted in much higher operating
requirements than requirements applied to traditional information systems (IS).
Under operating requirements I designate guaranteed up-time, access requirements,
performance and volume conditions, supported languages and channels. Among the
examples are 7 by 24 support, access from different time zones, system capacity for
peak hours/seasons, different client hardware/software configurations, and multi-
lingual support.

Changing operating requirements mostly affected load testing, performance testing
and system comparability testing. Other examples are testing in ‘odd’ hours, testing in
different languages which often done on specific keyboards (Japanese, for example).

2.3 Changing role of web systems - the iceberg effect

A web site, which appears to a user on Internet, in fact, is only a tip of an iceberg.
There are various fulfilment, procurement, legal, etc. services enabling a web site to
function. Internet-based products handle interactions with the customers (customer
support role), represent a company to the public (public relationships role), and offer
certain service-related guarantees to the customers (compliance role). Testing, as
checking the quality of a web site assumes new flavours. While traditional testing
checks the pure software development categories (functionality of a product, load and
performance characteristics and security), the e-testing often borders with marketing,
internal compliance and auditing procedures. Some examples include verification of
privacy procedures (auditing, compliance); answering customers’ complains within
the guaranteed time frame (customer support), usability assessments and post-
installation log analysis (marketing).

 5

In traditional systems testing had its stable place among marketing, compliance, and
development departments. Now many roles shifted and testing departments have
taken to carry more on their shoulders. Involvement of the testing departments in
these new roles is quite understandable because, e-systems have originally developed
within development departments. Testing departments became involved on early
stages as well. Unlike compliance, marketing and other business departments which
did not interact with new technology until recently. Gradually, the progress of
establishing and institutionalising the internet channel will position marketing and
compliance functions where they belong, once internal marketing and compliance
departments will get more familiar with the technology and assume their share of
responsibilities in e-systems.

Figure 1: The iceberg effect

Fulfilment,
security, privacy,
back ups, legal
requirements

Web
site

2.4 System and media complexity

Papers [2] and [3] argue that the development of web information systems requires a
rather different approach from that of traditional IS development methodologies.
They attribute this to the tight integration needed with other information systems,
such as databases and transaction processing systems, as well as the much wider
audience addressed by these systems. This technical and business integration is
required both inside the host organisation and with the organisation’s trading partners;
in other words, it needs to fit the inter-organisational situation.

 6

Often, a single web information system represents functionality provided by multiple
internal departments. It may serve as a single platform for these departments to
interact with external customers. In this case the system has to be thoroughly tested
for integration among all internal players. Similarly, the system has to deal with
different segments of customers and so must allow for a group - or individual
customisation. This multi-layer customisation has to be tested as well. To complicate
issues mentioned above, companies have to enable web sites with multi-media
(sounds/voice, animation, graphics) and now SMS and WAP functionality.
Integration among the delivery channels also has to be tested.

Figure 2: An internet-based system often serves as a single platform for interactions
between multiple categories of users and multiple departments within a company.

Department 1

Department 2

Department 3

Company's web
site

User A

User B

3 Consequent changes in the testing process

All the described changes reshape methods and techniques used in e- testing. E-
testing assumes new roles and adopts new approaches. Below, I catalogue the high-
level changes required to adapt traditional testing business to an internet environment.

Tables 1: Changes in e-testing

 7

Category of a change Changes in e-testing process
Software life cycle changes 1. Increased attention to user acceptance testing. Users

involvement in requirements generation.
2. Increased attention to integration testing and integration

co-ordination challenges.
Externalisation of the
systems and consequent
changes in operating
requirements

1. Increased attention to performance and load testing. Usage
of load stimulators.

2. 24 x 7 testing, testing during 'odd' hours.
3. Increased attention to security testing.
4. Comparability testing (cross-platform, cross-browser,

different screen sizes and resolutions; text-only mode).
5. Test access for disabled people.
6. Test in multiple languages, currencies and measurement

systems.
7. 'Fool-prove' testing (a product has to work for anyone, not

for experts - like a TV-set).
8. Increased importance of testing of on-line Help. User

manuals change to shorter on-line Help descriptions that
need to be tested for thoroughness and completeness.

9. 'Exploratory testing'. Users do not have manuals explaining
how to use a product, at the best, they have on-line help;
users explore a site. Therefore testing should mimic their
behaviour and include exploratory testing in the portfolio
of services.

10. Usability testing.
11. Personalisation testing, testing for multiple categories of

users.
System and media
complexity

1. Growing importance of regression testing and change
management control.

2. Extensive page layouts, video and audio tests.
3. Test multiple/alternative delivery methods/technologies

(video, sound, WAP, SMS).
Changing role of web
systems - the iceberg effect

1. Post- installation testing (log analysis to identify user's
patterns and system glitches preventing them). Testing
borders with marketing.

2. Quality and security audits.
3. Test to ensure that the virtual world meets the material one:

external customers have to be sure that the system is
sufficient to achieve what it is claiming to achieve (handle
orders, delivery time - warehouses/3rd parties involved).

4. Ensure that external customers are protected from the
system (no fraud, privacy and security issues, back up
procedures).

5. Test in comparison to competitors: to work - is not enough,
need to work at a certain 'standard' level. Obtain seals of
quality approval.

4 Future trends

 8

I outlined changes in the testing methods and techniques caused by the differences
between on-line and regular systems. I see the growing importance of e-testing being
supported by:

• The maturity of the technology and users community -

With the Internet community and relevant technology maturing, quality of web
systems will become more important. Quality of web sites will become a
differentiating factor between the competitors.

• Growing role of on-line applications in revenues -

Growing role of on-line applications in revenues increased the risk of company
failure by not paying attention to a quality of web applications. Thoroughness and
amount of testing acceptable for a small channel is not acceptable for a major
revenue producer.

• The maturity of the industry standards and of the governing law -

The maturity of the industry standards and of the governing law will force
companies to pay more attention - and therefore apply more testing - to such areas
of web development as privacy of data, provision of the related information and
access for disabled users.

I believe we will soon notice the emergence and institutionalisation of uniform testing
standards in the e-testing area. There are companies currently working on standards
in security, content rating, usability, and web audit areas.

The more work is probably required to test validity of dimensions I have offered to
describe changes in testing business. So far my practical experience proved that
operating in these 4 dimensions enabled us to build a successful e-testing business

References

[1.] R. Clarke, The Conventional System Life-Cycle Xamax Consultancy Pty Ltd.

http://www.ana.edu.au/people/Roger.Clarke/SOS/SLC.html, 1997
[2.] Isakowitz T., Bieber M. and Vitali F. (1998) Web Information Systems,

Communications Vol. 41, No. 7.
[3.] D. Klyachko and S. Smithson, A Strategy for Web Development in Electronic

Trading: A case study. Twelfth International Bled Commerce Conference, Bled,
Slovenia 1999.

[4.] M. Lacity and L. Willcocks, “An empirical investigation of information
technology sourcing practices: lessons from experience" in MIS Quarterly vol. 22
Number 3, September 1998.

[5.] M. Lacity and R. Hirschheim, Information systems outsourcing: myth, metaphors
and realities. Wiley, 1993.

[6.]E. Yourdon, Modern structured analysis, Prentice-Hall, 1989

1

Specifics of e-testing:
difference between traditional and

on-line software development and its
effect on testing

Dasha Klyachko
Allied Testing, LLC

PhD researchers at the London School of Economics
dasha@alliedtesting.com

Specifics of e-testing

Categories of changes between
traditional testing and testing of on-
line applications

1. Software life cycle and project structure changes
2. Externalisation of internal systems and sequential

changes in operating requirements
3. Changing role of web systems - the iceberg effect
4. Media and system complexity

Specifics of e-testing

2

Software life cycle
(SLC) and project
structure changes

• SLC changes
• Outsourcing of development
• Outsourcing of testing work

Specifics of e-testing

Category of a
change

Details

• Increased attention to user acceptance
testing. Users involvement in
requirements generation.

• Increased attention to integration testing
and integration co-ordination challenges.

Specifics of e-testing

Changes in
testing

Software life cycle (SLC) and project
structure changesCategory of a change

3

• Guaranteed up-time
• Access requirements
• Performance and volume

conditions
• Supported languages/channels

Specifics of e-testing

Externalisation of
internal systems and
sequential changes in
operating requirements

Category of a
change

Details

Specifics of e-testing

Changes in
testing (page 1)

• Increased attention to performance and load
testing.

• 24 x 7 testing, testing during 'odd' hours.
• Increased attention to security testing.
• Comparability testing (OS, browser, screen size

and resolution)

Externalisation of internal systemsCategory of a change

4

Specifics of e-testing

Changes in
testing (page 2)

• Test access for disabled people.
• Test in multiple languages, currencies and

measurement systems.
• 'Fool-prove' testing.
• Increased importance of testing of on-line

Help.

Externalisation of internal systemsCategory of a change

Specifics of e-testing

Changes in
testing (page 3)

• Exploratory testing.
• Usability testing.
• Personalisation testing, testing for multiple

categories of users.

Externalisation of internal systemsCategory of a change

5

Changing role of
web systems - the
iceberg effect

Specifics of e-testing

Category of a
change

Details
•Fulfilment, procurement, and legal
requirements.

• Interactions with the customers.

• Represent a company to the public

• Offer certain service-related
guarantees to the customers

Specifics of e-testing

Changing role of web systems - the iceberg effectCategory of a change

Fulfilm e nt,
se curity , priv acy ,

back ups, le gal
re quire m e nts

Web
site

6

Specifics of e-testing

Changes in
testing (page 1)

Changing role of web systems - the iceberg effectCategory of a change

• Post- installation testing (log analysis).

• Quality and security audits.

• Test to ensure that the virtual world meets the
material one (order processing, delivery time, 3rd
parties, fulfilment).

Specifics of e-testing

Changes in
testing (page 2)

Changing role of web systems - the iceberg effectCategory of a change

• Ensure that external customers are protected from
the system (no fraud, privacy and security issues, back
up procedures).

• Test in comparison to competitors: to work - is not
enough, need to work at a certain 'standard' level.

• Obtain seals of quality approval.

7

Media and system
complexity

Specifics of e-testing

Category of
a change

Details • Single platform for multiple

• Interactions with multiple customers’
segments

• Multi-media (text, sounds, animation,
graphics)

•Multi-channels (web, SMS, WAP)

Specifics of e-testing

Department 1

Department 2

Department 3

Company's web
site

User A

User B

Media and system complexityCategory of a change

8

Specifics of e-testing

Media and system complexityCategory of a change

Changes in
testing

• Growing importance of regression testing and
change management control.

• Extensive page layouts, video and audio tests.
• Test multiple/alternative delivery

methods/technologies (video, sound, WAP,
SMS).

Future trends

Specifics of e-testing

• Growing importance of e-testing
• The maturity of the technology and users

community
• Growing role of on-line applications in revenues
• The maturity of the industry standards and of the

governing law

• Appearance of the uniform e-testing
standards.

QWE2000 Session 9I

Mr. Ardian Cowderoy [UK]
(ProfessionalSpirit)

"Technical Quality Is Just The Start -- The Real Battle
Is Commercial Quality"

Key Points

System Quality●

Quality in Use●

System Benefits●

Presentation Abstract

In 1997 and 1998 a consortium of European companies and universities, supported
by the European Commission, undertook a major exercise to explore the meaning of
quality in the context of multimedia and website development, with attention to both
the content and functionality. The author was the project manager and technical
director of this research project, "MultiSpace".

Technical quality. Each of the different digital assets used in websites and
multimedia has distinct characteristics that asset developers believe to represent
"quality", such as listed in Table 3 below. While the importance of some technical
quality features have loose relationship to system quality, others can be critical. For
example, colour accuracy is safety-critical for some medical and defence systems.

The MultiSpace project reviewed system quality features, and especially those of the
draft ISO/IEC 9126.1 and .2 ("Software product evaluation - Quality characteristics
and guidelines for their use"). The project found that the ISO/IEC 9126
characteristics and sub-characteristics can be interpreted for multimedia and website
content in a similar way as multimedia and website functionality. Indeed, the two are
sometime inseparable (such as in usability).

However there were some significant technical problems. The first was that the
usability sub-characteristic of "attractiveness" was inadequate at describing the
richness of the experience of using multimedia and the Internet. The second was
that the entire topic of usability concerns only reducing pain of using the
human-system interface, and there is minimal attention to the joys. An effective
description of website/multimedia quality would also be effective at describing the
quality of the component media: books, films, training, games, advertising, etc.

Quality in use. Software systems are developed for a use (or set of uses) resulting
from clearly defined needs. Although some multimedia and websites are utilitarian,

QWE2000 -- Conference Presentation Summary

http://www.soft.com/QualWeek/QWE2K/Papers/9I.html (1 of 3) [9/28/2000 11:13:24 AM]

many are also designed to please personal needs. Especially in the context of
websites, these personal needs comes from a highly diverse audience and are
difficult to model.

We have found it useful to make a distinction between the system constraints
needed for achieving the primary purpose, and the system benefits that create the
experience.

System benefits. System benefits involve giving people more than they expected, in
a satisfying way. Some vendors of commercial software packages achieve this by
adding a wide range of new functions, some of which may be useful. Apart from
resulting in bloatware and increased maintenance costs, this focuses only on
utilitarian purpose. In contrast, traditional media combine quality with a heavy
emphasis on rewards that create increase the quality of the experience. Specifically,
they offer a variety of novelty features, supplementary learning, inter-personal
participation and emotional satisfaction (or stimulation). Table 4 below lists
sub-characteristics that describe these effects.

About the Speaker

Adrian Cowderoy is Managing Director of the Multimedia House of Quality Limited, a
company which he established to promote quality-improvement methods for the
production of websites and multimedia.

Mr Cowderoy was the General chair of ESCOM-SCOPE-99 and
ESCOM-ENCRESS-98 conferences, and was Program chair for ESCOM 96 and 97
(The European Software Control and Metrics conference promotes leading-edge
developments in industry and research, worldwide û see www.escom.co.uk). He is
the METRICS-ESCOM Coordinator for IEEE METRICS 2001 and was on the
Program committee of Metrics 98 and 99, European Quality Week 99 and
COCOMO/SCM 96-99. In 1998 he was acting Conference Chair of the Electronics
and Visual Arts conference in Gifu, Japan. He is a registered expert to the European
Commission DGXIII.

He has provided consultancy and industrial training courses on quality management,
risk management, and cost estimation to the aerospace and medical industries in the
UK, Germany and Italy since 1995. He also lectures at Middlesex University
(www.mdx.ac.uk) on e-commerce project management and managing Internet
start-up's, and at City University, London (www.city.ac.uk), on project management
for systems development.

Mr Cowderoy was project manager and technical director of MultiSpace, a 14-month
million-dollar initiative sponsored by the European Commission in which 12
European organizations explored the potential to apply quality-improvement methods
to multimedia and website development projects. (See www.mmhq.co.uk/multispace
and www.cordis.lu/esprit.)

He was a Research fellow at City University from 1990-1998, and a Research
Associate at Imperial College from 1986-1989. He was also a quality consultant and

QWE2000 -- Conference Presentation Summary

http://www.soft.com/QualWeek/QWE2K/Papers/9I.html (2 of 3) [9/28/2000 11:13:24 AM]

software developer at International Computers Limited, UK, from 1980-1985, where
he worked on operating and networking systems for mainframes and distributed
systems.

His academic qualifications include an MSc in Management Science from Imperial
College, University of London in 1986, and is a member of the Association of MBA's.
He received a BSc in Physics with Engineering from Queen Mary College, University
of London, in 1979.

Mr. Cowderoy has published and presented extensively on multimedia quality and
software cost estimation. He was joint editor of Project Control for 2000 and Beyond
(Elsevier, 1998), Project Control for Software Quality (Elsevier, 1999), and Project
Control: The Human Factor (Elsevier, 2000).

QWE2000 -- Conference Presentation Summary

http://www.soft.com/QualWeek/QWE2K/Papers/9I.html (3 of 3) [9/28/2000 11:13:24 AM]

Copyright © ProfessionalSpirit Limited, 2000 Page 1

Technical Quality is just the start – the real battle is Commercial Quality
Adrian Cowderoy, ProfessionalSpirit Limited

Copyright © ProfessionalSpirit Limited, 2000

“Technical Quality
is just the start –
the real battle is
Commercial Quality”

QWE2000, page 1

PROFESSIONALSpirit

Technical QualityTechnical Quality
is just the start –is just the start –

the real battle isthe real battle is
Commercial QualityCommercial Quality

Adrian Cowderoy
Copyright © ProfessionalSpirit Ltd., 2000

PROFESSIONALSpirit

Copyright © ProfessionalSpirit Limited, 2000

“Technical Quality
is just the start –
the real battle is
Commercial Quality”

QWE2000, page 2

PROFESSIONALSpirit

• The MultiSpace Project –
– Major initiative supported by European Commission

to explore the application of quality engineering
techniques to multimedia and the web

– 12 companies and universities

• Questions:
– Is content different to functionality?
– Do software quality characteristics describe books,

teaching, music and entertainment?
– How can quality be specified, tested and managed?

What is meant by Quality?

Copyright © ProfessionalSpirit Limited, 2000 Page 2

Technical Quality is just the start – the real battle is Commercial Quality
Adrian Cowderoy, ProfessionalSpirit Limited

Copyright © ProfessionalSpirit Limited, 2000

“Technical Quality
is just the start –
the real battle is
Commercial Quality”

QWE2000, page 3

PROFESSIONALSpirit The Contract View: System Quality

• Externally visible view of quality
– allows effective management of contracts
– is adaptable to “content”

 Ch.3 of http://www.mmhq.co.uk/multispace/d2-2p.pdf

• Example, ISO/IEC 9126.2
– Functionality (suitability, accuracy, security, etc)
– Reliability ()
– Usability (learnability, understandability, operability,

attractiveness)
– Maintainability ()
– Efficiency ()
– Portability ()

Copyright © ProfessionalSpirit Limited, 2000

“Technical Quality
is just the start –
the real battle is
Commercial Quality”

QWE2000, page 4

PROFESSIONALSpirit Example measure of system quality

“Using text input”

X = A / B
A = number of places where text input can be used
B = total number of places where input can be given

Interpretation:
0 ≤≤ X ≤≤ 1
“A higher value means that more text input

can be used.”

Measures
X is ratio-scale metric, A & B are counts

Copyright © ProfessionalSpirit Limited, 2000 Page 3

Technical Quality is just the start – the real battle is Commercial Quality
Adrian Cowderoy, ProfessionalSpirit Limited

Copyright © ProfessionalSpirit Limited, 2000

“Technical Quality
is just the start –
the real battle is
Commercial Quality”

QWE2000, page 5

PROFESSIONALSpirit The Developer’s View: Technical Quality

• Asset quality (visible to users)
www.mmhq.co.uk/my-quality/measure-content-quality.shtml

– Narrative
 Spelling, grammar, linguistic simplicity, tone of voice,

compactness, words per section, logical structure, text layout
– Images 2D

 Image quantity, image compression, contrast control, gradation,
edge sharpness, use of color, color mode, color fidelity, printing
accuracy, color vibrancy, harmony with scheme, composition.

– Navigational aids, Movies, 3V & VR, etc

• Use for specifying testing critical features
– e.g. medical and cultural arts need quality accuracy

• And use for improving task performance

Copyright © ProfessionalSpirit Limited, 2000

“Technical Quality
is just the start –
the real battle is
Commercial Quality”

QWE2000, page 6

PROFESSIONALSpirit Other types of Technical Quality

• Asset complexity (internal characteristics)
http://www.mmhq.co.uk/my-complexity/

– object complexity
 e.g. image layers, size, colors, etc

– structural complexity between objects

→ indicates possible problems:
 identify high-risk components
 charge-rate for changes, subject to constraints
 indicators of poor operability

• Process efficiency
– asset management system
– documentation

Copyright © ProfessionalSpirit Limited, 2000 Page 4

Technical Quality is just the start – the real battle is Commercial Quality
Adrian Cowderoy, ProfessionalSpirit Limited

Copyright © ProfessionalSpirit Limited, 2000

“Technical Quality
is just the start –
the real battle is
Commercial Quality”

QWE2000, page 7

PROFESSIONALSpirit The Commercial View: System Rewards

• Usability: attractiveness
– usability is the efficiency of human-machine-interface
– only “sufficient” usability is needed

• The web involves multiple media
– what makes a good book, film or music track?
– what makes effective training?
– what increases sales?

→ To compete with the top web-developers
ALL quality perspectives must be considered

Copyright © ProfessionalSpirit Limited, 2000

“Technical Quality
is just the start –
the real battle is
Commercial Quality”

QWE2000, page 8

PROFESSIONALSpirit The Commercial View: System Rewards

• System constraints
– need just enough for users, immediate business

purpose, and long-term maintainability

• Technical quality of assets
– need just enough for critical assets

• System rewards
– effects that enhance business purpose
– need as much as possible within project constraints

Copyright © ProfessionalSpirit Limited, 2000 Page 5

Technical Quality is just the start – the real battle is Commercial Quality
Adrian Cowderoy, ProfessionalSpirit Limited

Copyright © ProfessionalSpirit Limited, 2000

“Technical Quality
is just the start –
the real battle is
Commercial Quality”

QWE2000, page 9

PROFESSIONALSpirit System Rewards

• 5 characteristics (with 29 sub-characteristics):
– Participation (…, ...)
– Discovery (…, ...)
– Novelty (experience, paradox, dramatic, technical)
– Involvement (…, ...)
– Comfort (…, ...)

• Balance
– different people like different features
– some have negative effects
– some features work best together
– some features are contradictory

Copyright © ProfessionalSpirit Limited, 2000

“Technical Quality
is just the start –
the real battle is
Commercial Quality”

QWE2000, page 10

PROFESSIONALSpirit Sub-characteristics of Novelty

• Personal experience

• Paradox/riddle

• Dramatic experience

• Technical gimmicks

BEWARE:
Balance novelty with Usability and Comfort

Copyright © ProfessionalSpirit Limited, 2000 Page 6

Technical Quality is just the start – the real battle is Commercial Quality
Adrian Cowderoy, ProfessionalSpirit Limited

Copyright © ProfessionalSpirit Limited, 2000

“Technical Quality
is just the start –
the real battle is
Commercial Quality”

QWE2000, page 11

PROFESSIONALSpirit Sub-characteristics of Discovery

Learning about …

…people

…events

…organizations

…tools and processes

…science and technology

…the world

Copyright © ProfessionalSpirit Limited, 2000

“Technical Quality
is just the start –
the real battle is
Commercial Quality”

QWE2000, page 12

PROFESSIONALSpirit Sub-characteristics of Participation

• Bulletin boards

• Email circulars

• Real-time interaction

• Physical meeting support

• Pushed content

• Personalization of interaction

Copyright © ProfessionalSpirit Limited, 2000 Page 7

Technical Quality is just the start – the real battle is Commercial Quality
Adrian Cowderoy, ProfessionalSpirit Limited

Copyright © ProfessionalSpirit Limited, 2000

“Technical Quality
is just the start –
the real battle is
Commercial Quality”

QWE2000, page 13

PROFESSIONALSpirit Sub-characteristics of Involvement

Encourage selected emotions
and discourage others

• News media often rely on anger, fear, pity

• Advertising relies on confidence, greed/avarice

• Entertainment exploits opposites
(e.g. love and hate)

and excites physiological effects (such as lust)

Copyright © ProfessionalSpirit Limited, 2000

“Technical Quality
is just the start –
the real battle is
Commercial Quality”

QWE2000, page 14

PROFESSIONALSpirit Sub-characteristics of Comfort

• Visual beauty

• Poetic act

• Engineering elegance

• Expectation

• Conformance to social norms

N.B. Comfort is a reward,
Usability is a requirement

Copyright © ProfessionalSpirit Limited, 2000 Page 8

Technical Quality is just the start – the real battle is Commercial Quality
Adrian Cowderoy, ProfessionalSpirit Limited

Copyright © ProfessionalSpirit Limited, 2000

“Technical Quality
is just the start –
the real battle is
Commercial Quality”

QWE2000, page 15

PROFESSIONALSpirit Using benefits: Resolve conflicts

• Resolve conflicts
– business and marketing people need cost control
– users want as many benefits as possible,

and sufficient usability, etc.
– technical staff have technical constraints from the

tools and legacy content
– domain specialists message constraints

(for training, advertising, etc)

• Proposed mechanism
– rank each (relevant) feature

on scale 1(irrelevant) to 3 (critical)
– use spreadsheet to identify differences
– consider costs, risks and benefits of each feature

http://www.mmhq.co.uk/quality-planning/

Copyright © ProfessionalSpirit Limited, 2000

“Technical Quality
is just the start –
the real battle is
Commercial Quality”

QWE2000, page 16

PROFESSIONALSpirit Using benefits: User diversity

• Linguistic ability

• Familiarity with the domain

• Computer literacy

• Web-behavior
– seeker, resident, tutor, etc …

• Cultural
– different learning methods
– different problem-solving methods
– different interpersonal behavior
– different value systems
– different history (and symbols)

Copyright © ProfessionalSpirit Limited, 2000 Page 9

Technical Quality is just the start – the real battle is Commercial Quality
Adrian Cowderoy, ProfessionalSpirit Limited

Copyright © ProfessionalSpirit Limited, 2000

“Technical Quality
is just the start –
the real battle is
Commercial Quality”

QWE2000, page 17

PROFESSIONALSpirit Using benefits: Plan Quality

1) Is it engaging?
– it takes one click to leave a web-site !

2) Is it inspiring?
– why return to the website?

3) Is it cool? (Is the style right?)
– being cool is hard work.

4) Is it effective?
– are the promises fulfilled?

5) Is it maintainable?
– adaptations and extension often cost more

than the original website creation.

Copyright © ProfessionalSpirit Limited, 2000

“Technical Quality
is just the start –
the real battle is
Commercial Quality”

QWE2000, page 18

PROFESSIONALSpirit Is it cool?

• Cool is being laid back
– cool websites do not require massive content or

functionality (although they may have them)

• Cool is being self-assured
– your website mustn't pretend to be something else

• Cool is being consistent
… until you change your mind

• Cool is about style, not functional or utility
– some cool sites are difficult to use

• Coolness can not be photocopied !
– as soon as it is defined, it becomes functional

Copyright © ProfessionalSpirit Limited, 2000 Page 10

Technical Quality is just the start – the real battle is Commercial Quality
Adrian Cowderoy, ProfessionalSpirit Limited

Copyright © ProfessionalSpirit Limited, 2000

“Technical Quality
is just the start –
the real battle is
Commercial Quality”

QWE2000, page 19

PROFESSIONALSpirit Examples of building coolness

• Novelty
– personal experience - create experiences for visitors or

describe cool experiences, but stay laid-back
– paradox/riddle can be used to create coolness

- take care to maintain consistency
– dramatic experience requires a great skill to do in a

cool way - don’t photocopying other people
– technical gimmicks

- avoid gimmicks that are merely functional or are widely used

• Likewise for discovery, participation,
involvement, comfort

• Usability, reliability & performance must be OK

Copyright © ProfessionalSpirit Limited, 2000

“Technical Quality
is just the start –
the real battle is
Commercial Quality”

QWE2000, page 20

PROFESSIONALSpirit Using benefits: Control Asset wastage

• Content from libraries and subcontractors can
dominate project costs

• Cost of errors
– unsuitable content has to be changed or replaced
– indirect costs of replacing material in the field

• Impact of changed priorities
– cost of new content,

and waste when some old content is abandoned
– increased opportunity and revenue-earning potential

Copyright © ProfessionalSpirit Limited, 2000 Page 11

Technical Quality is just the start – the real battle is Commercial Quality
Adrian Cowderoy, ProfessionalSpirit Limited

Copyright © ProfessionalSpirit Limited, 2000

“Technical Quality
is just the start –
the real battle is
Commercial Quality”

QWE2000, page 21

PROFESSIONALSpirit Process improvement - how?

• Manufacturing processes: reduction of waste
– equates waste with inefficiency
– benefits from statistical process control
– needs process standardization
– relies on steady changes in technology and market

• Alternative improvement mechanisms
– risk reduction
– quality checking at milestones
– performance review based on 2-4 measures
– improved selection of producer/director
– improved stimuli and resources (for creativity)

Copyright © ProfessionalSpirit Limited, 2000

“Technical Quality
is just the start –
the real battle is
Commercial Quality”

QWE2000, page 22

PROFESSIONALSpirit Web sites

http://www.mmhq.co.uk/
/my-quality/measure-it.shtml … quality measures
/my-quality/is-it-ok.shtml … applying measures

/multispace/framework.shtml … quality processes
 from the EU project

/my-complexity/ … complexity measures
/quality-planning/ … mini-tutorial

Related topics
http://www.emmus.org/ … web usability
http:/www.cordis.lu/ … EU research projects

Copyright © ProfessionalSpirit Limited, 2000 Page 12

Technical Quality is just the start – the real battle is Commercial Quality
Adrian Cowderoy, ProfessionalSpirit Limited

Copyright © ProfessionalSpirit Limited, 2000

“Technical Quality
is just the start –
the real battle is
Commercial Quality”

QWE2000, page 23

PROFESSIONALSpirit Contact details

Adrian Cowderoy

email adrian.cowderoy@professionalspirit.com

phone +44(UK) 118 9 427 970

snailmail ProfessionalSpirit
46 Western Alms Avenue
Reading RG30 2AN
United Kingdom

More on web quality
 www.mmhq.co.uk

Technical Quality is just the start.
The real battle is Commercial Quality.

Adrian Cowderoy

PROFESSIONAL Spirit

In 1997 the European Commission formed a project to explore the meaning of quality in the
context of multimedia and Internet system development, and to establish whether engineering
approaches to quality-improvement could be applied to this emerging domain.

The starting point were the various software frameworks used for quality specification, including
the perspectives of system quality, quality in use and Technical Quality (“internal product
characteristics”). We anticipated that the perspective of Technical Quality would need massive
extension to support individual digital assets (pictures, text, movies, etc). What we did not
anticipate, was that that there is a fourth perspective on quality that has been almost entirely
ignored in the software industry.

This paper is about the fourth perspective, and how it was found.

1) Common perspectives on quality
The MultiSpace project combined experts from twelve organizations in the software quality
industry with website developers and experts. (The term “website” is used in this paper, but most
of the material also applies to multimedia, Internet, intranet and extranet systems.) The first
meeting was traumatic – the software people had tightly refined ideas about quality which the
web-development people saw as seemingly irrelevant to most of the real issues they regularly
faced in making effective systems.

The first exercise was to examine the existing materials and listen to the needs of a wide variety
of practitioners. With this the team developed its many initial views into a single synthesis that
considered what quality meant, how it could be managed and how it fitted within the website
development cycle. (There would be little point in defining quality, if it could not be managed.)
It also considered how to profile the very diverse range of users. Collectively, this represents the
MultiSpace Framework [Cowderoy & Daily, 1997].

Amongst the observations in the MultiSpace Framework are that quality is important for
managing contracts, for planning the quality-improvement and testing, and for evaluating the
different responses that users have to a single system. For this, descriptions are needed of system
quality, Technical Quality, and the users. This section presents the first two of these – the third is
presented in section 2.5.

Technical Quality is just the start. The real battle is Commercial Quality.
Adrian Cowderoy, PROFESSIONAL Spirit page 2

1.1) System Constraints
Effective management of contracts is essential to client-contractor relationships when the
financial amount is to great for relationships of trust, or when the technical complexity is too
great for an individual architect, or when a market-driven approach is used for production of
individual components. (Market-driven production involves outsourcing each step of the
production chain to whichever contractor is cheapest at the required quality and delivery time
[Williamson 1983].)

Efficient contracts for website development need to specify what needs to be delivered in terms
of content, functionality and quality. The quality specification needs to address all quality
characteristics, not just those that are easy to define.

In the software industry, various schemes have been produced for measuring the quality of
delivered functionality. Most of these focus on measuring a specific characteristic, such as
reliability or usability, and ignore other issues. Unfortunately schemes often contradict each
other. For some years, the ISO/IEC 9126 committee has been working on a quality
characterization scheme that describes all quality characteristics and sub-characteristics of
software. This also has contradictions with other schemes, and weaknesses (such as with safety
issues), but it forms a useful starting point for describing quality. (The 10 Design Quality
features proposed by Fellenstein and Wood of IBM [2000], also correspond to a subset of 9126
quality sub-characteristics.)

Websites include deliver both content and functionality. The functionality is described by the
existing 9126 definitions. In the MultiSpace project, we experimented with adapting those
definitions to describe content. This included text, 2D images, 3D images, video, audio and
navigation aids. The subcharacteristics descriptions can be found in chapter 3 of the MultiSpace
Priorities [van Veenendaal]. These are supplemented by over 100 measures, with support for all
the subcharacteristics [Boonstra, 1998]. When MultiSpace started, the accusation had been
labeled at the project that quality was far too illusive to be measured. The work of the Philips and
KEMA teams in MultiSpace proved that content quality can be measured for websites, in the
context of fitness-for-purpose.

Table 1. Examples of Operability metrics for Internet and multimedia systems [Boonstra, 1998].

External
metrics Measurement Interpretation

Scale
type

Measure
type

Using text
input

X = (A / B)

A = number of places where text
input can be given

B = total number of places where
input can be given

0<=X<=1

A higher value
means that more
text input can be
used.

Ratio X = Ratio

A = Count

B = Count

Technical Quality is just the start. The real battle is Commercial Quality.
Adrian Cowderoy, PROFESSIONAL Spirit page 3

Using voice
input

X = (A / B)

A = number of places where voice
input can be given

B = total number of places where
input can be given

0<=X<=1

A higher value
means that more
voice input can be
used.

Ratio X = Ratio

A = Count

B = Count

Using
displacement
input

X = (A / B)

A = number of places where
displacement input can be given

B = total number of places where
input can be given

0<=X<=1

A higher value
means that more
displacement
input can be used.

Ratio X = Ratio

A = Count

B = Count

Copyright © The MultiSpace partners, as project EP23066 under the ESPRIT Programme.

1.2) Technical Quality
Each of the different digital assets used in websites has distinct characteristics that “quality”,
such as listed in Table 2 below. The extent of the contribution to quality varies between
applications, from extremes of zero relevance to extreme high. For example, color accuracy is
safety-critical for some medical and defense systems, textual accuracy is system critical for web-
retail sites and teaching materials.

Table 2. Summary of characteristics for different types of digital asset.
Asset type Characteristics
Narrative Spelling, grammar, linguistic simplicity, tone of voice, compactness, quantity

per section, logical structure, text layout.
Navigational aids Dynamic effects, navigation harmony with main scheme, hyperlink quantity,

URL addresses shown, exclusion of advertising banners.
Images 2D Image quantity, image compression, contrast control, smooth tonal transition

("gradation"), edge sharpness, use of color, color mode, color fidelity, printing
accuracy, color vibrancy, image harmony with main scheme, image composition.

Movies Frame size, movie compression, frame rate, directing, movie composition,
editing, after effects.

For detailed descriptions, see http://www.mmhq.co.uk/my-quality/

There are also suggestions that the adaptability and extendibility of a website may be linked to
complexity and size of individual assets, and the compound structures that combine assets
[Cowderoy, 2000 and http://www.mmhq.co.uk/my-complexity/benefits.shtml].

Technical Quality is just the start. The real battle is Commercial Quality.
Adrian Cowderoy, PROFESSIONAL Spirit page 4

2) System Rewards
2.1) The argument for System Rewards
For centuries, engineers have worked to satisfy the needs of their clients and the public. In past
centuries, this was sometimes supplemented by flights of creativity that added features that were
aesthetically pleasing to some people, but served no clear functional purpose.

During the twentieth century, the influence of factory processes was extended to other industries.
This created a massive improvement in the standard of living, especially as a result of the
widespread use of statistical product and quality techniques that support ever-closer satisfaction
of functional purposes. With such techniques, we could now construct the architecture of St
Peter’s dome, the works of Shakespeare and the music of Beethoven with much greater
efficiency – surplus ornamentation, words and notes would be removed, achieving improved
value for money and higher system efficiency.

The importance of beauty was recognized by the ISO/IEC 9126.2 committee when they defined
the usability sub-characteristic of Attractiveness. However in its current form it is inadequate at
describing the richness of the experience of using websites.

The ISO/IECE 9126.2 use of Attractiveness is also in contradiction to the other usability sub-
characteristics, which describe how the pain of using the human-system interface can be
reduced.

An effective description of website quality would also be effective at describing the quality of
the component media: books, films, training, games, advertising, etc. if Michelangelo,
Shakespeare and Beethoven were correct in their works, then something is missing from the
engineer’s definition of quality. More specifically :-

The commercial failure of some websites can be linked to bad system quality, but once
adequate system quality has been achieved, there is no structure for defining what makes
some sites a commercial success, and others a disaster.

Following some earlier work in MultiSpace, we proposed at the IEEE Symposium on Software
Metrics that, with some exceptions, websites have to provide rewards to their users as well as
satisfying needs [Cowderoy et al, 1998]. In effect, quality consists of two sets of features:

- System Constraints involving the satisfaction of needs to perform the functional purpose
of the website. A well-designed system provides “just enough” quality for the purpose –
anything more would reduce productivity and delivery time.

- System Rewards, involving the provision of features in addition to the primary purpose.
Such features are individually dependent – each person likes some features, and ignores
(or dislikes) others. The objective of the developers is to provide as much reward as
possible within the budget, and timescale. Rewards increase attention, prolong visits to
websites, and encourage return visits. The financial benefits of these can be so significant
that it can justify increased budget and delayed delivery.

The system benefits are listed in detail in section 3 and section 4.

Technical Quality is just the start. The real battle is Commercial Quality.
Adrian Cowderoy, PROFESSIONAL Spirit page 5

2.2) Asset wastage
Ideally, System Rewards should be defined at the start of the project, and either included in the
budget or prioritized so that the most important ones are included. However typically System
Rewards can only be outlined at the start of the project in a very general fashion. The specific
ideas only come part way through, and may come at the first customer demonstration. These late
arrivals may require a change of priorities partway through the project. An effect of changing
priorities is a level of waste – i.e. assets that are partly developed, then discarded.

There is a misleading similarity between the wasted resources from discarded assets in content
development, and the wasted effort resulting from late detection of faults in software
development. The main differences are :-

- Wasted assets can occur from changed priorities, resulting in increased financial
advantage.

- Wasted assets can also occur because the design includes some design features that are
certainties, and others that are opportunities – i.e. there is a possibility that their impact
will be different to original expectations (greater or less), and they may create secondary
risks (such as reduced usability and reliability and new opportunities.)

2.3) Quality improvement strategies
In software engineering, it is often said to be “good practice” to use processes that reduce the
possibility of faults. However in content development, the major challenge is to manage the risks
and opportunities efficiently. The most efficient way of handling this is with risk management
techniques, but to list both good and bad events, and control actions that create leverage to
improve each opportunity or risk. Often these control actions correspond to conventional quality
assurance and quality control actions, however compared to standardized software engineering
practices, these extra quality methods are used only when the benefits clearly outweigh the costs
for the current project.

Another promising methods for web development is concurrent engineering [Carter & Baker].
The concurrency helps with Rapid Application Development, the massive broadband
communications helps improve creativity and reduces many of the quality risks within the
project. It also supports risk management, quality profiling and people management,

2.4) Introducing quality-improvement techniques
We have encountered some hostility to the introduction of engineering methods into
environments that depend on creativity and craft skills. This has led to various conclusions:

- Process definition, standardization and inspection techniques currently only apply to
certain activities.

- Quality engineer’s belief in the importance of statistical methods is seen as a religion
(sometimes fanatic) and not a proposition that is feasible in an industry that can see major
changes within only 3 months.

Technical Quality is just the start. The real battle is Commercial Quality.
Adrian Cowderoy, PROFESSIONAL Spirit page 6

- Quality-training needs to focus on a few key issues to which web development staff can
directly relate.

Table 3. Example of a teaching aid in this area
from http://www.mmhq.co.uk/cool-way/

To teach newcomers to project management, the MMHQ website encourages people to
focus on four areas: the project participants, the product quality, the project risks, and
control mechanisms. (In this context, control is used to improve communications, quality
and risks. The strong emphasis on project participants is important for a craft-based
industry.) The emphasis is on increasing awareness of how each of the four areas effects
the others, and can be used to improve the others. Within each of the four areas, people
are encouraged to appreciate the breadth of topics that should be considered. To highlight
interest, the exercise is presented as a set of card games (“the Cool Way”). It encourages
use of (conventional) methods such as risk management and quality profiling, and it
provides a framework on which more detailed and advanced methods can be built.

2.5) User perspectives
Content-rich web-sites may receive a much more diverse range of users than conventional
software systems.

- For software, the designers and usability evaluators have to address different levels of
computer literacy, physical/visual dexterity and (perhaps) familiarity with the application
area.

- For websites, the “familiarity with the application domain” can become much more
complex, especially for the System Benefits. There are also important differences from
web-behavior (seeker, resident, tutor, etc), linguistic ability, national variations in group
behavior and learning strategies, and value sets (such as from ethnic traditions). Failure to
adequately address these differences can result in customers abandoning the web-site, and
can even result in hostile behavior.

To perform statistical evaluation of the system rewards websites would require a large
population, sampled to include all these different categories. This would be expensive, time-
consuming and it can be difficult to maintain confidentiality an alternative is to use a small
sample, that are carefully chosen so that each category is represented by one (or more) people in
the sample. The people in the sample tend to fit into three groups :-

- Novices are new to evaluation, and give unbiased opinions, which need to be solicited
using a combination of questionnaire, interview and observation – i.e. the evaluation cost
is relatively high.

- Actors are experienced evaluators who play a specified role – they may give very detailed
responses, responding using questionnaires and freestyle, but there is risk that their
responses are stereotyped.

- Focus-group members interact with each other (as well as the moderator) may tend to
double-guess business strategies and other information that has been withheld from them.

Technical Quality is just the start. The real battle is Commercial Quality.
Adrian Cowderoy, PROFESSIONAL Spirit page 7

3) Planning the System Rewards
There are five general categories of reward. Existing websites often totally ignore some of these
categories, but in commercially-oriented websites, most or all of these need to be considered.

- Participation is the core of the one-to-one marketing and community-based e-business
which is one of the characteristics of the New Economy [Siegel, 1999].

- Discovery increases retention and, if there is sufficient new material, it encourages return
visits.

- Novelty attracts attention, which increases retention at the site and may improve
concentration.

- Involvement increases concentration and retention. When there is a strong emotional
element it can encourage return visits.

- Comfort is essential for people to cope with the stress from using the system and its
rewards.

The 5 reward categories subdivide into 29 specific features. Effective quality planning needs all
29 specific features. In assigning importance, beware of the special cases:

- Some features may have negative effects for a particular business or audience. (For
example, most sites would be negatively influenced by the inclusion of any feature than
incited lust.)

- Some features are complimentary to other features within the same category. These work
better when used together. (For example, “poetic act” benefits from co-existence with
“visual beauty”.)

- Features in one category may compliment or clash with features in another category, or
with System Constraints. (For example, novelty requires the presence of comfort and the
system constraint of understandability.)

As well as considering special cases, the importance of each feature needs to resolve conflicting
needs from the four types of player in the project:

- Business and marketing people, who require the website to justify its costs. To this
purpose, they need the inclusion of some features but see no direct financial benefit from
many others, unless these other features change the behavior of users.

- Users, who may include different and conflicting audiences and may include people who
are hostile to the website owners. As explained in section 2.5, there is usually a diverse
range of users to interview.

- Domain specialists, who protect the site from misrepresentation of messages. (For
example, marketing people protect brand images, and teachers demand strict use of
terminology.)

- Technical staff, who carry the legacy of the existing website, the constraints from tools,
and the constraints of existing software solutions to which the web-site provides a front-
end (which is common for advanced e-commerce systems).

It takes a modest effort to identify the priorities for so many players, and then resolve them , (A
set of linked spreadsheets helps.) However without that effort there is a risk that key features
have been forgotten, or under-emphasized, or exaggerated. The cost of such mistakes can be
much greater than the effort of performing quality profiling.

Technical Quality is just the start. The real battle is Commercial Quality.
Adrian Cowderoy, PROFESSIONAL Spirit page 8

4) Characterization of System Rewards
This section contains lists of the various characteristics and sub-characteristics which
collectively describe the System Rewards. Examples can be found at
http://www.mmhq.co.uk/my-quality/examples.shtml

4.1) Participation
Participation includes involvement with other people in both real and virtual contexts. On the
web, participation tends to be aimed at very specific user communities (i.e. people with some
similar objectives). To make participation effective other reward features may be need to
emphasized to suit the local needs of the target users.

N.B. Participation often requires major technical challenges, which introduce other problems
(such as with reliability, usability and performance).

Feature Summary Simple scale

Bulletin boards Electronic notice-boards to which user's can
append their own messages (usually without
censorship).

Irrelevant, Minimal,
Good practice, or State-
of-art.

Email circulars Letters sent electronically to an distribution list. Irrelevant, Minimal,
Good practice, or State-
of-art.

Real-time interaction In which user's engage in real-time dialogue in
an on-line environment. (Includes use of avatars
and video conferencing.)

Irrelevant, Minimal,
Good practice, or State-
of-art.

Physical meeting
support

Support of meetings with preparation, broadcast,
and dissemination.

Irrelevant, Minimal,
Good practice, or State-
of-art.

Pushed content Information pushed onto a recipients computer
without the user directly requesting it.

Irrelevant, Minimal,
Good practice, or State-
of-art.

Personalization of
interaction

Automatic selection of content or functionality
based on a user's actual or perceived needs.
(Used as a marketing tool as well as for handling
information overload.)

Irrelevant, Minimal,
Good practice, or State-
of-art.

Technical Quality is just the start. The real battle is Commercial Quality.
Adrian Cowderoy, PROFESSIONAL Spirit page 9

4.2) Discovery
This includes the discovery of useful or interesting information not related to the primary
purpose of the system. Covers other indirectly related topics. (Currently the most common
intended uses of supplementary learning is in website design, where related indirect topics are
intentionally included in site content in order to please some of the visitors.)

Feature Summary Simple scale

Learning about people Provision of information about people related to
current context.

Irrelevant, Occasional,
Explicit, or Dominating.

Learning about events Reports of upcoming and completed events
loosely related to the current context.

Irrelevant, Occasional,
Explicit, or Dominating.

Learning about
organizations

Provision of information about organizations
and social groups indirectly related to current
context.

Irrelevant, Occasional,
Explicit, or Dominating.

Learning about tools
and processes

Provision of information about the tools and
processes used to improve their work efficiency
and the quality of their results.

Irrelevant, Occasional,
Explicit, or Dominating.

Learning about science
and technology

Provision of information about how and why
things work.

Irrelevant, Occasional,
Explicit, or Dominating.

Learning about the
world

Provision of information about mankind, nature,
science, our planet and outer space.

Irrelevant, Occasional,
Explicit, or Dominating.

4.3) Novelty
Novelty involves the provision of something unusual or new. The extent of novelty can be
influenced by the user's familiarity with the domain. (N.B. High novelty frequently results in
significantly reduced usability - see Usability measures and http://www.emmus.org/)

Feature Summary Simple scale

Personal experience A system satisfying a user's previously
unrecognized need or stimulus.

Irrelevant, Average,
Unusual, or Exceptional.

Paradox/riddle Provision of contradictory features or phrases to
which a solution is promised.

Irrelevant, Average,
Unusual, or Exceptional.

Dramatic experience Provision of a novel state or situation in the
traditions of story-telling, art or music making.

Irrelevant, Average,
Unusual, or Exceptional.

Technical gimmicks Provision of attention-getting device. Irrelevant, Average,
Unusual, or Exceptional.

Technical Quality is just the start. The real battle is Commercial Quality.
Adrian Cowderoy, PROFESSIONAL Spirit page 10

4.4) Involvement
Emotional involvement includes the excitement or strong feeling, encouraging psychological
(and physiological) effect. This can be addictive, encouraging return visits. Emotional
involvement is used extensively in advertising, entertainment and news services.

In the context of a website, only some emotional features are desirable, while some others
may be highly undesirable. In highly utilitarian websites, it is normal (and easy) to avoid all
emotional involvement.

Feature Summary Simple scale

Confidence Faith and trust in the future. Courage to handle
events. (The inverse is the condition of "learned
helplessness", in which all actions are believed
to result in failure, despite new evidence to the
contrary.)

Irrelevant, Occasional,
Explicit, or Dominating.

Love Strong affection for a person or group of people,
based on admiration, benevolence, common
interests or personal ties.

Irrelevant, Occasional,
Explicit, or Dominating.

Pity Empathy with one or more people in a
significantly worse situation than the user.

Irrelevant, Occasional,
Explicit, or Dominating.

Greed Desire for acquisition, consumption or power. Irrelevant, Occasional,
Explicit, or Dominating.

Anger Strong displeasure resulting from actual or
perceived injury. Anger is often accompanied by
a desire for action. The quality feature needs to
be carefully combined with appropriate other
features.

Irrelevant, Occasional,
Explicit, or Dominating.

Fear Anticipation or awareness of danger to self, or
people with one has an affinity.

Irrelevant, Occasional,
Explicit, or Dominating.

Lust Strong carnal desire, devoid from love. This may
have an immediate effect (positive or negative)
that can greatly diminish the effect of most other
quality features.

Irrelevant, Occasional,
Explicit, or Dominating.

Selfishness Disregard for others. Encouraging selfishness,
and can aggravate racism and bigotry.

Irrelevant, Occasional,
Explicit, or Dominating.

Technical Quality is just the start. The real battle is Commercial Quality.
Adrian Cowderoy, PROFESSIONAL Spirit page 11

4.5) Comfort
Comfort includes the provision of reassurance and pleasure. Comfort is used to balance the
difficulties typically associated with other rewards (novelty, supplementary learning,
participation and emotional involvement). Some of the comfort features listed below are
important only in some for certain types of product.

There is a superficial similarity between the System Reward of “comfort” and the system
constraint of “usability”. However comfort is a positive effect, and some people require as much
comfort as possible. In contrast, usability involves only the reduction of pain in using the system,
and it is only necessary to have “just enough” usability within the system.

Feature Summary Simple scale

Visual beauty Visual impression designed to create positive
emotion.

Irrelevant, Average,
High, or Extreme.

Poetic act Elegance of act or thought, with altruistic
motive. Written poetry is one of many forms of
poetic action.

Irrelevant, Average,
High, or Extreme.

Engineering elegance Provision of efficient structure with functional
simplicity.

Irrelevant, Average,
High, or Extreme.

Expectation Use of themes that promise a later reward. Irrelevant, Average,
High, or Extreme.

Conformance to social
norms

Adoption of political correctness and good
morals.

Irrelevant, Average,
High, or Extreme.

5) Conclusion
Web-site owners and developers dream of creating killer websites. The probability of achieving
this can be greatly increased by identifying the priorities for System Rewards, then methodically
improving the most important ones.

This paper is a start. There is still much research that is needed to improve the dichotomy of
System Rewards (as presented in section 4), to provide suitable measures and to provide
appropriate quality-improvement schemes. However the key lesson is that engineering methods
can be applied to support creative and commercial activities.

Technical Quality is just the start. The real battle is Commercial Quality.
Adrian Cowderoy, PROFESSIONAL Spirit page 12

References
Boonstra, F., “Definition of external metrics”, in MultiSpace Quality Pack 2: Quality

specification: questionnaires and metrics, EP23066-D3.2C (Feb 3, 1998).

Carter, D. E. and Baker, B. S. Concurrent Engineering: The Product Development Environment
for the 1990's. Reading, MA: Addison-Wesley, 1991, ASIN 0201563495.

Cowderoy, A.J.C., Daily, K., The MultiSpace Framework, ESPRIT EP23066, 1997. Available at
http://www.mmhq.co.uk/multispace/d2-1p.pdf

Cowderoy, A.J.C., Donaldson, A.J.M., Jenkins. J.O., “A metrics framework for multimedia
creation”, Proc. of the 5th International Software Metrics Symposium, Nov 20-21, 1998,
Maryland, USA, IEEE Computer Society, ISBN 0-8186-9201-4.

Cowderoy, A.J.C., “Measures of size and complexity for web-site content”, ESCOM SCOPE
2000, April 18-20, 2000. Published in Project Control, the Human Factor, Shaker.
Available at http://www.mmhq.co.uk/papers/escomscope2000.pdf

Fellenstein, C., and Wood, R., Exploring E-Commerce, Global E-Business and E-Society,
Prentice Hall, 2000, ISBN: 0130848468.

Siegel, D., Futurize Your Enterprise: Business Strategy in the Age of the E-customer, John
Wiley & Sons, 1999, ISBN: 0471357634. Website: http://www.futurizenow.com/

Williamson, O.E., Markets and Hierarchies: Analysis and Antitrust Implications, Free Press,
1983, ISBN 0029347807.

van Veenendaal, E.P.W.M., “Quality characteristics for multimedia systems”, Ch.3 of The
MultiSpace Priorities, EP23066-D2.2P, 1998. Available at
http://www.mmhq.co.uk/multispace/d2-2p.pdf

QWE2000 Session 9M

Dr. Esther Pearson [USA]
(Genuity Corporation)

"Website Operational Acceptance Testing; Process
Assessment and Improvement"

Key Points

Design of an Website Operational Acceptance Test Environment●

Building Relations with Functional Test and Development Organizations●

Website Test Strategies and Tactical Planning●

Performing Website Operational Acceptance Testing●

Presentation Abstract

It is customer expectations that a website would remain up and running on a
24x7and 365 days per year basis. The Internet does not open at 9am and shutdown
at 5pm Monday through Friday and stay closed on weekends. It is used as a tool for
buying and selling of goods and services, research of information, communication
and entertainment every day and every hour.

With this in mind, one of the most critical aspects of testing a website before it is
deployed live is website "Operational Acceptance Testing". This testing provide a
high-level of assurance that websites can be provisioned and deployed live in a
systematic manner. This systemic process ensures efficient and effective
provisioning of one or a thousand servers and greater probability of 24x7 and 365
days up time of customer servers and web presence once deployed live.

This presentation will explore the test efforts needed by Internet Service Providers
(ISP's). The efforts must include not only functionality testing of software integration
but include Operational Acceptance Testing.

About the Speaker

Dr. Esther Pearson is the Director of Quality Assurance and Test for Genuity
Corporation. In her role as director, she manages a group of engineers which test
web applications in an Internet web hosting environment. Dr. Pearson has worked in
the computer, network and Internet industries for over 20 years.

QWE2000 -- Conference Presentation Summary

http://www.soft.com/QualWeek/QWE2K/Papers/9M.html [9/28/2000 11:13:30 AM]

• •

• •1

Website Operational Acceptance Testing:
Process Assessment and Improvement

Dr. Esther Pearson
Director

QWE2000 -Brussels, Belgium

19/22/2000

Outline

Introduction
Design of Website Operational Acceptance Test
Environment
Building Relations with Functional Test and Development
Organizations
Website Test Strategies
Tactical Planning
Performance of Website Operational Acceptance Testing
Test Process Assessment and Improvement

• •

• •2

29/22/2000

Introduction

Dr. Esther Pearson

Director Production Acceptance Services
25 years Experience in QA/Test and Engineering
Developed Production Environment Acceptance Test
Process for Genuity

39/22/2000

Introduction

GENUiTY
Genuity (NASDAQ: GENU) is a leading e-business network
provider of high-quality, managed Internet infrastructure services
to enterprises and service providers. Genuity offers a
comprehensive suite of managed Internet infrastructure services
to deploy corporate intranets, and business-to-business and
business-to-consumer extranets, including: Internet access
through dial-up, dedicated and digital subscriber lines; Web
hosting and content delivery; and value-added e-business
services such as Virtual Private Networks (VPNs), security
services and Voice-over-Internet Protocol (VoIP). Based in
Burlington, Mass., Genuity has offices and local partnerships
throughout the U.S., Europe, Asia and Latin America.

• •

• •3

49/22/2000

Introduction

Website Operational Acceptance Testing

Testing of a Website presence in a Production
Environment to ensure site setup and configuration meets
quality standards prior to site “live” deployment.

59/22/2000

Introduction

Test Process Assessment and Improvement

Questions to be Answered…
What is Operational Acceptance Testing?
How is a Test Environment Designed?
What Organizational Relationships are necessary for
Operational Acceptance Testing?
How is Operational Acceptance Testing Performed?
How is Test Process Assessment and Improvement
Implemented?

• •

• •4

69/22/2000

Design of Test Environment

Operational Acceptance Test Environment

 ISP’s

 Data Centers

 Acceptance Test Process

79/22/2000

Design of Test Environment

ISP’s (Internet Service Providers)
 Provide Website presence on the Internet

Data Centers
 Provide secure facility for Website Servers and
Equipment housing

• •

• •5

89/22/2000

Design of Test Environment

Acceptance Testing Process

 Ensure Site is properly Setup and Configured

 Final System Test Prior to site “live” deployment

99/22/2000

Building Relations

Building Relations with Functional Test and
Development Organizations

 Key Areas of Operational Test Environment

 Production Environment

 Test Racks for Production Equipment/Servers

 Production Equipment/Servers and Software

• •

• •6

109/22/2000

Website Test and Planning

Website Test Strategies and Tactical Planning

 Test Process

 Test Methods

 Tactical Implementation

119/22/2000

Performing Testing

Performing Website Operational Acceptance
Testing

 Website Testing

 Operational Testing

 Acceptance Testing

• •

• •7

129/22/2000

Performing Testing

Acceptance Testing

 Certification of Software

 Certification of Systems

 Acceptance into “live” Production

139/22/2000

Summary

Test Process Assessment

How is Test Process Assessment Implemented?

Final System Test implemented to detect any previous
Process, Setup, Provisioning and Configuration Problems

• •

• •8

149/22/2000

Summary

Test Improvement

How is Test Improvement Implemented?
 Problems detected in Final System Test must be reviewed
and fed back into the overall site deployment process to
detect and prevent problems reaching the final acceptance
test effort.
Continuous improvement within the entire test process and
organization involved in the deployment process is
achieved.

GENUiTY, Inc. Page 1

WEBSITE OPERATIONAL ACCEPTANCE TESTING:
PROCESS ASSESSMENT AND IMPROVEMENT

By:
Dr. Esther Pearson

Fourth International Software Quality Week Europe (QWE2000)
Brussels, Belgium

20-24 November 2000

GENUiTY, Inc. Page 2

Abstract

It is customer expectations that a website would remain up and running on a
24x7and 365 days per year basis. The Internet does not open at 9am and
shutdown at 5pm Monday through Friday and stay closed on weekends. It is
used as a tool for buying and selling of goods and services, research of
information, communication and entertainment every day and every hour.

With this in mind, one of the most critical aspects of testing a website
before it is deployed live is website "Operational Acceptance Testing". This
testing provide a high-level of assurance that websites can be provisioned
and deployed live in a systematic manner. This systemic process ensures
efficient and effective provisioning of one or a thousand servers and
greater probability of 24x7 and 365 days up time of customer servers and web
presence once deployed live.

This presentation will explore the test efforts needed by Internet Service
Providers (ISP's). The efforts must include not only functionality testing
of software integration but include Operational Acceptance Testing.

GENUiTY, Inc. Page 3

About the Speaker

Dr. Esther Pearson is the Director of Production Acceptance Services, a Quality
Assurance and Test organization at Genuity Corporation. In her role as director,
she manages a group of engineers who test web applications and site
configurations in an Internet web-hosting environment. Dr. Pearson has worked
in the computer, network and Internet industries for over 20 years.

About GENUiTY, Inc.

Genuity is a leading e-business network provider of high-quality, managed
Internet infrastructure services to enterprises and service providers. Genuity
offers a comprehensive suite of managed Internet infrastructure services to
deploy corporate intranets, and business-to-business and business-to-consumer
extranets, including: Internet access through dial-up, dedicated and digital
subscriber lines; Web hosting and content delivery; and value-added e-business
services such as Virtual Private Networks (VPNs), security services and Voice-
over-Internet Protocol (VoIP). With extensive IP experience, the company
integrates its suite of services into corporate networks and delivers high-
performance, secure and scalable infrastructure services for conducting
business on the Internet. Based in Burlington, Mass., Genuity has offices and
local partnerships throughout the U.S., Europe, Asia and Latin America.

GENUiTY, Inc. Page 4

Table of Contents

Abstract……………………………………………………………………………… 2

About the Author……………………………………………………………………. 3

About GENUiTY Inc…………………………………………………………………. 3

Table of Contents……………………………………………………………………. 4

Introduction…………………………………………………………………………… 5

Design of an Website Operational Acceptance Test Environment…………….. 6

Building Relations with Functional Test and Development Organizations…….. 7

Website Test Strategies …………………………………………………………….. 8

Tactical Planning…………………………………………………………………….. .9

Performance of Website Operational Acceptance Testing…………………….. 10

Test Process Assessment and Improvement…………………………………….. 11

Appendix……………………………………………………………………………… 12

GENUiTY, Inc. Page 5

Introduction

This document introduces the process and activities to be performed in the
design, development, implementation and assessment of Website Operational
Acceptance Testing. The purpose of this paper is fivefold:

1. It details the design of a Website Operational Acceptance Environment

2. It describes building relations with functional Test and Development
 organizations to ensure collaborative quality efforts.

3. It provides Website test strategies for an operations production environment.

4. It provides tactical planning and performance of Operational Acceptance
 Testing.

5. It can be used to create a structure for test process assessment and
 improvement.

The first section of this paper defines the Operational Acceptance Testing
nomenclature. The environment in which Acceptance Testing is conducted. The
environment design which includes the test equipment, network and systems.

The second section depicts the organizational relations, strategies, planning and
performance of the test effort. Some of these are standard practices of test and
quality with the point of differentiation being the environment in which the test
effort is occurring.

The final section of this document highlights the assessment of the test effort, as
well as, on-going improvements of the test effort. These improvements to
ensure, as always, continuous improvement of testing and product under test.

GENUiTY, Inc. Page 6

Design of Website Operational Acceptance Test Environment

Operational Acceptance Testing is the combination of a number of test strategies
and methods. It is a combination because it views the test effort as “systems”
test, which takes into account hardware, software and network considerations.
With this in mind, definitions must be given to ensure a common language when
describing testing.

The Acceptance Test effort is comprised of several areas. These areas can be
defined as follows.

Functional Acceptance Test
Testing performed to ensure that hardware and software installed and configured
in a website environment is functioning correctly. The items include: (1) the
network operating software and applications are properly installed and
configured for access and operability; (2) the servers are installed and configured
for connectivity; and (3) network hardware including routers and switches are
installed and configured for network and internetwork operations.

Site Acceptance Test
Testing to ensure the Firewall and VPN configurations are properly setup,
configured and provides accessibility and security. The Firewall testing consists
of verifying the firewall policy and required customization to meet customer
requirements. The VPN testing consists of ensuring an encrypted tunnel with
requested authentication are in place.

System Acceptance Test
Testing to ensure proper functioning of the site configuration, which includes
software, hardware, monitoring, backup, network, firewall, security and high
availability operations within a hosting environment. Also, auditing of the support
systems to ensure accurate and complete data exist to profile site configuration
and the customer identification in case of customer problem escalations.

Business Solution Acceptance Test
Testing to ensure the customers purpose for the site or the customers business
strategy is being exercised and tested for valid operation. This test utilizes
customer site utilization scenarios, which are also known as, user interface and
performance tests.

GENUiTY, Inc. Page 7

Building Relations with Functional Test and Development Organizations

Operational Acceptance Testing is the final test effort prior to a website going
“live” on the Internet. Operational Acceptance Testing is a “system” level test
which occurs after unit or component-level development testing occurs by the
development engineers or their assigned functional engineering-based QA
organization.

This testing ensures that the loaded and configured units of software,
applications and hardware that were developed in-house or by a third-party
vendor are integrated and functioning properly. This testing does not look at the
website as a system, but as individual components. Wherein the individual
components are tested for proper functionality eliminating some of the variables
that could affect the ability to obtain accurate results from Operational
Acceptance Testing.

To ensure component testing is performed effectively it is important to maintain a
collaborative relationship with the component testers and the development
organization. This relationship provides a venue to review component level test
results and fixes that are incorporated by the development organization. As well
as, other synergies that are gained through utilizing the experiences gained
during component level testing.

Thus, building relations with the functional test and development organizations
reaps rewards of knowing component-level testing has occurred and the results
of that testing. This knowledge shapes the Operational Acceptance Test efforts.

GENUiTY, Inc. Page 8

Website Test Strategies

Testing of a website requires strategies that incorporate the Data Center
production environment. In other words testing is conducted in a “live”
environment, but the site is not yet turned over to the customer.

With this in mind, it is required that the website as a system and as a business
solution, is exercised. This is done to determine if the website will function as
requested by the customer. But not only as it is requested to function by the
customer, but as it is needed to operate by the Internet Service Provider (ISP).
The Internet Service Provider needs to be able to monitor the activities, events
and critical running processes of the website and also backup/restore any critical
stores of data.

These two requirements are the key strategies for Operational Acceptance
Testing. Stated another way, the key strategies for website testing are to ensure
the website functions as requested by the customer and as needed for
supportability by the ISP. A core set of Operational Acceptance Test categories
is as follows:

• Operational Support Tests
• Website Server Tests
• Application Tests
• Database Tests
• Firewall Tests
• VPN Tests
• Failover Tests
• Redundancy Tests

GENUiTY, Inc. Page 9

Tactical Planning

To carryout the categories of Operational Acceptance Tests tactical planning is
needed. This planning consists of more than simply providing testbeds and
personnel. It consists of creating an environment, which replicates the
environment in which the site will exist.

Creating this environment requires placing testbeds within the web-hosting
organizations Data Center. Thus, testing occurs in the exact environment in
which the site will be deployed, accessed and utilized. This may appear unusual
but is necessary to provide an accurate testing environment.

The planning of tests that will be run to exercise the website under test consists
of two types. These are support and functional tests. The support tests ensure
that the ISP will be able to provide technical support of the website. The
functional tests ensure the website’s components are integrated and running as
a system.

The tactical plan for “support” consists of a validation and audit of the web
servers and network devices. Validation checks the servers and network devices
are setup and configured correctly for access by the ISP and outside customers.
For example, the IP addresses for all servers and network devices would be
validated and an audit would be made to ensure these IP addresses were
documented in support databases in case their was a need to ping the server or
other devices to ensure their connectivity.

The tactical plan for the “functional” tests consists of exercising and verifying that
the website’s servers are integrated with each other and functioning to share
processes and data. For example, if the website has a database server; that
server can be populated with data from user interactions; the database server
can then be queried to obtain information; and the database server can also be
accessed and information copied onto a backup server. Thus, each component
of the website is functioning as an integrated system.

Therefore, with these tactical testing needs in mind, test scenarios are developed
with the intent of ensuring technical support can occur and the website functions
as a system.

GENUiTY, Inc. Page 10

Performance of Website Operational Acceptance Testing

Performance of Operational Acceptance Testing ensures the website
components function together as a system. This is the actual exercising of the
system or “running” the test scenarios to verify the website as a system.
To perform this verification it is key to perform testing in a “production”
environment also known as a Data Center environment.

The testing consists of the standard processes of test, report detected problems,
and re-test to verify detected problems are fixed. The problems that are detected
are used a information points to improve on-going website setup and
configurations. An example of an Operational Acceptance Test is summarized in
the Appendix.

Once the testing is completed and problems fixed, the website is ready to go
“live” in a production environment, wherein the website is turned over to the
customer. This turn over to the customer does two things it certifies the site as a
functioning system and it places the site into a “support” mode.

The support mode indicates if any problems occur on the site or the need arises
for upgrades or changes they will be handled as a customer escalation or site
maintenance need.

GENUiTY, Inc. Page 11

Test Process Assessment and Improvement

The Test Process Assessment and Improvement is a phase of analyzing the
problems detected during testing. This analysis is meant to uncover root causes.
These root causes will then be investigated to determine if they are the result of:

• Design Defects
• Provisioning (setup and configuration) Errors
• Hardware, Software, Application or Network Faults
• Personnel Training Needs

Once the root causes are identified they are addressed to ensure improvement
of processes occur and root problems are eliminated. Thus, methods of
continuous process improvement are put in place. These methods benefiting on-
going website operations.

All organizations that are responsible for the root problems receive
communication about the problems, thus providing opportunities for correction
and continuous improvement on an organizational, as well as, process level.

GENUiTY, Inc. Page 12

Appendix

Operational Acceptance Test Summary
No: System Solutions Test Test Scenario Overview

Operations Tests Ensure supportability of Customer Site

3 Hardware Test Verify customer hardware inventory
4 Hardware Configuration Test Verify hardware configurations
5 Software Test Verify customer software inventory
6 Software Configuration Test Verify software configurations
7 SystemPlus Verification Verify Customer Support Data
8 Magma Plus Verification Verify Customer Profile Information
9 Terminal Server Access Test Confirm Remote access to system consoles
10 Root Account Password Verify Root Account Changed for customer
11 Power Cycling Test Confirm Systems Remotely Power Cycled
12 Site Connectivity Test Verify site can ping Genuity system
13 Backup Verification Verify System Backup & Restore
14 Monitoring Test Verify System Monitors for URLs & Processes
15 Account Verification Confirm Customer Accounts Setup
16 Telnet Test Verify Telnet to Systems
17 FTP Test Verify Accounts can FTP to System
18 SSH Test Verify “ssh” to systems
19 Login Test Verify SecureID
20 Nameserver Test Verify Nameserver entries
21 /etc File Test Verify /etc configuration setups
22 Hosts.allow.deny Test Verify host.allow and host.deny configurations
23 Ftpd/ftpaccess File Test Verify ftpaccess file configuration
 System Validation Test Validate Software, Hardware and Server systems
25 Application Test Verify Real Media, Verisign Certificate, ect…
26 Raid Test Verify Raid setup
27 Webserver Test Verify http and https services
28 Database Test Verify ODBC backend
 VPN Test Verify VPN Configuration and Connection
30 OOB Test Verify Out of Band connection
31 Modem Test Verify modem connection
32 Traceroute Test Confirm Trace
 Site Patrol Test Verify Firewall Management and Security Policy
34 Firewall Test Verify port connections
 Site Replicator Test Verify Sync, Replication info and Logs
36 Configuration Test Verify configuration, scheduler, content replication
37 Log Rotation Test Verify Log successfully rotated
 Distributed Hosting Test Verify Director, Redirector and Balancer systems
38 Load Balancer / Local Director Test Verify Load Balancer configuration

Verify Traffic Redirection configuration
39 Distributed Director Test Verify Distributed Director configuration

Verify Failover and Redundancy

QWE2000 Vendor Technical
Presentation VT 11

Bruno Bouyssounouse
(PolySpace)

" Detect All Run-Time Error Without Test-Beds"

Key Points

Key points to be supplied.

Presentation Abstract

PolySpace Verifier checks C applications exhaustively and automatically, for all
possible executions, without running the software.

- Exhaustive, automatic detection of run-time errors

- Reduce validation costs dramatically (no test-beds)

- No changes required to existing processes

- No constraints on coding style

About the Speaker

To be supplied.

QWE2000 -- Conference Presentation Summary

http://www.soft.com/QualWeek/QWE2K/Papers/VT9.html [10/11/2000 4:20:55 PM]

QWE2000 Vendor Technical
Presentation VT10

Edward Miller
(eValid)

The Argument for Client-Side
Testing

Key Points

The Web is a complex place. There is much that is very importnat that can go wrong.
What really counts in terms of quality is how users perceive a site. Because the client
view is all-important, eValid's approach to WebSite testing is through a Test Enabled
Web Browser.

This presentation outlines the reasons why the client-side view is important, and
describes how a Test Enabled Web Browser can help sort out the WebSite quality
issue.

About the Speaker

Dr. Edward Miller is President of Software Research, Inc., San Francisco, California,
where he has been involved with software test tools development and software
engineering quality questions. Dr. Miller has worked in the software quality
management field for 25 years in a variety of capacities, and has been involved in
the development of families of automated software and analysis support tools.

He was chairman of the 1985 1st International Conference on Computer
Workstations, and has participated in IEEE conference organizing activities for many
years. He is the author of Software Testing and Validation Techniques, an IEEE
Computer Society Press tutorial text. Dr. Miller received his Ph.D. (Electrical
Engineering) degree from the University of Maryland, an M.S. (Applied Mathematics)
degree from the University of Colorado, and a BSEE from Iowa State University.

QWE2000 -- Conference Presentation Summary

http://www.soft.com/QualWeek/QWE2K/Papers/VT10.html [10/26/2000 3:17:14 PM]

1

eValid, Inc.

The Argument for Client-Side Testing
Why WebSite Testing Is Best Performed
From The Same Perspective As A User:
With A Browser

eValid, Inc.
901 Minnesota Street

San Francisco, CA 94107 USA

Phone: 1-415-550-3020
FAX: 1-415-550-3030

Web: www.e-valid.com
Email: info@soft.com

eValid, Inc.

Most Common Problems in WebSites
� Quality/Content

Broken Links
Missing Components

� Performance
Too-Slow Download

� Interaction
Failed 1st Layer Transactions

Login
Specialized Controls

Delayed 2nd Tier Transactions
Delayed 3rd Tier Transactions

2

eValid, Inc.

Alternative Technologies
� Windows

Client/Server Testing
Windows Events
Browser is "opaque"

� Unix
Client/Server Testing
X-Display Events
Browser is "opaque"

� Browser
Everything is open

eValid, Inc.

WebBrowser Testing Pros/Cons
� Pros

100% User View
Realistic
Natural operation
Accurate timings

� Cons
Not all browsers are alike
UNIX platform support limited

3

eValid, Inc.

eValid General Features

� IE Base
� Simple Script Language
� Point and Click Interface
� Online Documentation
� Advanced Recording
� Variety of User Options

eValid, Inc.

eValid GUI with Pulldowns

4

eValid, Inc.

eValid GUI with Preferences

eValid, Inc.

eValid, Inc.

eValid Cache Management

� With Cache
� Clear Cache Before Execution

Realistic
� No Cache
� Cookies

5

eValid, Inc.

eValid GUI with Cache Management

eValid, Inc.

Advanced Recording Capabilities

� Java Applets
� ActiveX Controls
� Scrolling
� Sub-Browsers
� Secure Sites/Logins

6

eValid, Inc.

eValid Static Testing/Monitoring

� Wizards
Links
Forms
Buttons

� Timing
� Image Capture

eValid, Inc.

eValid Functional Testing

� Record/play
� Validation
� Content
� Images
� Links

7

eValid, Inc.

eValid GUI with Error Log Report

eValid, Inc.

eValid Performance Testing

� Detailed Timings
DNS
1st Byte
Base Page Download
Component Downloads
Page Rendering

8

eValid, Inc.

eValid GUI with Tuning Chart

eValid, Inc.

Loading Using HTTP "Pinging"
� Pros

Economical (Free!)
Widely Available
Easy
E.g. "TorturePL"

� Cons
Unrealistic
Possible Self-Deception
Possible False Readings

9

eValid, Inc.

Load Testing Using Browser
� Pros

Realistic
Repeatable
Scalable Scenario
Simple Reports

� Cons
Bandwidth Requirement
Programming

eValid, Inc.

eValid Load Testing

� Scenario Composition
� Realistic Users
� User Descriptions
� Cache Management
� Reporting

10

eValid, Inc.

eValid GUI with Scenario Script

eValid, Inc.

eValid GUI with Scenario Timing Chart

11

eValid, Inc.

Conclusions
&

Recommendations

QWE2000 Session 10T

Dr. Ray Paul(OASD) & Dr. Wei-Tek Tsai(Arizona
State University) [USA]

"Assurance-Based Testing: A New Quality Assurance
Technique"

Key Points

Statistical assurance●

Testing processes●

Experience in statistical assurance●

Presentation Abstract

This paper presents statistical assurance techniques for testing. Even though it has
been developed to Y2K testing, it can be applied potentially any software testing
project. The technique has been developed by the Department of Defense (DoD)
and used in a variety of projects within DoD.

The ABT test process and the underlying statistical models provide DoD managers
with objective test data and a specific quantitative level of confidence in the test
results. Furthermore, the ABT process can be embedded within the existing DoD
Y2K testing processes to minimize changes to the existing testing practices. The
statistical models explicitly model Y2K faults, address regression testing of Y2K
modifications, and provide specific and quantitative output. Also, the ABT process
can be used for many future test programs, including both commercial and
government applications.

About the Speaker

Ray Paul is current the Directorate at DoD OASD Y2K Office. He is in charge of
DoDËs recent Y2K testing effort. He recently received his Ph.D. in Computer
Science and Engineering.

W. T. Tsai is currently Professor of Computer Science and Engineering at Arizona
State University. He received his Ph.D. and M.S. in Computer Science from
University of California at Berkeley. He has been involved in software engineering
research.

QWE2000 -- Conference Presentation Summary

http://www.soft.com/QualWeek/QWE2K/Papers/10T.html [9/28/2000 11:13:43 AM]

1

10/9/00 1

Assurance-Based Testing:
A New Quality Assurance Technique

Ray Paul
OASD C3I (I&A)

W. T. Tsai
Arizona State University

10/9/00 2

Assurance Based Testing

•Originally developed for Y2K, but it can be
used in any software testing projects.

•Y2K testing requires objective and
quantifiable data to ensure confidence.

•Need a decision making tool to determine
the quality of test done.

2

10/9/00 3

Goal

• A process that can be embedded within the current
DoD testing process.

• Minimal changes to the current testing process.
• Easy to use.
• Minimize extra effort needed to perform the ABT.
• Encourage reuse of existing test resources and

results.
• Use the minimum number of test cases while

maintaining the desired quality.

10/9/00 4

The ABT Processes

• Top-down process
– Starts from the system testing, then to integration testing and

finally to module testing if necessary.
– The process will stop whenever the system passes the ABT

requirements at that level.
– This is the process to use whenever the testing is almost done.

• Bottom-up process
– Can be embedded within the existing testing process.
– Starts from module testing, to integration testing, and finally to

system testing.
– If the process stops when the system passes the ABT requirements .
– This is the process to use if we wish to use the ABT during the

system development and test processes.

3

10/9/00 5

ABT Statistical Model (I)
• 1 - (1-B)N = C

– C is the confidence level desired.
– B is the failure density(threshold).
– N is the number of test cases required.
– N = Ln(1-C)/Ln(1-B)

Confidence Level(C) Failure Density(B)
0.8 0.01
0.8 0.02
0.8 0.05
0.8 0.10
0.95 0.01
0.95 0.02
0.95 0.05
0.95 0.10

Number of test cases required
160
80
31
19

298
148
58
28

10/9/00 6

ABT Statistical Model (II)

0

100

200

300

400

500

600

700

800

0.01 0.02 0.05 0.08 0.1 0.13 0.15 0.18 0.2

Fault Rate(B)

N
um

be
r

of
 T

es
t

C
as

es

C=0.8
C=0.82
C=0.84
C=0.86
C=0.88
C=0.9
C=0.92
C=0.94
C=0.96
C=0.98
C=0.99
C=0.993
C=0.996
C=0.999

4

10/9/00 7

Determine the Confidence Level

• Determine the confidence level required for a
given system before conducting the ABT process.

• For mission-critical system this can be 0.95,
otherwise a lower confidence level, such as 0.8.

• The higher the confidence level, the more test
cases are required.

• Conflict between the desired confidence level vs.
the extra effort needed.

10/9/00 8

Determine the Target Failure
Rate

• Determine the failure rate from the system
requirements.

• If the system is mission-critical and safety-critical,
use a low failure rate.

• The lower the failure rate, the more the number of
test cases needed.

• The following figures show the number of test
cases increase rapidly when we have low failure
rates and high confidence.

5

10/9/00 9

10/9/00 10

6

10/9/00 11

Problems with the Original
Model

• The original model requires the ABT
process to be repeated whenever a single
failure is encountered.
– The software is modified and then another

round of the ABT is applied.
– This is simply too expensive.
– Practitioners do not have time and energy to do

the ABT even twice.

10/9/00 12

The Modified Model

• Include failure case in the model,
• Whenever there is no failure, the extended

model becomes the original model.
• As the failure increases, the confidence

decreases rapidly.
• As the target failure density decreases, more

test cases or fewer failures are required to
achieved the same confidence.

7

10/9/00 13

Test cases vs. Confidence (B=0.05)

0

0.2

0.4

0.6

0.8

1

1.2

0 20 40 60 80 100 120

Number of test cases

C
on

fid
en

ce

Q=0 Q=1 Q=2 Q=3 Q=4 M=5

10/9/00 14

The ABT Process based on the
Modified Model

• Similar to the previous processes, but now
failures are allowed. Thus we need to apply
the ABT process only once at each level.

• It is this process that is used in all DoD
exercises.

• The modified model can be further
extended to include ripples and specific
testing features such as Y2k failures.

8

10/9/00 15

The 3-Step Process
• Step 1: Run the regression testing. If the system fails at this step, it

should be rejected; otherwise go to the next step.
– If the modified system cannot pass this step, the statistical models say that

it is highly unlikely that the system will be able to pass the ABT
requirements.

– This step is relatively cheap because it reuses the existing tes t resources
only.

• Step 2: Run Y2K specific test cases. If the system fails at this step, it
should be rejected; otherwise go to the next step.
– If the modified system cannot pass this step, it will not be able to pass the

next step.
– This step is cheaper than the next step.

• Step 3: Run test cases for Y2K ripples. Reject the software if it does
not pass the ABT requirements.
– This step is more expensive because it involves ripple effect analysis.

10/9/00 16

Benefits and Experience of ABT

• The ABT top-down process has been used at
various DoD sites.

• The feedbacks are positive and in many cases this
is the first time they reported any objective and
quantifiable data to decision makers and test
engineers.

• The ABT exercise is done with assistance of the
ABT website where statistical models are
calculated and visually displayed.

9

10/9/00 17

Benefits and Experience of ABT (II)

• It is relatively easy to identify which parts of
subsystems are over tested and which are under
tested.

• The testing team indicated that they can easily
incorporate the ABT requirements in their test
projects if they were informed at the beginning of
the project.

• The testing team indicated that it is easy to apply
the ABT process after some training.

 1

Assurance-Based Testing: A New Quality Assurance Technique

Ray Paul
OASD C3I (I&A)

Department of Defense
Washington, D.C.

W. T. Tsai

Department of Computer Science and Engineering
Arizona State University

Tempe, AZ 85287

1. Introduction

This paper presents statistical assurance
techniques for testing. Even though it
has been developed to Y2K testing [2], it
can be applied potentially to any
software-testing project. The technique
has been developed by the Department
of Defense (DoD) and used in a variety
of projects within DoD.

The ABT test process and the underlying
statistical models provide DoD managers
with objective test data and a specific
quantitative level of confidence in the
test results. Furthermore, the ABT
process can be embedded within the
existing DoD Y2K testing processes to
minimize changes to the existing testing
practices. The statistical models
explicitly model Y2K faults, address
regression testing of Y2K modifications,
and provide specific and quantitative
output. Also, the ABT process can be
used for many future test programs,
including both commercial and
government applications.

The ABT statistical model allows the
overall number of test cases to be
reduced while maintaining the quality of
test with a specific confidence level.
The ABT framework takes into

consideration the quantity and type of
regression testing that has been
performed as part of a system
renovation. ABT potentially can be used
in any testing projects, at any phase of
testing, where quality of testing done
needs to be quantitatively assessed. It
allows software managers and engineers
to determine the amount of effort to
meet the stated test confidence level, and
if additional effort will be needed.

2. Characteristics of the ABT Process

The ABT process addresses three
specific levels of test: module, end-to-
end, and integration testing. The
characteristics of the ABT process
reduce the effort and resources required
for testing, including:

a. Reuse of prior test resources and

results;
b. Insertion of ABT practices in

existing test procedures to minimize
changes in the existing test program;

c. Testing to a calculated level of test
coverage, focusing on critical areas
and likely failure points;

d. Use of the minimum number of test
cases to achieve a specific
confidence level.

 2

The ABT process may be conducted
with either a bottom-up or top-down
approach. The bottom-up process can be
used during software development. The
top-down process can be applied to
projects where testing has been almost
completed. Both of these processes start
with determining the threshold failure
density and desired confidence level.
The threshold failure density is
determined by the requirements for the
number of daily transactions and the
criticality of failures. For example, if
the system is mission-critical and no
failure can be tolerated, the threshold
should be low, such as 0.0001 or one
failure every 10,000 operating hours.
Once the threshold failure density is
determined, the confidence level can be
determined, usually by system criticality
requirements. Note that a higher
confidence level and lower failure
density threshold will increase the
number of test cases needed.

This top-down process assumes that the
software has already been thoroughly
tested, including module, integration,
and end-to-end testing. Top-down ABT
starts at the end-to-end test level, and if
the system achieved the confidence level
with the given target failure rate the
process ends. Otherwise, the process
proceeds to the next decomposition
level, and performs ABT at that level.
The process terminates when the
confidence level and target failure rate
achieved, or will proceed to module
testing.

The bottom-up process goes hand-in-
hand with the existing testing process,
i.e., starts from module testing, to
integration testing, and finally to end-to-
end testing. At each stage, if the
software satisfies the stated confidence

and target failure rate, the process goes
to the next stage. Otherwise, the
software is rejected and must subject to
further testing before another subject to
anther ABT.

3. The ABT Statistical Models

The ABT statistical models determine
the specific number of tests needed to
achieve a desired level of confidence in
the results. The failure density of a
program is defined as the probability that
the program will fail on a random input.
It can also be thought of as the ratio of
the number of input points at which the
software fails to the total size of the
input space assuming a random sampling
is used. The ABT is a process to
establish an upper bound on the failure
density with a quantifiable statistical
guarantee that the actual failure rate will
not exceed this upper bound.

The first statistical model the ABT uses
is developed by Howden [1]:

()NBC −−= 11 ,

In this formula, C is the confidence
level, B the threshold or target failure
density, and N is the number of random
test cases that must be run sequentially
without failure. This formula says that
that when N random and independent
tests are run sequentially without a
failure, one has a confidence C that the
actual software failure density is no
more than B.

In other words, this is a hypothesis
testing approach. The approach says
that if N test cases are successful, the
hypothesis may be wrong, i.e., the actual
failure rate is greater than B, with a

 3

probability of at most (1 - C). It says that
if N test cases are successful, one is C %
confident that the actual failure rate is
less than B. If the software actually fails
on some input, the fault is identified and
corrected and the same hypothesis
testing approach is used again.

Figure 1 and Table 1 show the number
of test cases required for various C and B
combinations. Figure 1 shows the
surface of N as a function of B and C. It
shows how the required N sharply
increases as the desired C increases and
B decreases. The contours of this surface
in the (B-C) plane are plotted in Figure
2. Note that for B=0.016 and C=0.91,
N=150. However, for B=0.005 and
C=0.99, N=918, a six fold increase.

Whenever a failure is encountered, he
original Howden model requires the
engineers to start over the ABT process.
This is unfortunately an expensive
proposal and practitioners simply do not
have time and energy to repeat the ABT
process. Thus, the original model is
extended to allow failures where:

where

With N random test cases executed with
Q failures, one has the confidence C that
the true failure rate is no more than B.
In other words, with a probability of at
least C, one will see more than Q
failures in N test cases when the failure

density is more than B. Table 2 shows
some computation results.

This model has the following
characteristics:

1. Confidence value is between 0 and 1.
2. The maximum confidence from a

given set of N test cases is obtained
when there are no failures. By
substituting Q = 0, one can obtain
the original equation.

3. As the failure increases, the
confidence decreases rapidly. When
all test cases result in failures, the
confidence is zero.

4. As the targeted failure density
decreases, more test cases or fewer
failures are required to achieve the
same confidence.

Figure 3 shows how the confidence
varies with the number of test cases for
the target failure density 0.05, for the
failures between 0 and 5. Note that as
the failures increases, the confidence
decreases rapidly which is evident from
the graphs becoming closer to the x-axis.
When the failures increases from 0 to 5
out of 100 test cases, the confidence
drops from 0.99 to around 0.4.

Test cases vs. Confidence (B=0.05)

0

0.2

0.4

0.6

0.8

1

1.2

0 20 40 60 80 100 120

Number of test cases

Q=0 Q=1 Q=2 Q=3 Q=4 M=5

Figure 3 Confidence in the Presence of

Failures

k N
N

Q k

k B B
k

N −

+ =
−

 = ∑) 1 (
1

k N
Q

k

k B B
k

N
F C

−

=
−

 − = − = ∑) 1 (1 1
0

k N
Q

k

k B B
k

N
F

−

=
−

 = ∑) 1 (
0

 4

All the ABT exercises within DoD used
the extended model because in practice
failures are common.

The statistical model can also be
extended to include analysis of ripples
and specific faults such as Y2K faults
[2]. Based on these models, customized
processes can be developed to ensure
specific aspects of various testing
projects are carried out. For example,
based on the ABT statistical models, the
following three-step process can be used
to ensure Y2K bugs are removed [2]:

Step (1) Run regression testing
without considering the Y2K test cases.
If the system fails to achieve the desired
confidence level, it should be rejected.
Otherwise;

Step (2): Develop specific Y2K test

cases to test the software. If the system
fails to achieve the desired confidence
level, it should be rejected. Otherwise;

Step (3): Develop specific test cases

to test Y2K ripples. If the system fails to
achieve the desired confidence level, it
should be rejected.

Based on the ABT statistical models, if
the software could not even pass the
regression testing without the Y2K test
cases after the Y2K modifications, the
software will surely fail the ABT
requirements. Thus, if the software fails
the first step, it should be rejected before
carrying out the rest of the processes.
Similarly, if the software does not pass
the second step, it is not possible to pass
the ABT requirements and should be
rejected before carrying out the last step.

4. Benefits and Experience of ABT

The ABT top-down process has been
used at several Y2K testing sites. The
experience indicates that the ABT
provides a reliable feedback mechanism
for objective and quantifiable data to
decision makers and test engineers. The
ABT exercise was done with assistance
of the ABT website where the engineers
can use the ABT calculator and the ABT
statistical models are visually displayed.

At one site, the ABT results
demonstrated which parts of software
were over-tested or under-tested. This
kind of information is useful for both
test planning and decision making.
Furthermore, this is the first time these
sites ever reported any objective and
quantifiable data to assess the testing job
performed. The testing team also
indicated that they could easily
incorporate the ABT requirements into
the existing testing process had they
been informed of the ABT at the
beginning. They also indicated that it is
easy to apply the ABT process.

5. References

[1] W. E. Howden, “Good Enough

versus High Assurance Software
Testing and Analysis Methods”, in
Proceedings of IEEE High
Assurance Systems Engineering
(HASE) Conference,1998, pp. 166-
175.

[2] W. T. Tsai, R. Paul, W. Shao, S.
Rayadurgam and J. Li, “Assurance-
Based Y2K Testing”, Proceedings
of IEEE HASE, 1999.

 5

Figure1: Surface of Test Cases versus Failure Density and Confidence Level

 C=0.80 0.82 0.84 0.86 0.88 0.90 0.92 0.94 0.96 0.98 0.99
B=0.01 160 171 182 192 211 229 251 280 320 390 458
B=0.02 80 85 91 97 105 114 125 139 159 194 228
B=0.05 31 33 36 38 41 45 49 55 63 76 90
B=0.08 19 21 22 24 25 28 30 34 39 47 55
B=0.10 15 16 17 19 20 22 24 27 31 37 44
B=0.15 10 11 11 12 13 14 16 17 20 24 28
B=0.20 7 8 8 9 10 10 11 13 14 18 21

Table 1.Number of Test Cases Required for Various C and B with No Failures

N Q B C N Q B C N Q B C
50 0 0.01 0.39 50 2 0.01 0.01 50 5 0.01 0
50 0 0.05 0.92 50 2 0.05 0.46 50 5 0.05 0.04
100 0 0.01 0.63 100 2 0.01 0.08 100 5 0.01 0
100 0 0.05 0.99 100 2 0.05 0.88 100 5 0.05 0.38
250 0 0.01 0.92 250 2 0.01 0.58 250 5 0.01 0.04
250 0 0.05 0.99 250 2 0.05 0.99 250 5 0.05 0.99
400 0 0.01 0.98 400 2 0.01 0.76 400 5 0.01 0.21
400 0 0.05 0.99 400 2 0.05 0.99 400 5 0.05 0.99
600 0 0.01 0.99 600 2 0.01 0.94 600 5 0.01 0.56
600 0 0.05 0.99 600 2 0.05 0.99 600 5 0.05 0.99

Table 2. Number of Test Cases Needed for various C, B, and Q with Failures

 6

Figure 2: Contours of Test Cases versus Failure Density and Confidence Level

QWE2000 Session 10A

Mr. Bob Bartlett [UK]
(SIM Group Limited)

"A Practical Approach to Testing your eCommerce
Web Server"

Key Points

Since the introduction of the world-wide web, it has never been easier to destroy a
company's brand image in such a short period of time. We show you how?

●

How do you avoid the problems of too many visitors to your web site?●

It isn't necessary to continuously monitor our site because we check everything before we
go home at night.

●

Our application is designed for IE so we only need to check it out on IE? Don't we?●

Presentation Abstract

How to identify what needs to be tested?

What types of testing need to be performed (Security, performance, functionality,
usability and compatibility) when to use continuous testing?

The challenges of automatic notification when problems occur?

Why and when compatibility testing is appropriate?

A practical approach to testing your e-commerce web server

This presentation looks at the super human powers required to ensure that your Web
site is capable of the worst that the world has to throw at it through the Internet. It
offers some simple guidelines that will enable your organisation to arm itself with an
appropriate set of gizmos to keep your e-commerce site on-line taking orders and
responsive.

From browser compatibility testing to continuously monitoring your web site. This
presentation will show you how, what, where and when to test your e- business
application.

About the Speaker

Bob is the Chairman of SIM Group Ltd. SIM specializes in Software Testing and has
put in place a number of highly efficient testing systems that automatically test

QWE2000 -- Conference Presentation Summary

http://www.soft.com/QualWeek/QWE2K/Papers/10A.html (1 of 2) [9/28/2000 11:13:49 AM]

sophisticated and mission critical software systems. SIM is the UK leader in
Providing efficient solutions for software testing. SIM's work has had a profound
impact on the way companies approach testing and improvements to testing have
been realized with SIM's help. Bob has over 30 years of software experience using
automated testing techniques. He is the Executive Director and Chairman of
Software testing specialist company today. He is also a member of the CSSA
executive council and has designed, developed and sold automated testing tools.
Bob, a manager of major software development and implementation projects, is a
test adviser to some of the largest testing projects taking place in U.K. Bob has
Trained and lectured in automated testing and software testing techniques,has a
track record for substantial reductions in time and cost to test, and successfully
managed the growth of start up companies throughout his career.

QWE2000 -- Conference Presentation Summary

http://www.soft.com/QualWeek/QWE2K/Papers/10A.html (2 of 2) [9/28/2000 11:13:49 AM]

1

© 2000, SIM Group Ltd..

A practical approach toA practical approach to
testing your eCommercetesting your eCommerce

web serverweb server

Bob BartlettBob Bartlett
bob@simgroup.co.ukbob@simgroup.co.uk

© 2000, SIM Group Ltd..

Who we are ….Who we are ….

Who are we?

Independent testing
organisation

Specialists in testing for 10
years

Testing eCommerce systems
for the last two years

Largest implementor of
automated testing in UK

Full Service testing Solutions

What do we do?

Testing Projects

Hosted Testing

Testing Consultancy

Implementors of automated
testing for over 10 years

Methods, procedures and
strategies for efficiency &
effectiveness

2

© 2000, SIM Group Ltd..

AgendaAgenda

Introduction - important considerations for
testing eCommerce sites
How to identify what needs to be tested
What types of testing needs to be performed
Compatibility testing - a practical approach
Continuous testing and automatic notification
Summary

Introduction - important considerations for
testing eCommerce sites
How to identify what needs to be tested
What types of testing needs to be performed
Compatibility testing - a practical approach
Continuous testing and automatic notification
Summary

© 2000, SIM Group Ltd..

Important considerations for
testing eCommerce sites
Important considerations for
testing eCommerce sites

There is an overwhelming temptation to
implement - then test:

Time Pressures

Ease of testing in the real web environment

Simulating realistic loads

There is so much that needs to be tested.
We cannot easily ask the users how they
intend to use the system
How to protect the risks to the business and
the brand.

There is an overwhelming temptation to
implement - then test:

Time Pressures

Ease of testing in the real web environment

Simulating realistic loads

There is so much that needs to be tested.
We cannot easily ask the users how they
intend to use the system
How to protect the risks to the business and
the brand.

3

© 2000, SIM Group Ltd..

Important Requirements for
testing ecommerce systems
Important Requirements for
testing ecommerce systems

24 x 365
Loads impossible to predict
Most sites are an integration of many
components from many suppliers
Sites get developed and put in place
incrementally and iteratively.
All in the public domain
When something goes wrong - how do you
know it has gone wrong?
Some testing WILL happen after the site is
live

24 x 365
Loads impossible to predict
Most sites are an integration of many
components from many suppliers
Sites get developed and put in place
incrementally and iteratively.
All in the public domain
When something goes wrong - how do you
know it has gone wrong?
Some testing WILL happen after the site is
live

© 2000, SIM Group Ltd..

How to Identify what needs to
be tested
How to Identify what needs to
be tested

Application system basics
Interaction with the
Environment
Look and Feel
WEB specifics

Application system basics
Interaction with the
Environment
Look and Feel
WEB specifics

4

© 2000, SIM Group Ltd..

Application system BasicsApplication system Basics

Functional
Function and Data security
Load and Stress

Functional
Function and Data security
Load and Stress

© 2000, SIM Group Ltd..

Interaction with the
environment
Interaction with the
environment

Functional
Function and Data security
Load and Stress
Integration

Functional
Function and Data security
Load and Stress
Integration

5

© 2000, SIM Group Ltd..

Look and FeelLook and Feel

Functional
Function and Data security
Load and Stress
Integration
Presentation

Functional
Function and Data security
Load and Stress
Integration
Presentation

© 2000, SIM Group Ltd..

WEB specificsWEB specifics

Functional
Function and Data security
Load and Stress
Integration
Presentation & Usability
Content
ISP Operability
Compatibility
Site Security

Functional
Function and Data security
Load and Stress
Integration
Presentation & Usability
Content
ISP Operability
Compatibility
Site Security

6

© 2000, SIM Group Ltd..

Looking at a typical project

Functionality

App & Data Security

Integration
Presentation

Load & performance

Penetration

Content
Compatibility

Dev. Link Sys. Usab. Tech UAT Oper

√√√√

√√√√
√√√√√√√√

√√ √√√√√√

√√√√

√√√√

√√√√√√√√

√√√√√√√√

√√√√

Usability √√√√

√√

√√

© 2000, SIM Group Ltd..

Who is responsible?

Functionality

App & Data Security

Integration
Presentation

Load & performance

Penetration

Content
Compatibility

Owner Developer Integrate Testers Test Lab

√√

√√

√√

√√

√√
√√ √√

√√

√√√√

√√

√√Usability

√√

√√

7

© 2000, SIM Group Ltd..

Types of TestingTypes of Testing

Functional
Function and Data security
Load and Stress
Integration
Presentation & Usability
Content
ISP Operability
Compatibility
Site Security

Functional
Function and Data security
Load and Stress
Integration
Presentation & Usability
Content
ISP Operability
Compatibility
Site Security

© 2000, SIM Group Ltd..

Functionality testingFunctionality testing

Navigation, menus, links & downloading
Browser interaction (Back, Forward, Refresh)
Form filling and data selection
Submitting transactions and messages
(including email)
Processing
Calculations
Negative testing
Database access
Handling errors

Navigation, menus, links & downloading
Browser interaction (Back, Forward, Refresh)
Form filling and data selection
Submitting transactions and messages
(including email)
Processing
Calculations
Negative testing
Database access
Handling errors

8

© 2000, SIM Group Ltd..

Security - Function & DataSecurity - Function & Data

Setting up user access
Data validation
Password assignment, changing and
protection
Changing details
Deleting and blocking users
Correct access to site functionality
Protected access to data
Correct audit logs
Negative testing (hacking)

Setting up user access
Data validation
Password assignment, changing and
protection
Changing details
Deleting and blocking users
Correct access to site functionality
Protected access to data
Correct audit logs
Negative testing (hacking)

© 2000, SIM Group Ltd..

Load & Stress TestingLoad & Stress Testing

Establish key customer scenarios
Define volumes, performance profiles
Define Service Level Agreements with ISP
Find realistic data
Automated Testing

Loading the servers

Testing across the web

Run several times and tune the system
Try to run as early as possible to avoid
disappointments

Establish key customer scenarios
Define volumes, performance profiles
Define Service Level Agreements with ISP
Find realistic data
Automated Testing

Loading the servers

Testing across the web

Run several times and tune the system
Try to run as early as possible to avoid
disappointments

9

© 2000, SIM Group Ltd..

Integration TestingIntegration Testing

Server Integration (WEB, Firewall,
presentation, business logic, data base).
Other site components (Search, help, problem
reporting)
Integration to back office and legacy systems
Search Engines
End to end processing

Big Bang

Bottom-up combines and tests low-level components into
progressively larger modules and subsystems.

Top-down combines tests and debugs top-level routines that
become the ‘test harness’ for lower level components.

Server Integration (WEB, Firewall,
presentation, business logic, data base).
Other site components (Search, help, problem
reporting)
Integration to back office and legacy systems
Search Engines
End to end processing

Big Bang

Bottom-up combines and tests low-level components into
progressively larger modules and subsystems.

Top-down combines tests and debugs top-level routines that
become the ‘test harness’ for lower level components.

© 2000, SIM Group Ltd..

Presentation & UsabilityPresentation & Usability

“Look and feel” Do all of the components of a web
site look correct? These components would
include; links, tables, forms, controls, images, text
and multi-media.

Inconsistent components.

Illogical use of colours

Badly aligned components
Poor formatting (Fonts, Spacing, word wrap)

“Use of Media”
Target User Group
Intuitiveness and consistency

“Look and feel” Do all of the components of a web
site look correct? These components would
include; links, tables, forms, controls, images, text
and multi-media.

Inconsistent components.

Illogical use of colours

Badly aligned components
Poor formatting (Fonts, Spacing, word wrap)

“Use of Media”
Target User Group
Intuitiveness and consistency

10

© 2000, SIM Group Ltd..

Content testingContent testing

Component Content - spelling, grammar and
relevance

Titles, text, images, banners, links

Key text, headlines, section titles & target links

Content Quality and accuracy
Is it correct?

Matches the application

Changing content

Dynamic content
Source matches display

Quality control method

Component Content - spelling, grammar and
relevance

Titles, text, images, banners, links

Key text, headlines, section titles & target links

Content Quality and accuracy
Is it correct?

Matches the application

Changing content

Dynamic content
Source matches display

Quality control method

© 2000, SIM Group Ltd..

Internet Service Provider (ISP)
Operability testing
Internet Service Provider (ISP)
Operability testing

Matching and tracking to a Service Level
Agreement (SLA)
Robustness and reliability
Problem handling
Batch & background processes
Testing breaks and interruptions
Handling down times
Scheduling and staging changes
Making and testing changes
Scheduled maintenance

Matching and tracking to a Service Level
Agreement (SLA)
Robustness and reliability
Problem handling
Batch & background processes
Testing breaks and interruptions
Handling down times
Scheduling and staging changes
Making and testing changes
Scheduled maintenance

11

© 2000, SIM Group Ltd..

Site Security TestingSite Security Testing

Fully understand set-up and configuration
Using special software and knowledge -
identify potential vulnerabilities - ports,
operating systems & other components.
Test vulnerabilities:

Site Damage

Full or partial disable

intrusion

Fully understand set-up and configuration
Using special software and knowledge -
identify potential vulnerabilities - ports,
operating systems & other components.
Test vulnerabilities:

Site Damage

Full or partial disable

intrusion

© 2000, SIM Group Ltd..

Compatibility testing -
A practical approach
Compatibility testing -
A practical approach

What you should consider:
Operating System and service packs

Browser levels and service packs

Connection speeds

Monitor types

Resolutions

Browser options

Languages

Colour depths

Plug-ins

What you should consider:
Operating System and service packs

Browser levels and service packs

Connection speeds

Monitor types

Resolutions

Browser options

Languages

Colour depths

Plug-ins

12

© 2000, SIM Group Ltd..

Compatibility testing -
A practical approach
Compatibility testing -
A practical approach

Know your site
Find out what sort of technology the target users are likely to
use

Use packages (WebTrends) to find out more about your site

Prioritise tests for greatest usage
Combine variations to minimise tests
Stay on top of this for changes

Know your site
Find out what sort of technology the target users are likely to
use

Use packages (WebTrends) to find out more about your site

Prioritise tests for greatest usage
Combine variations to minimise tests
Stay on top of this for changes

© 2000, SIM Group Ltd..

An example compatibility test
covers 98.7% of site accesses
An example compatibility test
covers 98.7% of site accesses

Platform Version Browser Resolution Colour Depth Connection
Windows NT SP4 IE401SP1 640x480 256 LAN
Windows NT SP4 NS4.08 800x600 256 LAN
Windows NT SP4 IE401SP2 1024x768 65536 56K
Windows NT SP4 NS4.73 1280x1024 65536 LAN
Windows NT SP5 IE401SP2 800x600 16777216 LAN
Windows NT SP5 NS4.5 1024x768 16777216 56K
Windows NT SP5 IE5.01 800x600 65536 LAN
Windows NT SP5 IE5.5 1024x768 65536 LAN
Windows 98 IE401 800x600 256 LAN
Windows 98 NS4.08 1280x1024 65536 LAN
Windows 98 SP1 IE401SP2 1024x768 65536 56k
Windows 98 SP1 NS4.5 800x600 16777216 LAN
Windows 98 SE IE501 1024x768 24-bit LAN
Windows 98 SE NS4.73 1280x1024 16777216 56k
Windows 95 OSR2.1 IE4.0 800x600 65536 LAN
Windows 95 OSR2.1 NS4.73 1024x768 16777216 LAN
Windows 2000 Pro IE5.01 800x600 256 56k
Windows 2000 SP1 NS4.73 1024x768 16777216 LAN
MAC OS9 IE4.5 800x600 65536 LAN
MAC OS9 NS4.72 800x600 65536 LAN

13

© 2000, SIM Group Ltd..

Continuous testing and
automatic notification
Continuous testing and
automatic notification

Just because it worked once - doesn’t mean it
will carry on working.
Continuous testing required for:

Functionality

Load and performance

Security

Integration

Content (dynamic or changing)

Operability

Notify according to severity rules

Just because it worked once - doesn’t mean it
will carry on working.
Continuous testing required for:

Functionality

Load and performance

Security

Integration

Content (dynamic or changing)

Operability

Notify according to severity rules

© 2000, SIM Group Ltd..

SummarySummary

14

© 2000, SIM Group Ltd..

The 12 CommandmentsThe 12 Commandments

1. Speed and performance
2. Access and availability
3. Up to date and accurate information
4. Responsiveness visible and apparent
5. Tracking of the business conducted
6. Customer service is consistent
7. Feedback channels work
8. Search and intuitive menus
9. Real time processing when beneficial
10. Verification of business terms
11. Presentation and usability
12. Security of site, function and data

1. Speed and performance
2. Access and availability
3. Up to date and accurate information
4. Responsiveness visible and apparent
5. Tracking of the business conducted
6. Customer service is consistent
7. Feedback channels work
8. Search and intuitive menus
9. Real time processing when beneficial
10. Verification of business terms
11. Presentation and usability
12. Security of site, function and data

© 2000, SIM Group Ltd..

Bob Bartlett
bob@simgroup.co.uk
www.simgroup.co.uk

QWE2000 Session 10I

Mr. Robert L. Probert, Wujun Li,
Mr. Paul Sims [Canada]

(School Of Information Technology
And Engineering)

"A Risk-Directed E-Commerce Test
Strategy"

Key Points

E-commerce, quality engineering●

Software testing,●

System reliability●

Presentation Abstract

E-Commerce frameworks and applications are widely regarded as key engines of an
evolving web-based economy. Accordingly, developers and vendors must ensure
their quality by utilizing the most effective quality engineering (QE) methods and
tools known. At the same time, time-to-market (TTM) constraints and resource
limitations require efficient methods, especially in software (functional) testing and
system reliability and robustness verification.

In this paper, we present our synthesis of a common test strategy used, often
unconsciously, by more effective designers and testers in the software and
networking industries, namely Risk-Directed Testing of e-commerce applications and
systems. We illustrate its industrial application in two areas, namely

Function Test Reliability and Stress (R&S) Verification.

Finally, we give some empirical observations which support our claims of
effectiveness and efficiency, and conclude with a few pragmatic guidelines for
refining and improving existing industrial QE processes.

About the Speaker

Robert L. Probert received the Ph.D. in Computer Science from the University of
Waterloo in 1973. He is currently a full Professor in the School of Information
Technology and Engineering (SITE) and Co-ordinator of the Nortel Networks ASERT
(Advanced Software Engineering Research and Training) Laboratory at the
University of Ottawa. He is a principal investigator in communications software
engineering and protocols for the Communications and Information Technology
Ontario (CITO), one of the Ontario Centres of Excellence. He was the first Acting
Director of SITE. His research interests and publications are primarily in testing

QWE2000 -- Conference Presentation Summary

http://www.soft.com/QualWeek/QWE2K/Papers/10I.html (1 of 2) [9/28/2000 11:13:55 AM]

protocols and networking software. Dr. Probert contributed to International Standards
in Conformance Testing, including the conception and prototyping of the TTCN
Workbench, a complete environment for test suite engineering. Dr. Probert
co-chaired the 10th International IFIP Symposium on Protocol Specification, Testing,
and Verification and TestCom 2000, the 13th International IFIP Conference on
Testing Communicating Systems. He founded the ACM Symposium on Principles of
Distributed Computing, and has frequently collaborated in Software Engineering
research with industry and government. In 1989, he received Bell-Northern Research
(now Nortel Networks) President's Award of Excellence for work in
University-Industry interaction and for Communications Standards work. In 1990, he
and his TTCN Workbench team received a TRIO Industrial Feedback award for
"creating an innovation of great potential industrial utility". Currently, he has industrial
R&D collaborations in progress with IBM, Mitel, Nortel Networks, and Rational
Software and is presently a Visiting Research Scientist with the IBM Center for
Advanced Studies, specializing in e-commerce testing.

Dr. Probert has given tutorials, workshops and keynote presentations on various
topics related to software and system quality engineering, and has designed and
delivered training modules for a number of computer and telecommunications
corporations. He has taught at the Universities of Waterloo, Saskatchewan and
Ottawa, and has consulted with industry and government on a wide variety of topics
in the areas of testing, software quality and protocol engineering. He has also been a
Visiting Researcher in Software Engineering at GE R&D Center, New York, and
various Nortel Labs.

Wujun Li is currently working on network management in Nortel Networks. She
received B.Sc.of computer egineering from Beijing University of Aeronautics. She
has been working with IBM in the area of E-commerce testing, and finished a
Master's thesis in this area in University of Ottawa.

QWE2000 -- Conference Presentation Summary

http://www.soft.com/QualWeek/QWE2K/Papers/10I.html (2 of 2) [9/28/2000 11:13:55 AM]

 1

A Risk-Directed E-Commerce Test Strategy

Robert L. Probert
Coordinator, Advanced Software Engineering Research & Training Laboratory

School of Information Technology and Engineering
University of Ottawa
bob@site.uottawa.ca

Behrad Ghazizadeh

WebSphere Commerce Suite System Test
IBM Canada Limited

sims@ca.ibm.com

Wujun Li
Software Design Engineer

Nortel Networks
allyli88@hotmail.com

D. Paul Sims

Project Leader, WebSphere Commerce Suite System Test
IBM Canada Limited

sims@ca.ibm.com

Executive Abstract:

 E-commerce frameworks and applications are widely regarded as key engines of
an evolving web-based economy. Accordingly, developers and vendors must assure their
products' quality by utilizing the most effective quality engineering (QE) methods and
tools known. At the same time, time-to-market constraints and resource limitations
require cost-efficient methods, especially in product (functional) testing and system
reliability and robustness testing.

 In this paper, we present our synthesis of a common test strategy used, often
unconsciously, by highly effective designers and testers in the software and networking
industries, namely Risk-Directed Testing of e-commerce applications and systems. We
illustrate its industrial application in two areas:

i) Function Test
ii) Reliability and Stress Verification (emphasis here)

Finally, we give some empirical observations that support our claims of effectiveness and
efficiency, and conclude with a few pragmatic guidelines for refining and improving
existing industrial QE processes.

Keywords: e-commerce, quality engineering, software testing, system reliability

 2

1. INTRODUCTION AND BASIC DEFINITIONS

Business computer systems, and particularly Internet commerce systems, require a high
degree of reliability, dependability, availability, and robustness. Each of these quality
attributes must be verified to the degree necessary to avoid exposing the manufacturer to
financial, legal, or market (corporate reputation) risks. Thus, e-commerce software, such
as IBM WebSphere Commerce Suite, must be well tested with respect to these
properties. At the same time, the time-to-market of these products must not be delayed
due to test inefficiencies. Therefore, test strategies must involve judicious test case
selection to ensure cost-effective risk reduction.

E-commerce products are mainly business-to-consumer or business-to-business. For
such products, a primary concern is the avoidance of embarrassing downtime or failures
[8]. In other words, reliability, stress, and robustness testing must be designed to cause
such failures in the lab, before the product is shipped. If the most likely scenarios
(reliability testing) and the highest risk scenarios (stress testing and robustness testing)
are verified in the lab, then the customers' perceptions of dependability and availability
will be enhanced in the field.

The definitions of key terms such as scenario are given below. Informally, a scenario is a
sequence of web interactions between the clients and the system, initiated by the clients.
A high-risk scenario involves a state or action of client, product, or system component in
which a failure may incur a high cost; for example, a web connection is lost in the middle
of a payment transaction.

In WebSphere Commerce Suite system testing, the following definitions have been found
to be very useful. Many of these definitions are consistent with IEEE definitions [6] and
with TPC Benchmark™ W (TPC-W) definitions.

System Under Test (SUT) or simply System (see Figure 1):
The SUT is composed of all the components that are part of the “application” being tested
and that are required to accomplish a specific function or a set of functions. The SUT can
reside on multiple server machines and includes all the hardware and software that is in
use by the application being tested.

Web Interaction:
A web interaction is a complete cycle of communication between the browser and the
SUT. This cycle starts when a user selects a navigation option from the previously
obtained web page or by typing in a URL. This exchange may include the request and
communication of cookies, HTML pages, and client and server side HTTP redirections.
The cycle ends when the browser has received the last byte of data from the expected
response page.

Server Transaction - or simply Transaction:
A server transaction is a web interaction that involves some parts of the commerce server
on the SUT.

 3

 Figure 1. A Typical E-Commerce SUT for SVT

Scenario (User-Oriented View):
A scenario is a sequence of web interactions that are logically grouped together because
they represent a user task or service. The word scenario is often augmented by another
word that describes the task the user is trying to accomplish (e.g., shopping scenario
means a scenario in which the user is attempting to shop).

Fault:
(1) An accidental condition that causes a functional unit to fail to perform its required
function. (2) A manifestation of a design error in software. A fault, if executed, may
cause a failure.

Error:
Human design decision or action that results in software that contains a fault. Examples
include omission or misinterpretation of user requirements in a software specification and
incorrect translation or omission of a requirement in the design specification.

Failure:
An event in which a system or system component does not perform a required function
within specified limits. A failure may be produced when a fault is executed.

Scenario Failure:
A scenario failure occurs when an unrecoverable failure occurs for any of the web
interactions associated with that scenario, or when a recoverable failure occurs three
times in a row for the same web interaction in that scenario. Note: After a recoverable
failure a user will most likely retry the web interaction. A user will probably retry no
more than two times before giving up trying to complete the scenario. This implies
allowing three consecutive recoverable failures before the scenario is considered failed.

Client Browser

Load Balancer

Web Server (HTTP)
Web Application Server

Commerce Server

Web Server (HTTP)
Web Application Server

Commerce Server

Database
SUT

 4

Function testing (FT) is the process of attempting to demonstrate that functions or
features of the SUT do not behave according to specifications, as described in
architecture and design documents, in configurations based on realistic customer profiles.

System testing (ST) is the process of attempting to demonstrate that the SUT does not
meet its original requirements or set of measurable objectives in complex, high-demand,
configurations based on customer profiles. ST covers scalability, load/stress,
reliability/availability, performance, security, resource usage, configuration,
compatibility/conversion, recovery, serviceability, usability, and installability.

In our experience, the attitude of testing should be to try to elicit failures in the SUT. As
Myers [5] states, a successful test case is one that detects the presence of an error or fault
by bringing about a failure. The above definitions of function test and system test
promote this important attitude. In both kinds of testing, high-yield test cases (those that
produce a rich harvest of faults) are preferred. As well, test strategies should be risk
directed, as described in the next section.

2. RISK-DIRECTED TEST STRATEGY

Risk is an unwanted event that has negative consequences for someone, usually a
stakeholder. From a test planning perspective, the degree of risk depends on the point of
view of the stakeholder. A stakeholder with respect to an e-commerce system is a party
who may experience loss (financial, legal, market) if the system malfunctions in some
way.

The major stakeholders in e-commerce testing are the e-commerce software
manufacturer, the merchant that purchases and deploys an Internet site using the e-
commerce software, and the merchant’s customers who shop at the Internet site. In
reality, there are many types of stakeholders, including Internet service providers (ISPs),
hosting service providers, commerce service providers, and content providers to name a
few. We focus on manufacturer, merchant, and customer.

The e-commerce software manufacturer is concerned about all “risks” that can undermine
the software quality, including hardware reliability and software capability, usability,
performance, reliability, installability, maintainability, security, documentation and
service (support) quality.

The merchant can have multiple people performing different roles, and each person may
be concerned about different aspects of risk. For example, those involved in site and
content creation are most interested in software capability, usability, maintainability, and
documentation. Those in technical operations, such as database administrator, system
administrator, or store administrator, are likely more concerned about usability,
performance, reliability, security, documentation and service quality. Those in business
operations, like merchandisers, marketing managers and customer service representatives
are concerned about usability, performance, reliability and documentation.

 5

The merchant’s customers are most affected by store usability (hence the importance of
providing good models upon which customers can base their store design), performance,
reliability and security.

The degree of risk that a particular stakeholder may experience during a particular
scenario is estimated by the table below:

Frequency of
Occurrence

Probability of
Failure

Cost of Failure Risk

L-M L-M L-M L-M
L-M L-M H M-H
L-M H L-M L-M
L-M H H H

H L-M L-M L-M
H L-M H H
H H L-M M-H
H H H H

Table 1: Estimated Risk by Scenario Attributes

In general, a scenario is a sequence of web interactions among users and major system
components (hardware, software, and network) that has occurred or may occur. Of
particular interest in risk-directed testing are the scenarios that have associated high risk
according to Table 1.

For example, consider the scenario of a multi-tier e-commerce installation. To assess the
risk associated with failure of this type of scenario we consider and rank the risk factors
in Table 1, namely frequency of occurrence of this scenario, probability of failure of this
scenario, and relative cost of such a failure with respect to a particular class of
stakeholder (say, sales and marketing). Here, the frequency of occurrence is low (once or
twice per customer configuration), the probability of failure is low (installability tests are
always performed many times before release and the installation process is well-directed
by the online installation process), but impact (cost of failure) is moderate, since a poor
first impression can result in lost future sales. This corresponds to row 1 in Table 1, and
thus produces a risk estimate of L-M (low to moderate). Thus this scenario would not
normally be included in a risk-directed test strategy, given typical constraints on budget
and time-to-market.

As an example of a higher-risk scenario, consider what happens when a web server fails.
The frequency of occurrence is low-to-medium, especially for multiple-server
configurations, since it is very unlikely that all servers would fail at the same time. The
probability of failure is low to medium, since web serving is not an extremely complex
task. Finally, the cost of failure is very high, because the site would be rendered
unavailable to customers and reputation and revenue would be negatively affected. This
scenario corresponds to row 2 of Table 1 with associated moderate to high risk.

 6

Therefore, this scenario should be included in risk-directed testing. A generic risk-
directed test strategy is given below.

Generic Risk-Directed Test Strategy

1. Identify stakeholder communities.
2. For each one, identify and rate risks as high, moderate, low.
3. Rank risks × stakeholders = corporate risk.
4. Identify:

• High corporate risk scenarios.
• Areas of product that are sensitive to high-risk scenarios.

5. Set scenario and product area coverage targets.
6. Develop tests to cover targets of Step 5 and monitor effectiveness to assure coverage.
7. Monitor field impact and reassess risk assignments, scenarios, and coverage targets.

We were pleased to observe that, in practice, higher risk scenarios were a focus of our
functional and system test teams, in many cases without conducting an explicit risk
analysis. Perhaps this is due to the inherent tendency of competent testers to attack areas
of weakness with high potential negative impact.

In addition to scenarios, testers were quick to identify as high risk any areas of the
product that were unstable or had undergone significant code churn during development,
or that implement complex business rules, or that have a complex (large) implementation
as product areas requiring test coverage [1].

In the next two sections we briefly give some function test principles and then focus on
system testing (stress and reliability testing).

3. HIGH-YIELD, RISK-DIRECTED FUNCTION TESTING

According to Myers [5], the best testers strive to uncover errors. The high-yield strategy
defines key scenarios based on a customer orientation, which will cost-effectively detect
the most errors in design and development [8]. The cost effectiveness comes by selecting
types of scenarios, called high-yield scenarios, which are likely to cause design errors to
be manifested in design simulations or inspections and walkthroughs. Very specifically,
by yield, we mean the number of dangerous errors or high-risk errors that are detected by
walking through, simulating, or executing this scenario. For example, an error of very
low associated cost that occurs frequently enough to annoy a customer may be considered
a moderate to high-risk error. Similarly, an error that occurs very infrequently but whose
associated cost is enormous may also be classified as moderate to high risk. Scenarios
are classified as high yield, moderate yield or low yield scenarios.

Since scenarios have been selected according to the likelihood of yield of high-risk
errors, it is important to monitor and measure the degree of coverage of risk associated
with scenarios that are selected for use cases and customer requirements from the very
beginning of a project. The metrics are computed from measures that are made during

 7

the requirements analysis and high-level design development process. Requirements are
organized by functional area. Each functional area will be covered by scenarios. The
first two measurements that are needed are the number of requirement areas by function
and the total number of scenarios.

Next, functional testers or designers identify scenarios that are usually extremely well-
understood by all stakeholders in the system design and development of the process,
particularly customer representatives, owners, developers, designers, and testers. These
are designated low-yield (L). The second category of scenarios is moderate to high-yield
scenarios. For many of these, the proper system reactions are unknown and certainly are
not uniformly understood. Differences in interpretations of requirements, given these
particular scenarios, will lead to invalid design assumptions and design omissions. The
third primary measurement is the number of low-yield scenarios. After these primary
metrics have been computed, then the additional metrics listed below can be calculated
and used to guide the requirements and design quality assessment process. Table 2 gives
the formulas for calculating these coverage assessment and risk management metrics.

Name of Metric Formula

Number of requirements for functional areas Primary measurement (a)
Total number of scenarios Primary measurement (b)
Number of low-yield scenarios Primary measurement (c)
Number of high-yield scenarios d = b - c
Average basic coverage e = b / a
Average risk coverage f = d / a
Degree of risk orientation g = d / b
Scenario risk ratio h = d /c

Table 2. Key Metrics Formulae

Example Ordering System:

In this example, we apply our high-yield requirements capture strategy to an electronic
commerce application involving an online ordering system. First, consider a use case of
the requirements specifications, namely, online ordering. Then, we classify the scenarios
according to our classification approach. Finally, we apply our key metrics formulae to
assess the risk-directed functional test coverage.

Online ordering use case:

This use case mainly deals with the customer going online to order one or more items
from a company's business catalogue. The main purpose of this use case is to
successfully place an order through the system, which eventually results in the customer
receiving the ordered items and being billed for the total price. There is only one low-
yield scenario, which involves browsing the catalogue, paying online and receiving all

 8

necessary confirmations. We have also identified five moderate-yield scenarios in which
some errors occur but eventually are corrected by the customer, therefore resulting in a
successful completion of the use case. Fourteen high-yield scenarios were identified in
which some errors occur, but the customer either fails to fix them or decides to cancel,
therefore resulting in the unsuccessful termination of the use case. Finally, we identified
eleven concurrent high-yield scenarios of which four result in the successful termination
of the use case and the rest do not lead to a successful completion of all the concurrent
order operations.

Table 3 below summarizes the results of applying our metric formula on the use case
described previously.

Name of Metric Formula Use case:
 Online ordering

Number of requirements for a 1
functional areas (use cases)
Total number of scenarios b 36
Number of low-yield scenarios c 11
Number of high-yield scenarios d = b - c 25
Average basic coverage e = b / a 11/1 = 11
Average risk coverage f = d / a 25/1 = 25
Degree of risk orientation g = d / b 25/36 = 0.69
Scenario risk ratio h = d / c 25/11 = 2.27

Table 3. Metrics Obtained for Online Ordering

We can notice that our approach is biased toward the problem areas of the requirement
specifications since the ratio of high-yield/low-yield is well over 1. The effect of this
bias will not only be seen at the specification and design phases of the development
process; if these scenarios are used as the basis for test suite generation, more serious
errors will be caught [7]. Moreover, if these high-yield scenarios are considered during
requirements capture, the likelihood of having related errors decreases considerably. We
feel having more high-yield scenarios earlier in the process will improve the software
quality and coverage in terms of requirements capture and testing. If we have a low ratio,
i.e., more low-yield scenarios, we risk wasting test time and missing potential high-cost
errors.

A benefit of this approach is that the high-yield scenarios evolve into very effective test
cases. The time to market is lessened because the functional (customer-oriented) tests are
developed in parallel with design and development instead of waiting until all code is
produced. In addition, significant problems will be manifested at the design stage where
they can be corrected with a minimum of redesign and no redevelopment.

 9

The only shortcoming to the high-yield approach is that we have not yet built a “smart
spreadsheet” support tool to ease the bookkeeping tasks for the measures and metrics.
This is a straightforward task.

4. RISK-DIRECTED SYSTEM TESTING (RELIABILITY & STRESS)

Reliability is one of the e-commerce quality factors most often cited by clients, and
therefore is a key goal for e-commerce test groups. The following are benefits of
reliability testing:
- Customer Scenarios: Reliability testing actually executes a real customer's (usually a

large customer's) load, and produces a quantitative measurement of the reliability of
the system. This metric can enable useful comparisons with other IBM products and
with competitors’ products. This information can then be used to compare the
reliability of the application with previous versions and other applications or
components.

- Customer Loyalty: Functionality and price often convince a customer to buy a
certain product but it is usually the reliability of the product that keeps customers.
This has been demonstrated in many other industries, a prominent one being the
automobile industry.

- Integrated System: Since we ship WebSphere Commerce Suite with many
component products that are developed and tested elsewhere, it is very important for
us to test the reliability of the entire system, as the interaction in this complex
environment could be the source of many reliability problems (e.g., many system
interaction problems were discovered by reliability testing).

We now give some background on reliability metrics and testing.

Reliability is the ability of the SUT to perform its required functions under stated
conditions for a specified period of time. These stated conditions are usually customer-
specific (i.e., reliability testing validates the ability of the SUT to perform its required
functions under a typical customer load). The main variable in reliability testing is the
period of time (the duration) for which the test is executed. As Musa and others have
pointed out, the validity of test results for prediction relies mainly on the accuracy of the
customer usage profile [11].

Previous approaches to reliability testing focused on measuring mean-time-to-failure
(MTTF), mean-time-between-failures (MTBF), and mean-time-to-repair (MTTR). These
metrics are defined as: [3,7]

i) MTTF of a system over a test period is the average of the interfailure times during

that period,
ii) MTTR of a system over a test period is the average time to diagnose and repair

faulty software components,
iii) MTBF is MTTF + MTTR.

 10

Reliability can be measured as MTBF/(1+MTBF) or as failure intensity (FI), which is the
rate of arrival of failure (failures per CPU hour) over a test session. Availability can be
measured as the likelihood that the system is operational, or MTBF/(MTBF+MTTR).
Reliability is usually based on CPU time; availability is estimated with respect to elapsed
time.

Reliability testing generally means running the system for 24 to 72 hours under a
realistic, moderate to heavy load. It is important that all reliability testing use a
representative workload (operational profile).

The FI metric is useful for plotting trends over test time towards meeting a “failure
intensity objective” before release. For example, an FI objective of .04 means that
failures may arrive at the rate of no more than 1 failure for every 25 CPU hours. In
general, CPU hours should be used because that measure is more reliable than clock
hours. In practice, many organizations use clock hours. In such a case, if FI * .04 with
respect to clock hours, we would be expecting no more than one failure occurring per
day.

In our risk-directed strategy, we set up five “hurdles” for pure reliability testing, one each
for 12, 24, 36, 48, and 72 hours. This is most efficient if serious functional defects have
already been caught by the Function Test team, and repaired correctly. In practice, of
course, some functional failures will be observed [2].

Stress Testing

Stress testing is managed according to a monotonic hurdles approach wherein the system
is required to meet increasing levels of throughput (scenarios per hour) and concurrency
(number of simultaneous virtual users). This is illustrated in Figure 2.

It is important to note that each hurdle does not have to necessarily map one-to-one to a
test case. For example, in Figure 2, we could have a test case defined that will run 64
concurrent users and have a throughput of 400 scenarios/hour. This will automatically
cover two hurdles, one on each of the throughput and concurrency hurdles charts.
Furthermore, if at the beginning of testing the test case corresponding to the final step
was executed successfully, then there would be no reason to execute the remaining test
cases since having 6400 scenarios/hour and 256 concurrent users is inclusive of all other
hurdles. However, success of the top hurdle on initial tries usually points to the fact that
the hurdles were not chosen high enough.

With this approach, if there are defects that are blocking some of the top steps, then the
tester will make progress on the bottom steps and discover the upper limit of the system.
This adds to the ability of the management team to make better decisions about whether
the product is ready to be shipped.

 11

6400 scenarios/h and
 256 users

 6400
scenarios/h

 400
scenarios/h

 1600
scenarios/h

 64 users

 256 users

 100
scenarios/h

 16 users

 4 users

Concurrent
Users

Throughput

Figure 2. Stress and Reliability Hurdles

Selecting Appropriate Hurdles

The choice of which values of throughput and concurrency should represent each hurdle
and of which minor hurdles should be tested are left to the discretion of the component
test plan writers. However, the hurdles’ values must achieve at least 200% of the load
requirements as set out by the requirements document for the application being tested.
Also, starting with values considerably under the requirements may be an advantage in
driving out defects. The newer the component (or the less it has been stress tested in the
past) the lower the initial hurdle should be.

For example, in one product, store creation was the type of scenario tested. The highest
hurdle created about 10,000 stores (scenario throughput of 10,000 stores per day). This is
more stores than what most customers want to create in one year. Thus, the highest
hurdle from a throughput perspective was 365 times that of the requirement. The lowest
hurdle for the concurrent virtual users was set at two early in the test cycle.

5. OBSERVATIONS AND PRAGMATIC GUIDELINES FOR IMPROVING THE
DEVELOPMENT AND TEST PROCESS

Test Involvement

Test should be involved in the development cycle from the beginning. Test should verify
that product requirements are accurately reflected in programming objectives,
architecture, and design specifications, and ultimately validate running code. The sooner
an error or design issue is detected, the less it costs to remove from the product.

 12

Stress and Reliability Tests

Stress tests run for short periods of time, usually not exceeding three hours. Stress tests
determine the behavior of the SUT under high load, which can be simulated by increasing
throughput and the number of concurrent users. Load tests should attempt to achieve at
least twice the specified throughput and number of concurrent users. Lower values are
initially chosen and often identify defects early in the test cycle. Load is increased when
a test scenario runs successfully until twice the specification is attained or the SUT fails.
Error statistics are measured in two ways:
i) Web interaction failure ratio, (number of single web page hits failing)/(total

number of requests), and
ii) Scenario interaction failure ratio (e.g., counting the rate of failure of entire

shopping scenarios).
 A stress scenario is considered to have run successfully when results fall within a range
of expected values for web interaction response time (e.g., not exceeding two seconds),
web interaction failure ratio (e.g., not exceeding 1%), and scenario failure ratio (e.g., not
exceeding 3%). Stress tests precede reliability tests.

Reliability tests run for longer periods under loads representing typical customer use.
The load can vary over the duration of the reliability test, which usually lasts not less than
12 hours and can run many days. A reliability scenario is considered to have run
successfully when results fall within a range of expected values for web interaction
failure frequency (e.g., not exceeding five per hour) and scenario failure frequency (e.g.,
not exceeding one per hour) over the duration of the reliability test.

Stress and reliability test results are summarized and compared to previous releases and
to other products and components. The goal is to always achieve continuous reliability
improvement from release to release.

6. CONCLUSIONS

Without going into proprietary documentation to give the details of risk identification, it
was generally found that it was beneficial for the verification test effort to:

i) Focus on finding defects.
In e-commerce, this assumes that defects are most prevalent in areas that other test teams
would not have explored. This would often be in the integration of all the various (add-
on) components, and also the product runtime environment, where stress and scalability
tests would “shake out” high-load/concurrency/reliability defects which would not appear
in functional testing.

ii) Use a risk-directed test strategy.
Use a simple risk analysis to identify high-risk scenarios according to Table 1, and ensure
that these scenarios are covered during function test, and during system stress and
reliability tests. We have found it beneficial to test highest-risk scenarios first. This
avoids wasting time on scenarios that are unlikely to occur or have low cost of failure.

 13

iii) Use test automation tools.
Finally, test automation is extremely helpful in both function test and in reliability and
stress tests. A sample automated test architecture is shown in Figure 3.

Figure 3. System Test Configuration

At the outset of the current release of IBM WebSphere Commerce Suite, the system
verification test team was challenged by management to reduce its cycle time by 30
percent. A shorter test cycle was required to stage the product's release across multiple
operating systems and to accelerate time-to-market. Knowing that it would not be
possible to sustain the level of test effort that had been applied to previous releases, the
team defined its test strategy and coverage accordingly. While it is too early to judge the
effectiveness of our approach, it appears that the risk-directed strategy will result in
significantly fewer high-risk defects over the product's life-cycle. We strongly
recommend this approach to other e-commerce test groups.

ACKNOWLEDGEMENTS

The authors would like to acknowledge the support of this work by Communications and
Information Technology Ontario and by IBM Canada Limited.

The views expressed in this paper are those of the authors and not those of IBM Canada
Limited.

The following are trademarks or registered trademarks of International Business
Machines Corporation: IBM, WebSphere.

Load Test Tool
Simulates
Multiple Users

 Web
Browser or
GUI Tool Internet

TCP Router
Node

Server
1

Server
2

Server
3

Database
Server

 14

References
[1] R. Binder, Scenario-Based Testing for Client-Server Systems, Software Testing
Forum, 1993, 1,2, 12-17.

[2] IBM Internal Documentation

[3] S.H. Kan. Metrics and Models in Software Quality Engineering, Addison-Wesley,
1995.

[4] D.J. Mosley. Client-Server Software Testing on the Desktop and the Web, Prentice-
Hall, 2000.

[5] G.J. Myers. The Art of Software Testing, John Wiley & Sons, 1979.

[6] IEEE Standard Glossary of Software Engineering Terminology, IEEE Std. 610, 12
(1990).

[7] S.L. Pfleeger. Software Engineering: Theory and Practice, Prentice Hall, 1998.

[8] K. Saleh, R.L. Probert, and W. Li. High-Yield requirements capture for electronic
commerce software. International Symposium on Electronic Commerce and the 2nd
International Workshop on Technological Challenges of Electronic Commerce, Beijing,
China, May 1999.

[9] K. Saleh and R.L. Probert. Issues in Testing E-commerce Systems. Electronic
Commerce Technology Trends, challenges and Opportunities, ed. W. Kou, Y. Yesha,
IBM Press 2000. 273-282.

[10] G.W. Treese and L.C. Stewart, Designing Systems for Internet Commerce, Addison-
Wesley, 1998.

[11] J.D. Musa, Software Reliability Engineering, McGraw-Hill, New York, 1998.

1

A Risk-Directed
E-Commerce Test Strategy

 Robert L. Probert, Coordinator

Advanced Software Engineering Research & Training Laboratory
School of Information Technology and Engineering

University of Ottawa
bob@site.uottawa.ca

Paul Sims, Project Leader, Behrad Ghazizadeh
WebSphere Commerce Products System Test

IBM Canada Ltd.
sims@ca.ibm.com

Wujun Li, Software Design Engineer
Nortel Networks

allyli88@hotmail.com

Outline of Presentation
• Intro to E-Commerce Testing
• Basic principles of Risk-Directed

Testing
• High-yield, risk-directed Function

Testing
• Risk-directed System Stress and

Reliability Testing
• Observations & Pragmatic

Guidelines
• Conclusions & Recommendations

2

Intro to Testing E-commerce

 In
te

rn
et

Web Browser or
Graphical User
Interface (GUI)

 (Web,
Application,
Commerce)
 Servers &
 DataBase

 Usability
Capability

Functionality
Performance

Availability
Capacity
Quality
Security

Reliability
Robustness

Security
Capacity

Lo
ad

 B
al

an
ce

r 1

2

3

Introduction to E-Commerce
Testing (cont)

• Key Definitions:
– SUT
– Web Interaction
– Server Transaction
– Scenario (user-oriented view)
– Error
– Fault
– Failure
– Function Test (WITH ATTITUDE)
– System Test (WITH ATTITUDE)

3

Risk-Directed Testing

• Risk
– “an unwanted event with negative

consequences for a stakeholder”
• stakeholders

– manufacturer
– merchant (multiple roles)
– customer

Frequency of
Occurrence

Probability of
Failure

Cost of Failure Risk

L-M L-M L-M L-M
L-M L-M H M-H
L-M H L-M L-M
L-M H H H

H L-M L-M L-M
H L-M H H
H H L-M M-H
H H H H

 Estimating Risk by Scenario Attributes

FO PF CF R

Examples:

Row 1: Multi-Tier Installation

Row 2: Web Server Fails

4

Generic Risk-Directed
Strategy

1. Identify stakeholder communities.
2. For each one, identify and rate risks as high,

(moderate), low.
3. Rank risks x stakeholders = corporate risk.
4. Identify:
• High corporate risk scenarios.
• Areas of product that are sensitive to high-risk
 scenarios.
5. Set scenario and product area coverage targets.
6. Develop tests to cover targets of Step 5 and monitor

to assure coverage.
7. Monitor for field impact and re-assess risk

assignments, scenarios, and coverage targets.

High-Yield FunctionTest
Strategy

• Origen:Art of Software Testing [G. Myers]
(1) one cannot test a program to

guarantee that it is error-free and
(2) a fundamental consideration in

program testing is one of economics

Since exhaustive testing is out of the
question, we must maximize YIELD
on the testing investment (i.e.,
maximize the number of errors
found by a minimum cost set of
effective test cases).

5

What is High-Yield?
… A High-Yield Attitude?

• Yield is the number of serious defects
detected in the product

• High-yield implies a rich harvest of bugs!
• A high-yield attitude is

 “I know there are lots of serious bugs
here, and I am going to find them!”

Can Metrics Help?

6

Yield -Based Risk-Directed
Coverage Metrics

Name of Metric Formula

number of requirements for functional areas primary measurement (a)
total number of scenarios primary measurement (b)
number of low-yield scenarios primary measurement (c)
number of high-yield scenarios d = b - c
average basic coverage e = b / a
average risk coverage f = d / a
degree of risk orientation g = d / b
scenario risk ratio h = d /c

Example of Scenarios
Low-Yield scenario

Supplier Shipper Consumer Business Payment
Server

Financial
Institution

B
ro

w
si

ng

Place
order *

Approval
request *

Transaction
approved *

Order
approved

Forward
order for
bank
approval

Order
completed

Update info

Update
inventory

Order
confirm

Ship ordered
items

Order form
download

Client Server Server

“Happy
Scenario”

7

Example of Scenarios
High-Yield scenario

B
ro

w
si

ng

Place
order *

Approval
request *

Payment over
credit limitPayment

over
credit
limit

Forward
order for
bank
approval

Order form
download

Supplier Shipper Consumer Business Payment
Server

Financial
Institution

Client Server Server

Payment
over
credit
limit

Go back to
change order

“Something
went wrong”

Example Metrics for on-line
ordering

Name of Metric Formula Use case:
 Online ordering

Number of requirement a 1
for functional areas (use cases)
Total number of b 36
scenarios
Number of low-yield c 11
scenarios
Number of high-yield d = b - c 25
scenarios
Average basic coverage e = b / a 11/1 = 11
Average risk coverage f = d / a 25/1 = 25
Degree of risk g = d / b 25/36 = 0.69
orientation
Scenario risk ratio h = d / c 25/11 = 2.27

NOTE: 2 H-Y FOR EVERY L-Y SCENARIO

8

Risk-Directed Stress &
Reliability Testing

• Reliability Metrics
• Reliability Testing
• Stress Testing Strategy
• Example of Hurdles

Increase Yield by Realistic Testing
(theory)

failure intensity
objective

time

fa
ilu

re
 in

te
ns

ity

stability
constraint

key metric: failure intensity

9

Stress and Reliability Hurdles

6400 scenarios/h and
 256 users

 6400
scenarios/h

 400
scenarios/h

 1600
scenarios/h

 64 users

 256 users

 100
scenarios/h

 16 users

 4 users

Concurrent
Users

Throughput

Observations and Pragmatic
Guidelines

• Error Statistics and Targets
– e.g., for stress testing (hours)

• web interaction response < 2 sec.
• web interaction failure ratio < 1%
• scenario failure ratio < 3%

– e.g., for reliability testing (days)
• web interaction failures < 5 per hr.
• scenario failure frequency < 1 per hr.

• Run Stress Tests BEFORE Reliability
Tests

• Stress to double throughput & number of
concurrent users

10

Conclusions and
Recommendations

• 1. Attitude:
Focus on Finding Errors

Recommendations (cont)
2. Use Risk-Directed Strategy

Test Highest Risk Scenarios First

11

Recommendations (cont)
3. Automate where it is most

effective and useful

Load Test Tool
Simulate
multiple users

 Web
Browser or
GUI Tool Internet

TCP Router
Node
(eNetwork
Dispatcher) WCS

Node 1

WCS
Node 2

WCS
Node 3

 Database
 Server

System Test Configuration

Good Tools are Available

SUMMARY

• Quality &
Productivity
improvements are
incrementally
achieved by a
Risk-Directed,
High-Yield
Strategy
– finds errors early
– catches most

severe errors
– maximizes ROTI

(return on test
investment)

12

Acknowledgements

• Communications & Information
Technology Ontario

• IBM
• Natural Sciences & Engineering

Research Council of Canada

Thank You!
Questions??
Comments??

QWE2000 Session 10M

Mr. William E. Lewis [USA]
(Technology Builders)

"A Continuous Quality Improvement Testing
Methodology (10M)"

Key Points

Review the waterfall approach to software development●

Review the V-model approach to software development●

Learn how verification and validation testing is performed using the V-Model●

Understanding the problems encountered in software waterfall development●

Learn the characteristics of rapid application development●

How to apply Deming's quality improvement principles for generically●

How to apply Deming's quality principles to the rapid application development (RAD)
development approach

●

Contrast the psychology of testing between the waterfall and RAD development●

Learn the phases, tasks and steps of the continuous quality improvement testing
methodology

Presentation Abstract

Rapid application development (RAD) methodologies are a reaction to the
traditional waterfall systems development in which a product evolves in
sequential phases. A common problem with the life cycle development model
is that the elapsed time to deliver the product can be excessive with user
involvement only at the very beginning and very end. As a result, the system
that they are given is often not what they originally requested.

By contrast, RAD development expedites product delivery. A small but
functioning initial system is built and quickly delivered, and then enhanced in
a series of iterations. One advantage is that the users receive at least some
functionality quickly. Another advantage is that the product can be shaped by
iterative feedback, i.e. users do not have to define every feature correctly and
in full detail at the beginnning of the development cycle, but can react to each
iteration. One common mistake is that during the process the requirments are
not documented during each iteration and the does not exist as a "final"
requirements document, just the system.

RAD or spiral testing is dynamic and may never be completed in the
traditional sense of a delivered system's completeness. The term "spiral"

●

QWE2000 -- Conference Presentation Summary

http://www.soft.com/QualWeek/QWE2K/Papers/10M.html (1 of 3) [9/28/2000 11:13:59 AM]

refers to the fact that the traditional sequence of analysis-design-code-test
phases are performed on a micro scale within each spiral or cycle in a short
period of time, and then the phases are repeated within each subsequent
cycle.

Learn how to apply Dr. Edwards Deming's continuous quality improvement
techniques which where originally used in the manufacturing setting. They are
applied as a continuous quality improvement testing methdology which is
superimposed over Deming's plan-do-check-act quality wheel.

About the Speaker

Bill Lewis has 35 years experience in the computing industry. Currently as a
senior technology engineer he trains and consults in the requirements-based
testing area which focuses on leading-edge testing methods and tools. He
teaches Writing Testable Requirements, Requirements-Based Testing,
Ambiguity Reviews, Reviewing Requirements Using RM and numerous
seminars. He is also an active client practitioner of TBI's Caliber-RBT, a
requirements-based functional test case design tool.

Before joining TBI, he was an assistant director for Ernst & Young, LLP for 6
years as the quality/ testing manager for several E&Y application
development projects. He was also the senior project manager for the
ISO9000 project resulting in a successful international certification. Bill
authored several technical and methods development handbooks for E&Y.
Prior to that he was a quality analyst in Jeddah, Saudi Arabia for the Saudi
Arabian Oil Company (ARAMCO).

The majority of Bill's career was at IBM for 28 years. His jobs included system
programmer, analyst, performance analyst and technical instructor. With IBM,
Bill has consulted and trained all over the world, including Amsterdam, South
Hampton, Toronto, Rome, Seoul Korea, Hong Kong, Thailand, Singapore,
Sydney, Australia, and the U.S.

His first job out of college was with the Apollo Support Department for
General Electric at the Kennedy Space Center as a real-time programmer for
the Apollo project. After completing his service committment, he worked for
Radiation, Inc. as a real-time programmer on the Nimbus-D satellite program.

Bill is a prolific communicator having lectured at various quality organizations
including the Quality Assurance Institute (QAI) Fourth International Quality
Conference, the American Society for Quality, and Association of Information
Technology Practitioners. His has also taught computer courses as a
part-time adjunct professor for five years and authored five books on
computer problem solving. In 2000 he recently authored a book entitled
"Sofware Testing and Continuous Quality Improvement" which is the basis of
this seminar.

Bill holds a BA degree in Mathematics from the University of Miami, Florida

QWE2000 -- Conference Presentation Summary

http://www.soft.com/QualWeek/QWE2K/Papers/10M.html (2 of 3) [9/28/2000 11:13:59 AM]

and an MS in Operations Research from the University of Central Florida. He
is also a Certified Quality Analyst (CQA) and Certified Software Test Engineer
(CSTE) through the Quality Assurance Institute.

QWE2000 -- Conference Presentation Summary

http://www.soft.com/QualWeek/QWE2K/Papers/10M.html (3 of 3) [9/28/2000 11:13:59 AM]

1

Software Testing and Continuous Quality
Improvement

Copyright Technology Builders, Inc. 2000. All rights reserved.

A Continuous Quality
Improvement Testing

Methodology
Bill Lewis

Senior Technology Engineer, CQA, CSTE

Technology Builders, Inc.
400 Interstate Parkway

Suite 1090
Atlanta, Georgia 30339

tel: 770-937-7900
fax: 770-937-7898
http://www.tbi.com

Software Testing and Continuous Quality
Improvement

Copyright Technology Builders, Inc. 2000. All rights reserved.

Copyright © 2000 by Technology Builders, Inc. All rights reserved.
No part of this manual (including interior design, cover design,

and illustrations) may be reproduced or transmitted in any form,
by any means, (electronic, photocopying, recording, or

otherwise) without the prior written permission of the publisher.

For authorization to photocopy items for internal corporate use,
personal use, or for educational and/or classroom use, please

contact:

Educational Services, TBI, 400 Interstate North Parkway, Suite
1090 Atlanta, GA 30339 USA. Phone: 770-937-7900.

ii

2

Software Testing and Continuous Quality
Improvement

Copyright Technology Builders, Inc. 2000. All rights reserved.

Topics
Deming’s Quality Improvement Framework

Role of statistics and metrics
The quality wheel (PDCA)

Waterfall Development Versus RAD Development
Phased approach
Problems and limitations
Psychology of testing

What is RAD/ Spiral testing?
A continuous quality improvement testing methodology

Software Testing and Continuous Quality
Improvement

Copyright Technology Builders, Inc. 2000. All rights reserved.

Role of Statistics and Metrics -
Deming

Deming has influenced every facet of work in every industry,
influencing government, schools, hospitals.
“In God we trust. All others must use data”
Statistics is a tool to help us Understand, Gain Control, and
Monitor a process.

Flow Chart (understand a process by flow charting the process)

Run Trend Chart (plots data points in chronological order)

Control Chart (run chart with statistical lower/upper bounds around average)

Cause-and-Effect (identifies possible causes of a problem)

Histogram (data organized according to relative frequency)

Pareto Chart (incidents ranked by frequency in ascending order - 80/20 rule)

Scatter Diagram (charting the relationship between two variables)

3

Software Testing and Continuous Quality
Improvement

Copyright Technology Builders, Inc. 2000. All rights reserved.

Deming’s Quality Principles
Quality Points

Statistics alone are not enough
Need bedrock of management philosophy (14 points)

Seven Deadly Diseases
Lack of constancy of purpose
Emphasis on short-term profits
Evaluation by performance and merit ratings
Mobility of management
Running a company on visible figures alone
Excessive costs

The continuous quality improvement wheel
Continuously improvement through Plan-Do-Check-Act

Software Testing and Continuous Quality
Improvement

Copyright Technology Builders, Inc. 2000. All rights reserved.

PDCA Quality Wheel -
 a quality framework for continuous
improvement

Act Plan

Check Do

Fig I-6

4

Software Testing and Continuous Quality
Improvement

Copyright Technology Builders, Inc. 2000. All rights reserved.

Plan
Define the quality objectives and determine the required
conditions and methods required to achieve the objectives
Clearly define and quantify the objectives

Do
Create the conditions and perform the necessary actions to
execute the plan

Check
Determine if work is progressing according to the plan and
expected results are obtained
Compare the results with objectives

Act
Devise measures for appropriate actions if work is not
performed according to the plan or results are not achieved

Software Testing and Continuous Quality
Improvement

Copyright Technology Builders, Inc. 2000. All rights reserved.

Iteration of the P-D-C-A Wheel
PDCA Approach Ensures

Quality of products
Delivery date
Expected costs

Repeated PDCA Usage Continuously Improves
Quality of work
Work processes or methods
Repeatability
Deliverables or results
People
Technology

5

Software Testing and Continuous Quality
Improvement

Copyright Technology Builders, Inc. 2000. All rights reserved.

PDCA Ascending Spiral

Fig I-7

Quality Product or Service

PDCA

PDCA

PDCA

PDCA

Check (C) Do(D)
Act (A) Plan (P)

Software Testing and Continuous Quality
Improvement

Copyright Technology Builders, Inc. 2000. All rights reserved.

User
Requirements

User
Requirements

Logical
Design

Logical
Design

Physical
Design

Physical
Design

Program Unit
Design

Program Unit
Design

CodingCoding
Fig II-1

Waterfall Development - linear
approach

6

Software Testing and Continuous Quality
Improvement

Copyright Technology Builders, Inc. 2000. All rights reserved.

The V-Model
User

Requirements
User

Requirements

Logical
Design

Logical
Design

Physical
Design

Physical
Design

Program
Unit Design
Program

Unit Design

Acceptance
Testing

Acceptance
Testing

System
Testing

System
Testing

Integration
Testing

Integration
Testing

Unit
Testing
Unit

Testing

CodingCoding

Verifies

Fig II-15

Software Testing and Continuous Quality
Improvement

Copyright Technology Builders, Inc. 2000. All rights reserved.

Defining the V-Model
Verify ensures project deliverables are complete and comply with
standards (required documents, tasks)

Validate ensures business and technical requirements (inputs,
outputs) have been correctly translated into deliverables (all
requirements from previous stage accounted for and correctly
represented)

Test Planning defining test conditions and requirements
concurrently with requirements from specification phases

Test that completed programs and systems deliver the requirements

7

Software Testing and Continuous Quality
Improvement

Copyright Technology Builders, Inc. 2000. All rights reserved.

Waterfall Development
Limitations

Long Development Cycle and Shortened Business Cycles
 Results in a gap between requirements and delivery

End users Involved in the Very Beginning and Very End
Expected to define requirements in detail

“Rippling Effect”
Return to previous phases which is very costly

Software testing often treated as a separate phase
Often late involvement (testing the final system)

Practitioners started looking at alternative approaches
RAD or Spiral Development, prototyping

Software Testing and Continuous Quality
Improvement

Copyright Technology Builders, Inc. 2000. All rights reserved.

What is RAD?
Process of working from a base and building a system
incrementally in “spirals” (spiral development)

Small but functioning initial system is built and quickly delivered, and
then enhanced in a series of iterations
Rapid prototyping
“Hacker RAD” is not RAD

Advantages
Users receive functionality quickly
Product is shaped dynamically by iterative feedback

Disadvantage
Tendency NOT to document requirements as you go!
The product definition and specifications continue to evolve
indefinitely, e.g. there is no such thing as a frozen specification-->
how to test it?

8

Software Testing and Continuous Quality
Improvement

Copyright Technology Builders, Inc. 2000. All rights reserved.

Psychology of Testing
Waterfall Development

Requirements defined (assumption)
More efficient for outsiders test the code
Developers should NOT test their own work
Does not work in a spiral development environment

RAD Development (spiral)
Requirements will not be totally defined
Cooperation between testers and development is imperative
Testers are powerful allies
Test and development management commitment

Software Testing and Continuous Quality
Improvement

Copyright Technology Builders, Inc. 2000. All rights reserved.

Testing as a “Zero Sum” Game
Tester/ Developer Perceptions

Development output is real, testing output is intangible and not
accountable
Testing is a very difficult effort (if done correctly)
Anyone can be a tester
Testers traditionally ignored until end of development

Goal: Integrate testing and development
Testers are the “eyes to quality improvement” not the “code
breakers”
Developers view testers as integral team players
Testers have save status as developers
Tester/ developer “real time” communication
Testers linked into project schedule
Test and development managers work closely together

9

Software Testing and Continuous Quality
Improvement

Copyright Technology Builders, Inc. 2000. All rights reserved.

A Continuous Quality
Improvement Testing
Methodology

Apply Deming’s
manufacturing quality
principles to software testing
process

PDCA quality wheel
Constantly improve

People
Process
Technology

Waterfall or RAD
environments

Software Testing and Continuous Quality
Improvement

Copyright Technology Builders, Inc. 2000. All rights reserved.

Applying the PDCA Quality Circle
to Software Testing

Act Plan

Check Do

Fig I-6

10

Software Testing and Continuous Quality
Improvement

Copyright Technology Builders, Inc. 2000. All rights reserved.

Components of PDCA Quality
Wheel

Plan
Project interviewing and test planning, the basis of
accomplishing testing
Define the metrics to control the people, process, technology

Do
Test case design, test development, and test execution

Check
Metric measurements and analysis
Evaluate work effort, resources, process, technology

Act
Preparation for the next spiral
Refining the test plan and tests
Re-assessing test control procedures, test team

Software Testing and Continuous Quality
Improvement

Copyright Technology Builders, Inc. 2000. All rights reserved.

RAD/ Spiral Testing Methodology
Design Coding

Planning/
Analysis

Test/
Deliver

Test Planning
(Plan)

Test Case Design
(Do)

Test Development
(Do)

Test Execution/ Evaluation
(Do, Check, Act)

Fig III-1

11

Software Testing and Continuous Quality
Improvement

Copyright Technology Builders, Inc. 2000. All rights reserved.

Continuous Process
Improvement

Information Gathering

Test Planning

Test Development

Test Execution/Evaluation

System Testing

Acceptance Testing

Summary Report

(Steps PLAN DO CHECK ACT

Test Case Design

Prepare for Next Spiral

(INTERIM
REPORTS)

FIG III-3.EPS

*
(Plan Do Check Act

*
*
*
* *

*
* * * *
* * * *

Software Testing and Continuous Quality
Improvement

Copyright Technology Builders, Inc. 2000. All rights reserved.

Information Gathering
Prepare for Interview

Conduct Interview

Summarize Findings

Identify Participants

Define Agenda

Understand Project

Understand Project
Objectives

Understand Project
Status

Understand Project
Plans

Understand Project
Development Methodology

Identify High-Level
Business Requirements

Summarize Interview

Confirm Interview
Findings

Perform Risk Analysis

FIG III-5.EPS

12

Software Testing and Continuous Quality
Improvement

Copyright Technology Builders, Inc. 2000. All rights reserved.

Establish Regression
Test Strategy

Identify Test
Exit Criteria

Test Planning

Build Test Plan

Review/Approve Plan

Organize Test Team

Define Dependencies

Define Metrics Objectives

Identify Types
of Tests

Select Test Tools

Establish Change
Request Procedures

Establish Defect Recording
/Tracking Procedures

Create Test
Schedule

Define Test
Deliverables

Define High-Level
Functional Requirements

Establish Test
Environment

Establish Version
Control Procedures

Define Configuration
Build Procedures Define Project Issue

Resolution Procedures
Establish Reporting

Procedures

Define Metric Points

Obtain Approvals

Define Approval
Procedures

Define Metrics

Schedule/Conduct
Review

FIG III-6.EPS

Software Testing and Continuous Quality
Improvement

Copyright Technology Builders, Inc. 2000. All rights reserved.

Test Case Design
Design Function Tests

Review/Approve Design

Define System/
Acceptance Tests

Refine Functional
Test Requirements

Build Function
Test Matrix

Define Application
GUI Components

Design GUI
Tests

Identify Potential
System Tests

Identify Potential
Acceptance Tests

Schedule/Prepare
for Review

Obtain
Approvals

Design GUI Tests

Design System
Fragment Tests

FIG III-10.EPS

13

Software Testing and Continuous Quality
Improvement

Copyright Technology Builders, Inc. 2000. All rights reserved.

Test
Development

Develop
Test Scripts

Review
Approve Test
Development

Script GUI/
Function Tests

Script System
Fragment Tests

Schedule/
Prepare for Review

Obtain
Approvals

Steps Tasks

FIG III-14.EPS

Software Testing and Continuous Quality
Improvement

Copyright Technology Builders, Inc. 2000. All rights reserved.

Test
Execution/Evaluation

Setup
and Testing

Regression Test Old Spiral Tests

Execute New Spiral Tests

Record Spiral Defects

Analyze Metrics

Steps Tasks

Refine Test Schedule

Identify Requirement Changes

Evaluation

FIG III-16.EPS

14

Software Testing and Continuous Quality
Improvement

Copyright Technology Builders, Inc. 2000. All rights reserved.

Applying Statistics and Metrics
Histograms (frequencies)

By priority
By severity
By tester
By environment
By time to fix

Pareto Charts (ranked in ascending order)
By defect types
By defect source
By functional area defects
By program unit defects

Software Testing and Continuous Quality
Improvement

Copyright Technology Builders, Inc. 2000. All rights reserved.

Applying Statistics and Metrics
(Con’t)

Run Trend Charts (over time)
Number of test cases designed, developed, executed
Number of functions tested over time
Number of test cases versus number of defects
Number of defects (per time period)
Cumulative number of defects (“burnout rate”)

Cause-and-Effect Diagrams (Ishikawa or fishbone)
Ex. Excessive size of of materials to be inspected leads to
preparation rate that is too high
Ex. Preparation rate that is too high contributes to an
excessive rate of inspection
Ex. Excessive rate of inspection causes fewer defects to be
found

15

Software Testing and Continuous Quality
Improvement

Copyright Technology Builders, Inc. 2000. All rights reserved.

Prepare for the Next
Spiral

Update Function/GUI Tests

Update System Fragment Tests

Update Acceptance Tests

Evaluate People (Test Team)

Processes (Test
Control Procedures)

Steps Tasks

Technology (Test Environment)

Publish Metric Graphics

Reassess
People, Processes,

Technology

Publish Interim
Test Report

FIG III-18.EPS

Refine
Tests

Software Testing and Continuous Quality
Improvement

Copyright Technology Builders, Inc. 2000. All rights reserved.

Install System Test Tools
Establish System Test Environment

Organize System Test Team
Finalize System Test Schedule

Design/Script Installation Tests
Design/Script Recovery Tests

Design/Script Backup Tests
Design/Script Documentation Tests

Design/Script Usability Tests
Design/Script Conversion Tests

Design/Script Compatibility Tests
Design/Script Stress Tests

Design/Script Other Type System Tests

Design/Script Volume Tests
Design/Script Security Tests

Record System Defects
FIG III-
23.EPS

Execute New System Tests
Regression Test System Fixes

Obtain Approvals
Schedule/Conduct Review

Conduct
System Testing

Finalize System Test Types

Design/Script Performance Tests

Execute
System
Tests

Complete
System

Test Plan

Complete
System

Test Cases

Review/Approve
System
Tests

16

Software Testing and Continuous Quality
Improvement

Copyright Technology Builders, Inc. 2000. All rights reserved.

Conduct Acceptance Testing

Execute
Acceptance

Tests

Complete
Acceptance
Test Plan

Complete
Acceptance
Test Cases

Review/Approve
Acceptance
Test Plans

Finalize Acceptance Test ScheduleFinalize Acceptance Test Schedule

Organize Acceptance Test TeamOrganize Acceptance Test Team

Establish Acceptance Test EnvironmentEstablish Acceptance Test Environment

Install Acceptance Test ToolsInstall Acceptance Test Tools

Subset System-Level Test CasesSubset System-Level Test Cases

Design/Script Additional Acceptance TestsDesign/Script Additional Acceptance Tests

Schedule/Conduct ReviewSchedule/Conduct Review

Obtain ApprovalsObtain Approvals

Regression Test Acceptance FixesRegression Test Acceptance Fixes

Execute New Acceptance TestsExecute New Acceptance Tests

Record Acceptance Test DefectsRecord Acceptance Test DefectsFIG III-
24.EPS

Finalize Acceptance Test TypesFinalize Acceptance Test Types

Software Testing and Continuous Quality
Improvement

Copyright Technology Builders, Inc. 2000. All rights reserved.

Summarize/Report Spiral Test
Results

Perform
Data

Reduction

Prepare
Final Test

Report

Review/Approve
Final Test

Report

Confirm Test Execution/ResolutionConfirm Test Execution/Resolution

Consolidate Test Defects by Test NumberConsolidate Test Defects by Test Number

Post Remaining Defects to a MatrixPost Remaining Defects to a Matrix

Analyze/Consolidate MetricsAnalyze/Consolidate Metrics

Prepare Test Report IntroductionPrepare Test Report Introduction

Summarize Test ResultsSummarize Test Results

Schedule/Conduct ReviewSchedule/Conduct Review

Obtain ApprovalsObtain Approvals

Develop Findings/RecommendationsDevelop Findings/Recommendations

FIG III-
25.EPS

Publish Final Test ReportPublish Final Test Report

17

 Reference

“Software Testing and Continuous Quality Improvement”
by William E. Lewis, Auerbach Publishers, 2000

ISBN O-8493-9833-9, Amazon.com

QWE2000 Session 11T

Mr. Richard Kasperowski & Mr. Spencer Marks
[USA]

(Altisimo Computing)

"Building Better Java Applications"

Key Points

What is a "better" Java application?●

Best practices●

Methodologies●

Presentation Abstract

While helping our clients build Java-based applications, we have learned practices
and methodologies that result in successful projects. We will share the ingredients
we consider most important in building better Java applications.

By "better" we mean that an application meets the sponsorÆs requirements, is
flexible, and is delivered on time, all in an environment where change is constant and
must be embraced rather than eschewed. The characteristics of a flexible application
include ease of changing its feature set while under development, and extensibility
and ease of maintenance after initial delivery. In addition, better Java applications
encourage pleasant work environments.

Through our experience, we have recognized a specific set of best practices and
methodologies that have helped us build better Java applications. Each best practice
is a small scale, concrete procedure to follow while designing or implementing an
application. In contrast, the methodologies are project-scope concepts that can be
practiced in more than one way. In general, best practices are Java-specific, while
methodologies may be language-neutral.

The majority of the presentation will describe each of the best practices and
methodologies with which we have had success. Drawing from our experience, we
will give a detailed description of each best practice and methodology, from both a
theoretical and implementation-specific point of view.

About the Speaker

Richard Kasperowski is president of Altisimo Computing, a software development
consulting firm based in Cambridge, Massachusetts. Richard has worked as tester,
developer, manager, and consultant since 1988. He has a degree from Harvard
University, is a member of the ACM, and usually cycles to his clientsÆ offices.

QWE2000 -- Conference Presentation Summary

http://www.soft.com/QualWeek/QWE2K/Papers/11T.html (1 of 2) [9/28/2000 11:14:16 AM]

Spencer Marks is an independent software development consultant who has helped
clients such as Apple Computer, Digital, Lotus, Symantec, and GTE design, code,
and improve the quality of their products since 1989. For the past three years, he
has focused exclusively on the Java language and related technologies such as
XML. Spencer holds a bachelorÆs degree from Skidmore College and a masterÆs
degree from Clark University.

Richard and Spencer have worked together on several projects since they were first
introduced in 1988. Most recently they helped a major telephone company roll out a
Java-based web application that allowed customers to view and pay their phone
bills. Currently they are building the back-end and presentations layers to showcase
an innovative new search engine technology.

BACK TO QWE2000 PROGRAM

QWE2000 -- Conference Presentation Summary

http://www.soft.com/QualWeek/QWE2K/Papers/11T.html (2 of 2) [9/28/2000 11:14:16 AM]

QWE2000 Session 11A

Dr. Nigel Bevan
(Serco Usability Services, UK) & Mr. Itzhak

Bogomolni
(Israel Aircraft Industries, Israel)

"Incorporating User Quality Requirements In The
Software Development Process"

Key Points

Usability●

User centred design●

User requirements●

Presentation Abstract

Why are methods for incorporating user quality requirements and improving usability
not more widely adopted? There is compelling evidence for the cost benefits of user
centred design, development time can be reduced, sales increased, the productivity
of users improved, and support and maintenance costs reduced. But although the
process is supported by international standards it has been difficult to integrate into
mainstream software development.

The EU INUSE and RESPECT projects developed a complete set of methods for
incorporating user quality requirements in development, for testing usability and for
assessing the usability maturity of organisations.

Our experience of using the methods will be described in the paper.

After application of the methods over a period of 12 months, LAHAV assessed the
benefits. The conclusions were very positive. The paper will include the results of the
second process improvement assessment.

About the Speaker

Nigel Bevan is Research Manager at Serco Usability Services. He manages the EU
T RUMP project described in this paper. He has developed and applied methods for
usability and user centred design, and has been editor of several international
standards for usability and software quality.

Itzhak Bogomolni leads software process improvement at the LAHAV division of IAI
and has spent the last eight years working on process improvement activities. His

QWE2000 -- Conference Presentation Summary

http://www.soft.com/QualWeek/QWE2K/Papers/11A.html (1 of 2) [9/28/2000 11:14:22 AM]

previous experience was in development of embedded real time systems.
QWE2000 -- Conference Presentation Summary

http://www.soft.com/QualWeek/QWE2K/Papers/11A.html (2 of 2) [9/28/2000 11:14:22 AM]

Incorporating user quality
requirements in the software

development process

Nigel Bevan, Serco Usability Services
Itzhak Bogomolni, Israel Aircraft Industries

nbevan@usability.serco.com
ibogomolni@lahav.iai.co.il

www.usability.serco.com/trump

©2000 Serco and IAI. Reproduction permitted provided the source is acknowledged. 2

TopicsTopics

• Usability and user requirements
• Conventional approach to usability
• Means of achieving Quality in Use
• TRUMP approach and methods
• IAI experience with TRUMP methods
• Trial Application conclusions

©2000 Serco and IAI. Reproduction permitted provided the source is acknowledged. 3

How Usable are current systems ?How Usable are current systems ?

• UK Passport Office
– New software for issuing passports took operators twice as long
– Caused delays of up to 3 months in obtaining a passport
– Huge cost of additional clerical staff

• E-commerce web sites
– User success in purchasing ranges from 25%-42%

©2000 Serco and IAI. Reproduction permitted provided the source is acknowledged. 4

What is the Quality of the User Requirements ?What is the Quality of the User Requirements ?

• Standish Group found that
51% of projects failed
31% were partially successful

• Main causes were poor user requirements:
13.1% Incomplete requirements
12.4% Lack of user involvement
10.6% Inadequate resources
9.9% Unrealistic user expectations
9.3% Lack of management support
8.7% Requirements keep changing
8.1% Inadequate planning
7.5% System no longer needed

©2000 Serco and IAI. Reproduction permitted provided the source is acknowledged. 5

Who is responsible for system usability andWho is responsible for system usability and
users requirements ?users requirements ?

• Who (if anyone) in your organization is responsible for
System usability (what organizational function) ?

• Does your organization specify non-functional User
Requirements ?

• How can the user requirements be improved?

• How can the systems usability be improved?

©2000 Serco and IAI. Reproduction permitted provided the source is acknowledged. 6

Conventional approach to usabilityConventional approach to usability

feasibility requirements design implement release

Usability group user and task
analysis

usability
test

prototyping

©2000 Serco and IAI. Reproduction permitted provided the source is acknowledged. 7

The Need for Quality in UseThe Need for Quality in Use

ISO/IEC 14598-1
Software Product
Evaluation -
General Overview

system
behaviour

external
quality

requirements
External
quality

internal
quality

requirements
Internal
quality

software
attributes

Specification

Design and
development

Needs Quality in use

Operation

validation

verification

use and feedback

real
world

external
metrics

external
metrics

internal
metrics

System
Integration
and Testing

Requirements

determine

determine

indicate

indicate

©2000 Serco and IAI. Reproduction permitted provided the source is acknowledged. 8

Means of achieving Quality in UseMeans of achieving Quality in Use

process quality product quality quality in use

usability in
context

development
process

product effect of the
product

user centred
process

interface and
interaction

ISO 13407 ISO 9241-11
ISO 14598-1

ISO/IEC 9126-1
ISO/IEC 9126-4

organisational
capability

life cycle
processes

usability
capability

ISOTR 18529 ISO 9241 parts 10, 12-17
ISO/IEC 9126-2/3

©2000 Serco and IAI. Reproduction permitted provided the source is acknowledged. 9

TRUMP: Trial Usability Maturity ProcessTRUMP: Trial Usability Maturity Process

• EU-funded trial application of user-centred design methods
developed in previous research projects (INUSE and
RESPECT)

• Serco: apply the methods
– Lloyds Register: Usability Maturity Assessment

• Inland Revenue/EDS - IT for 60,000 staff
– RAD methodology

• Israel Aircraft Industries - aerospace systems
– traditional methodology

©2000 Serco and IAI. Reproduction permitted provided the source is acknowledged. 10

LAHAV BackgroundLAHAV Background

• A Division of Israel Aircraft Industries
• Expertise in Military Aircraft “Avionics Upgrade Programs”
• Customers Worldwide
• Avionics directorate - 100+ developers (Pilots, System,

Software, Facilities)
• User needs addressed by group of Pilots

©2000 Serco and IAI. Reproduction permitted provided the source is acknowledged. 11

TRUMP at LAHAVTRUMP at LAHAV

• LAHAV TRUMP objectives
– Improve Operational Requirements Definition and Evaluation

Process
– Increase Usability of LAHAV Products
– Increase Customer Satisfaction from LAHAV Products

• TRUMP’s Trial Application : Mission Planning Center (MPC)
– The system is used to plan an airborne mission - Standard NT

Interface
– The mission is then loaded onto a cartridge that is taken by the

pilot to the aircraft.
– In the aircraft the pilot loads the data into the aircraft’s main

mission computer

©2000 Serco and IAI. Reproduction permitted provided the source is acknowledged. 12

TRUMP ApproachTRUMP Approach

1. Stake-
holder
meeting

2. Context
of use

3. Scenarios

4. Usability
requirements

5. Evaluate
existing system

6. Prototyping

7. Style guide

8. Evaluation

9. Usability
testing

10. Collect
feedback

feasibility requirements design implement release

System lifecycle

Plan
Process

Specify
Context of

Use

Design
Solutions

Specify
Requirements

Evaluate against
Requirements

www.usability.serco.com/trump

©2000 Serco and IAI. Reproduction permitted provided the source is acknowledged. 13

1 - 1 - Define Goals and StakeholdersDefine Goals and Stakeholders

• Method definition
– A half-day meeting to identify and agree on the role of usability,

broadly identifying the intended context of use and usability
goals, and how these relate to the business objectives and
success criteria for the system

• What we did
– New goals and objectives were defined.
– New intended user and stakeholders were identified.
– Projects scope and objectives were discussed and issues

identified.
• Method evaluation

− Identified new goals, users and stakeholders
− Better understood scope and objectives

©2000 Serco and IAI. Reproduction permitted provided the source is acknowledged. 14

2- 2- Context of UseContext of Use

• The usability of a product is affected not only by the
features of the product itself but also by its Context of
Use

• Context is the characteristics of:
– the users of the product
– the tasks they carry out
– the technical, organisational

and physical environment
in which the product is
used

– the date and time when the
product is being used

©2000 Serco and IAI. Reproduction permitted provided the source is acknowledged. 15

2 - Context of Use (2 - Context of Use (ContCont.).)

• Method definition
– A half-day workshop to collect and agree detailed information

about the intended users, their tasks, and the technical and
environmental constraints.

• What we did
– The context of use was defined.
– The user’s skills, tasks and the working environment were

defined.
• Method evaluation

– The checklist is too long and should be customised for every
system being developed.

– An experienced facilitator is very important to the success of
the technique.

©2000 Serco and IAI. Reproduction permitted provided the source is acknowledged. 16

3 - Produce Scenarios3 - Produce Scenarios

• Method definition
– A half-day workshop to document examples of how users are

expected carry out key tasks in a specified context, to provide an
input to design and a basis for subsequent usability testing.

• What we did
− Produced two detailed operational scenarios of how the MPC

might be used
• Method evaluation

– The few operational scenarios required for MPC are obvious for
Pilots.

– It was concluded that this technique was not so relevant for MPC.
– Another Trial will be conducted on Avionics project to evaluate the

technique relevance to LAHAV
– The contribution for MPC system was low.

©2000 Serco and IAI. Reproduction permitted provided the source is acknowledged. 17

4 - Task Analysis4 - Task Analysis

• Method definition
– Workshop: everyone produces sticky notes for all imagined

functions, which are sorted into logical groups on the wall. The
notes are arranged into a hierarchy of functions to support
common user tasks.

• What we did
– The technique has been customised in advance.
– Functions and features were added and functional hierarchy

has been changed significantly and agreed upon.
– System architecture has been modified accordingly.

• Method evaluation
– The method had a great impact on the MPC look and feel, it’s

S/W requirements and architecture

©2000 Serco and IAI. Reproduction permitted provided the source is acknowledged. 18

5 - Evaluate Usability of Existing System5 - Evaluate Usability of Existing System

• Method definition
– Evaluate an earlier version or competitor system to identify

usability problems and obtain measures of usability as an
input to usability requirements.

• What we did
– Existing MPC has been used by 4 pilots to prepare a

mission (The MPC main task).
– About 50 usability problems have been identified.
– SUMI questionnaires have been filled and results

evaluated.
• Method evaluation

– The technique was very productive though has been
applied in a semi-formal way.

– More formal trial should be considered.

©2000 Serco and IAI. Reproduction permitted provided the source is acknowledged. 19

6 - 6 - Quality in Use Goals and Usability RequirementsQuality in Use Goals and Usability Requirements

• Method definition
– A half-day workshop to establish usability requirements for the user

groups and tasks identified in the context of use analysis and in the
scenarios.

• What we did
– Usability time goals were defined.
– A list of probable errors was created.

• Method evaluation
– The technique is not well defined and not fully understood at LAHAV.
– LAHAV realises the need for the technique and it’s potential
– More work is needed to better define it.

©2000 Serco and IAI. Reproduction permitted provided the source is acknowledged. 20

7 - Paper Mockup Prototyping7 - Paper Mockup Prototyping

• Method definition
− Evaluation by users of quick low fidelity prototypes(using paper or

other materials) to clarify requirements and enable draft interaction
designs and screen designs to be rapidly simulated and tested.

• What we did
– The Screens Printouts were posted on the wall and provided the “Big

Picture”.The overheads of the screens were extensively used.
– Four major GUI sections were conceived.
– Sections order was modified according to logical planning flow.
– Interface comments modified screens’ layout.
– An item manipulation technique was agreed upon
– A list of 23 usability comments was created

• Method evaluation
– Very fruitful and productive discussions.

©2000 Serco and IAI. Reproduction permitted provided the source is acknowledged. 21

SUMISUMI

Usability test of new MPC prototype

©2000 Serco and IAI. Reproduction permitted provided the source is acknowledged. 22

8 - Formal and Informal Usability Testing8 - Formal and Informal Usability Testing
• Method definition

– Informal usability testing with 3-5 representative users carrying out key tasks
to provide rapid feedback on the usability of prototypes.

– Formal usability testing with 8 representatives of a user group carrying out
key tasks to identify any remaining usability problems and evaluate whether
usability objectives have been achieved.

• What we did
– Informal Computer Prototype Usability Testing

– The pilot’s interaction with the computer was projected on a wall. The
evaluators and the developer sat in the same room observing the
interaction. The pilot was encouraged to think aloud.

– 97 problems were identified after six pilots had tried the system.
– Formal Usability Testing against Requirements

– The system was tested against timing requirements defined for two
typical tasks. Eight pilots had 2-hours frontal training followed by 2-hours
hands-on practice. Each pilot performed two tasks according to a written
tasks definition. Task duration's were recorded and scored well. 54
“points of detail”comments were identified.

• Method evaluation
– Both methods were very valuable and almost all the problems were

subsequently fixed.

©2000 Serco and IAI. Reproduction permitted provided the source is acknowledged. 23

Trial Application Bottom LineTrial Application Bottom Line

• Positive Feedback from Participants
• A Definite Improvement in the Development Process
• Very Cost Effective and Low Cost
• Mostly Intuitive however tailoring sometimes required
• Expert Guidance needed in few techniques
• LAHAV decided to incorporate TRUMP techniques in it’s

standard development process

©2000 Serco and IAI. Reproduction permitted provided the source is acknowledged. 24

SummarySummary

• Low cost simple methods for improving systems usability are
here

• The methods can be easily integrated into any software
development process

• The responsibility for quality in use should be transferred to
development organization

• The Methods and supporting means are available on the Web
• No more Excuses

Incorporating user quality requirements in the software
development process

Nigel Bevan* and Itzhak Bogomolni +

*Serco Usability Services, 4 Sandy Lane, Teddington, Middx, TW11 0DU, UK
+ Israel Aircraft Industries Ltd, Ben Gurion International Airport, 70100, Israel

nbevan@usability.serco.com, ibogomolni@lahav.iai.co.il

www.usability.serco.com/trump

Abstract
The business worth of a computer system is a function of its quality in use – the extent to which it
is fitted for its purpose. ISO/IEC 14598-1 (Evaluation of Software Products) places quality in use
as the overall goal for software development. The term quality in use recognises that software does
not exist in isolation, but must fit with a socio-technological work environment if it is to work in
practice.

A major obstacle to achieving the goal of consistently usable systems is a lack of guidance on
integrating the various techniques available to achieve the required process. Quality in use is
increasingly recognised in industry as a primary goal in developing business systems and IT
products.

The objective of the EU TRUMP project was to directly increase the quality of products and
systems by assisting in the integration of usability methods into the existing systems development
processes, and by the promotion of usability awareness into the culture of the organisations.

The methods were applied in trial projects over a 12-month period. In both cases the results were
judged to be highly beneficial and cost effective, and the selected methods are now being formally
incorporated into the organisations' development processes.

1. The need for quality in use
The purpose of designing an interactive system is to meet the needs of users: to provide quality in
use (Bevan, 1999). The internal software attributes will determine the quality of a software product
in use in a particular context. Software quality attributes are the cause, quality in use the effect (see
Figure 1, from ISO/IEC 14598-1). Quality in use is (or at least should be) the objective, software
product quality is the means of achieving it.

The users’ needs can be expressed as a set of requirements for the behaviour of the product in use
(for a software product, the behaviour of the software when it is executed). These requirements
will depend on the characteristics of each part of the overall system including hardware, software
and users.

The requirements should be expressed as metrics that can be measured when the system is used in
its intended context. The required system characteristics could be minimum values for the
effectiveness, efficiency and satisfaction with which specified users can achieve specified goals in
specified environments.

©2000 Serco Ltd and IAI. -2-

sy stem
behavi our

Ex ternal
quality

requirements
Exte rnal
quality

Inter nal
quality

requirements

I nter nal
quality

softw are
attributes

Specification

D esign and
dev elopment

Ne eds Q uality in use

Op eration

va lidation

verification

use and feedback

real
world

external
metrics

external
metrics

internal
metrics

Sy ste m
Integ ration
and Testing

Req uirements

determine

determine

indicates

indicates

Figure 1. Quality in the software lifecycle

2. Means of achieving quality in use

Figure. 2. Approaches to achieving quality in use

The TRUMP project combined three complementary approaches to improving the quality of a
product from a user perspective (Figure 2):

• Improve the quality of the software development processes, by incorporating user-centred
activities derived from ISO 13407 and the Usability Maturity Model in ISO TR 18529.

• Improve the quality of the software: by improving the quality of the user interface.

• Improve the quality in use: by ensuring that the software meets the needs of the user for
effectiveness, productivity and satisfaction in use.

The quality of the software development process can be improved through use of ISO 13407 and
ISO TR 18529 that define user centred activities.

life cycle
processes

product
usability

product

usability
processes

effect of the
product

process quality product quality quality in use

contexts of
use

match to
user needs

©2000 Serco Ltd and IAI. -3-

2.1 User centred design process: ISO 13407

ISO 13407 provides guidance on achieving quality in use by incorporating user centred design
activities throughout the life cycle of interactive computer-based systems. It describes user centred
design as a multi-disciplinary activity, which incorporates human factors and ergonomics
knowledge and techniques with the objective of enhancing effectiveness and productivity,
improving human working conditions, and counteracting the possible adverse effects of use on
human health, safety and performance.

There are four user centred design activities that need to start at the earliest stages of a project.
These are to:

• understand and specify the context of use

• specify the user and organisational requirements

• produce design solutions

• evaluate designs against requirements.

The iterative nature of these activities is illustrated in Figure 3. The process involves iterating until
the objectives are satisfied.

1. Plan the human
centred process

2. Specify the
context of use

4. Produce design
solutions

3. Specify user
and organisational

requirements

5. Evaluate
designs against

user requirements

Meets requirements

Figure 3 - The interdependence of user centred design activities

The sequence in which these are performed and the level of effort and detail that is appropriate
varies depending on the design environment and the stage of the design process.

2.2 Human-centred lifecycle process descriptions: ISO TR 18529

INUSE developed a structured and formalised definition of the human-centred processes described
in ISO 13407 (Earthy 1998). An improved version has subsequently been published as ISO TR
18529. It is intended to make the contents of ISO 13407 accessible to software processes
assessment and improvement specialists and to those familiar with or involved in process
modelling. It can be used in the specification, assessment and improvement of the human-centred
processes in system development and operation.

The model consists of seven sets of base practices (Figure 4). These base practices describe what
has to be done in order to represent and include the users of a system during the lifecycle. The
model uses the format common to process assessment models. These models describe the
processes that ought to be performed by an organisation to achieve defined technical goals. The
processes in this model are described in the format defined in ISO 15504 Software process
assessment. Although the primary use of a process assessment model is for the measurement of
how well an organisation carries out the processes covered by the model, such models can also be
used as a description of what is required in order to design and develop effective organisational and
project processes.

©2000 Serco Ltd and IAI. -4-

HCD.1 Ensure HCD content in system strategy
HCD.1.1 Represent stakeholders
HCD.1.2 Collect market intelligence
HCD.1.3 Define and plan system strategy
HCD.1.4 Collect market feedback
HCD.1.5 Analyse trends in users

HCD.2 Plan and manage the HCD process
HCD.2.1 Consult stakeholders
HCD.2.2 Identify and plan user involvement
HCD.2.3 Select human-centred methods and techniques
HCD.2.4 Ensure a human-centred approach within the project team
HCD.2.5 Plan human-centred design activities
HCD.2.6 Manage human-centred activities
HCD.2.7 Champion human-centred approach
HCD.2.8 Provide support for human-centred design

HCD.3 Specify the stakeholder and organisational requirements
HCD.3.1 Clarify and document system goals
HCD.3.2 Analyse stakeholders
HCD.3.3 Assess risk to stakeholders
HCD.3.4 Define the use of the system
HCD.3.5 Generate the stakeholder and organisational requirements
HCD.3.6 Set quality in use objectives

HCD.4 Understand and specify the context of use
HCD.4.1 Identify and document user’s tasks
HCD.4.2 Identify and document significant user attributes
HCD.4.3 Identify and document organisational environment
HCD.4.4 Identify and document technical environment
HCD.4.5 Identify and document physical environment

HCD.5 Produce design solutions
HCD.5.1 Allocate functions
HCD.5.2 Produce composite task model
HCD.5.3 Explore system design
HCD.5.4 Use existing knowledge to develop design solutions
HCD.5.5 Specify system and use
HCD.5.6 Develop prototypes
HCD.5.7 Develop user training
HCD.5.8 Develop user support

HCD.6 Evaluate designs against requirements
HCD.6.1 Specify and validate context of evaluation
HCD.6.2 Evaluate early prototypes in order to define the requirements for the system
HCD.6.3 Evaluate prototypes in order to improve the design
HCD.6.4 Evaluate the system in order to check that the stakeholder and organisational requirements have been met
HCD.6.5 Evaluate the system in order to check that the required practice has been followed
HCD.6.6 Evaluate the system in use in order to ensure that it continues to meet organisational and user needs

HCD.7 Introduce and operate the system
HCD.7.1 Management of change
HCD.7.2 Determine impact on organisation and stakeholders
HCD.7.3 Customisation and local design
HCD.7.4 Deliver user training
HCD.7.5 Support users in planned activities
HCD.7.6 Ensure conformance to workplace ergonomic legislation

Figure 4. Human-centred design processes and their base practices

©2000 Serco Ltd and IAI. -5-

3. Benefits of user centred design
Given these international standards for user-centred design, why is it not more widely adopted?
There is compelling evidence for the cost benefits (Bias and Mayhew, 1994), development time can
be reduced, sales increased, the productivity of users improved, and support and maintenance costs
reduced.

Development Usability engineering can reduce the time and cost of development efforts through
early definition of user goals and usability objectives, and by identification and resolution of usability
issues. Keil and Carmel (1995).

Sales There is increasing market demand for products that are easy to use.

Use Companies that purchase or produce usable systems for their employees can benefit from:
• Increased effectiveness. Avoiding inconsistencies, ambiguities or other interface design faults will

increase effectiveness by reducing user error.
• Increased efficiency. A system incorporating a user interface designed to meet the needs of the

task will allow the user to be more productive.
• Improved satisfaction: User acceptance is particularly important for applications like web sites

where usage is discretionary.

Support and Maintenance A well-designed system designed with a focus on the end-user can
reinforce learning, thus reducing training time and effort and support costs .

According to IBM (1999) “It makes business effective. It makes business efficient. It makes
business sense”.

Reasons for the limited take up include the perceived high costs and the specialist skills required.
The objective in the TRUMP project was to select a set of methods that are both cost-effective and
easy to learn and to use.

4. TRUMP methods
The user centred design techniques recommended by TRUMP were selected to be simple to plan
and apply, and easy to learn by development teams. Figure 5 shows how each of the
recommended methods relates to the lifecycle stages and the processes described in ISO 13407.

Figure 5. TRUMP Methodology

1. Stake-
holder
meeting

2. Context
of use

3. Scenarios

4. Evaluate
existing system

5. Usability
requirements

6. Prototyping

7. Style guide

8. Evaluation

9. Usability
testing

10. Collect
feedback

feasibility requirements design implement release

System lifecycle

Plan
Process

Specify
Context of Use

Design
Solutions

Specify
Requirements

Evaluate against
Requirements

ISO 13407 Processes

©2000 Serco Ltd and IAI. -6-

Each of the methods in Figure 5 is described below.

1. Stakeholder meeting

A half-day meeting to identify and agree on the role of usability, broadly identifying the intended
context of use and usability goals, and how these relate to the business objectives and success
criteria for the system.

2. Context of use

A half-day workshop to collect and agree detailed information about the intended users, their tasks,
and the technical and environmental constraints.

3. Scenarios of use

A half day workshop to document examples of how users are expected carry out key tasks in a
specified contexts, to provide an input to design and a basis for subsequent usability testing.

4. Evaluate an existing system

Evaluate an earlier version or competitor system to identify usability problems and obtain measures
of usability as an input to usability requirements.

5. Usability requirements

A half-day workshop to establish usability requirements for the user groups and tasks identified in
the context of use analysis and in the scenarios.

6. Paper prototyping

Evaluation by users of quick low fidelity prototypes (using paper or other materials) to clarify
requirements and enable draft interaction designs and screen designs to be rapidly simulated and
tested.

7. Style guide

Identify, document and adhere to industry, corporate or project conventions for screen and page
design.

8. Evaluation of machine prototypes

Informal usability testing with 3-5 representative users carrying out key tasks to provide rapid
feedback on the usability of prototypes.

9. Usability testing

Formal usability testing with 8 representatives of a user group carrying out key tasks to identify any
remaining usability problems and evaluate whether usability objectives have been achieved.

10. Collect feedback from users

Collect information from sources such as usability surveys, help lines and support services to
identify any problems that should be fixed in future versions.

5. TRUMP trials
TRUMP applied these methods in two contrasting environments: the Inland Revenue (IR) in the
UK, which provides data processing to support 60,000 staff in more than 600 local offices; and the
LAHAV division of Israel Aircraft Industries (IAI) in Israel, which has a group of about 100
people developing aircraft avionics. IAI uses a well-established development methodology, but
their process for specifying operational requirements is not supported by any specific methods and

©2000 Serco Ltd and IAI. -7-

techniques. Inland Revenue employs a well-defined rapid application design (RAD) methodology
in conjunction with its IT partner EDS.

This paper describes the experience at IAI. More information about both trials can be found in
Bevan and Bogomolni (2000) and the TRUMP web site www.usability.serco.com/trump.

6. Trial at IAI
The Avionics directorate at Lahav division of Israel Aircraft Industries is responsible for providing
modern avionics solutions and support products for modernised aircraft. It is a relatively small
entity about 100 people.

The avionics upgrade projects follow a well established mature engineering process starting with
concept definition through requirements, design, software development, system integration to flight
testing by the customer.

User needs are addressed by a group of IAI pilots who represent the customer/user and define the
operational requirements. Their work is based on their operational experience and previous
projects, but is not supported by any specific methods and techniques.

Lahav is part of IAI-wide process improvement program that started at 1992. The program initially
focused on software, adopted SEI Capability Maturity Model as a map for improvement. In
following years process improvement assets and a support infrastructure was created and
contributed to successful introduction of processes, methods and technologies.

LAHAV joined the TRUMP project with the objective of evaluating the impact of applying user-
centred methods on a typical project. Lahav had the following business objectives:

• Improve the operational requirements definition and evaluation process

• Increase usability of LAHAV products

• Increase customer satisfaction from LAHAV products

At a more detailed level we wanted to:

• Assess the techniques' contribution to usefulness of the developed product.

• Understand how these techniques can be integrated into IAI development process.

• Measure the costs of applying the techniques.

• Evaluate developers' and managers' readiness to practice these techniques and the degree of
their satisfaction from the process and their results.

We learned from our process improvement experience that the last objective is especially important
for successful introduction of new methods.

6.1 Selection of methods

We selected the development of a new Mission Planning Centre (MPC) using the Windows NT
Interface as a trial project. An MPC enables a pilot to plan an airborne mission that is then loaded
onto a cartridge and taken by the pilot to the aircraft. In the aircraft the pilot loads the data into the
aircraft’s main mission computer

We started with a one-day informal workshop-style assessment against the Usability Maturity
Model (UMM) performed by Serco. A series of interviews with developers and managers were
held throughout the day to rate the extent to which each base practice was carried out.

Then we selected which methods to use for the trial. The selection was based on:

• The areas for improvement identified in the UMM assessment

©2000 Serco Ltd and IAI. -8-

• The specifics of MPC project

• Ease of integration with the IAI development process

• Our intuition relating the potential value of each technique

6.2 IAI Experience with the methods

6.2 .1 Stakeholder meeting

We used to conduct a project initiation meeting involving a project development management and
technical staff. User related (Operational requirements) were separately defined and discussed by a
specialised Pilot’s group. Conducting a Stakeholders meeting allowed to identify previously
unforeseen users and stakeholders, better understand the project scope and objectives, define the
success factors and identify some different interpretations for follow-up discussions and resolution.
Involvement of senior managers and marketing personnel contributed for identification of some
strategic issues.

6.2 .2 Analyse context of use

We never used this method before. The facilitator guided us through a long checklist covering
many aspects of the user’s skills, tasks and the MPC working environment. Many terms were not
familiar to us and required explanation. Most of the data captured was not new to the participants
due to their good familiarity with users environment. Some valuable information was captured, still
some parts were not relevant to the MPC. We concluded that the checklist should be tailored to the
developed system and be written in less professional terms to be efficient. In addition an
experienced facilitator is very important to the success of this method.

6.2 .3 Task scenarios

This method contribution for MPC system was low for the following reasons:

• The few operational scenarios required for the MPC are obvious for Pilots.

• Due to detailed documentation of task analysis, documenting scenario didn’t seem to add value.

It was concluded that this technique was not so relevant for MPC. Another Trial will be conducted
on an avionics project to evaluate the technique's relevance to LAHAV

6.2 .4 Paper prototyping: Task analysis

This method was also new to us. We realised during its planning stage that it needs significant
tailoring for our needs and we did that. We wrote down on sticky notes every user function anyone
could think of. The sticky notes were logically grouped. After they were grouped the hierarchy was
developed. This was done dynamically during the meeting and took several iterations. The
functional hierarchy changed significantly and was agreed upon. As a consequence the system
architecture has been modified accordingly. The method had a great impact on the MPC software
look and feel as well as it’s software requirements and architecture.

6.2 .5 Evaluate usability of existing system

Four users evaluated the existing system. Each user was given short (15 minutes) training on the
system. The user was given a mission to prepare and commented as he went along. Comments
were captured by the facilitators generating a detailed list of about fifty problems . The problems
were reviewed by the pilots defining the new system to find ways to avoid them in the design of the
new system. The users filled out a SUMI satisfaction questionnaires after the evaluation (see 6.3.1
for details).

©2000 Serco Ltd and IAI. -9-

The technique was very productive though has been applied in a semi-formal way. A more formal
trial (more training, better instructions, more users) is being considered.

6.2 .6 Set usability requirements

Goals for task time were agreed, and a list of potential user errors were identified. We realise the
need for the technique and it’s potential but more work is needed to better define it.

6.2 .7 Paper prototyping of screens

We haven’t used this method before and had doubts about it’s value, mainly because it is now very
easy to create computerised UI prototypes. It turned out to be a false doubt and the potential users
and developers liked the method and its contribution to MPC usability. Mockups of screens were
posted on the wall and provided the "Big Picture", although were too small to see the detail. Each
screen was displayed using an overhead projector resulting in very fruitful and productive
discussions by potential users. A detailed list of 23 usability comments was created.

6.2 .8 Style guides

Off the shelf style guides were provided to the developer. It turned out that these style guides are
very detailed and difficult to use. Given intuitive visual development tools, developers prefer to
learn by click and see rather than reading lengthy manuals.

We realise the need for a style guide, but currently don’t have a good one. Good style guide in our
view should:

• Be at the appropriate (to the developers) level of detail

• Not to be over restrictive (Leave some space for creativity)

It is still an open issue at LAHAV.

6.2 .9 Evaluate Usability of Computer Prototype

The system was only partially developed. But the UI was complete and the main modules were
working. General training was held at the beginning for the users resulting in some comments that
were captured by the facilitators.

Each user received instructions regarding the mission he had to plan, and worked without
assistance. The user spoke freely during the evaluation and the facilitators documented all
comments. Software developers were present and observed the evaluation. In general the
developers were very receptive and co-operative. Nevertheless towards the end of the evaluation
they seemed to lose patience.

A summary meeting was held at the end of the evaluation. Comments were listed and prioritised. It
was agreed to fix 93 of the 97 problems. The problems were points of detail and not major issues
showing that earlier design was sound.

6 .2 .10 Test Usability against requirements

Major MPC parts were completed. The system was tested against timing requirements defined for
two typical tasks (see 6.2.6).

Eight pilots including fighter pilots, helicopter pilots and navigators participated in this technique.

First, MPC frontal familiarisation training was held for all pilots (2 hours) following by individual
hands-on practice for another two hours.

Each pilot received written instructions regarding the mission he had to plan and modify, and
worked without assistance. He also could write down comments on collection of printed screens.

©2000 Serco Ltd and IAI. -10-

The facilitators and developers observed the work on the repeater display and documented their
observations. The time was recorded for completion of each task.

Following the completion of both tasks, each pilot completed his comments on printed screens,
filled up the SUMI satisfaction questionnaire and explained his comments and impression to the
facilitators. All pilots were happy with the MPC as also can be seen from SUMI results.

The tasks performance duration were according to requirements with one exception as explained in
section 6.3.2, and some interesting observations could be made.

A summary meeting was held at the end of the evaluation. Comments were listed and prioritised. It
was agreed to incorporate 39 of the 54 comments. Seven comments were not accepted and another
eight undecided. The problems were points of detail and not major issues showing that earlier
design was sound.

The technique was very productive.

6.3 Improvement in usability

6 .3 .1 Satisfaction

The charts below show the SUMI results for the evaluation of the first prototype of the new MPC,
and the final usability test of the new MPC. The bars show the 95% confidence limits.

Evaluation of new MPC prototype, December 1999

Usability test of new MPC prototype, July 2000

©2000 Serco Ltd and IAI. -11-

SUMI is scored in relation to an industry average of 50, with scores of ±10 representing one
standard deviation. So two thirds of all SUMI scores are in the range 40 to 60.

The usability requirement was for a SUMI score greater than 50. The overall scores for the
evaluation and test of prototypes of the new system were well above the industry average at 56 and
59. The profiles of scores for the two evaluations of the new system were similar: it was very
strongly liked (affect), and users found it easy to learn and felt in control. They did not find it so
helpful (but the help system had not been completed) and they did not feel so efficient (but
efficiency might be expected to increase with repeated use of the system). These scores were much
better than for the existing MPC.

Overall the above-average SUMI results are very good for a users’ first experience of a prototype
system.

6.3 .2 User performance

The usability requirements established were not more than 40 minutes for the main task and not
more than 20 minutes for the secondary task.

All the pilots completed the task within the planned time (except a planner who chose to carry out
the task in a more thorough way than a normal pilot would). Navigators were faster because they
have more experience of carrying out this task. Nevertheless, the typical time for a pilot to carry
out the task is two to three times as long as an expert. This should decrease as pilots become
familiar with the system. If not, the possibility of making further usability improvements should be
investigated.

6.4 Improvement in usability maturity

The overall ratings for each Usability Maturity Model process are given below, and show a very
significant improvement, meeting the objectives set in the first assessment:

Process 1st assessment 2nd assessment

1 Ensure HCD content in system strategy Partly Largely

2 Plan and manage the HCD process Partly Largely

3 Specify the stakeholder and organisational
requirements

Not done Largely

4 Understand and specify the context of use Largely Fully

5 Produce design solutions Partly Largely

6 Evaluate designs against requirements Not done Largely

7 Introduce and operate the system X Not in the
scope of the
assessment

X Not in the
scope of the
assessment

6.5 IAI Conclusions

After application of the techniques, the pilots group assessed the benefits. The conclusions were
very positive.

• Most of the techniques are very intuitive to understand, to implement and even to facilitate. The
techniques are divided into two major categories: (1) meetings or workshops usually lasting 2-6

©2000 Serco Ltd and IAI. -12-

hours with about 3-6 participants. (2) a one on one paper or computer prototype evaluation by
potential users, about 2 hours for each one.

• Practising these techniques in the early stages of design and development ensured less design
mistakes later on.

• All participants and developers thought that most of the techniques were worthwhile and that
they helped in developing a better and more usable system.

• The techniques were assessed as very cost effective and low cost.

The last observation deserves elaboration. Usually introducing changes into an organisation is a
lengthy, costly and complicated process. It requires convincing many people to invest time and
money and then demonstrate the benefits versus costs. In the recent years it became even more
difficult due to staff shortage and the requirement to reduce the time to market.

TRUMP was the exception due mainly to its low cost, and obvious benefits. When the developers
only have to invest a few days in applying the methods and see the results on the spot, convincing
the managers is very simple and performing cost-benefit analysis is simply not needed.

In view of the short time and effort it took to practice these techniques and the strong impact they
had on the quality of the system, they are being incorporated in LAHAV’s development process.
The expertise available at LAHAV to practice these techniques is not great. Nevertheless the
techniques are fairly intuitive and should be easy for new facilitators to learn.

We are currently working on establishing a specific support structure for disseminating the
techniques into other IAI divisions.

7. General conclusions
In many respects the results obtained in the trial at the Inland Revenue were similar to those at IAI.
In both organisations the usability maturity model was a valuable tool for identifying needs for
process improvement. The Inland Revenue valued the detailed information obtained from a
summative assessment requiring three person weeks effort, while for the smaller development
group at IAI many of the benefits were gained from a simpler formative one-day assessment.

Particular user centred design methods were not of equal value to both organisations. For example,
IAI staff were much more familiar with the usage environment, so that context of use and scenarios
were of less benefit than at the Inland Revenue, where they were important in establishing a
common understanding. So methods need to be selected and tailored to meet the needs of the
development environment.

From the experience gained in the two organisations Serco has developed the general-purpose
methodology incorporating described in section 4. These methods implement the principles of ISO
13407, and should be sufficient for many development environments. In some cases they should
be complemented by other more specialised methods. More details can be found on the TRUMP
web site www.usability.serco.com/trump.

8. References
Bevan N (1999) Quality in use: meeting user needs for quality. In: Journal of Systems and

Software,49(1), 89-96.

Bevan, N and Bogomolni, I, Ryan, N (2000) Cost-effective user centered design. Submitted for
publication.

Bias, G. and Mayhew, D. (Eds) (1994). Cost-Justifying Usability. Academic Press.

©2000 Serco Ltd and IAI. -13-

Earthy, J (1998b) Usability Maturity Model: Processes. INUSE deliverable D5.1.4p,
http://www.lboro.ac.uk/eusc/index_r_assurance.html

IBM (1999) Cost Justifying Ease of Use http://www-3.ibm.com/ibm/easy/eou_ext.nsf/Publish/23

ISO 13407 (1998) User centred design process for interactive systems.

ISO/IEC 14598-1 (1998) Information Technology - Evaluation of Software Products - Part 1
General guide.

ISO TR 18529 (2000) Human-centred lifecycle process descriptions

Keil, M, & Carmel, E. (1995). Customer developer links in software-development.
Communications of the ACM. 38(5), pp33 - 44.

QWE2000 Session 11I

Mr. Bob Bartlett [UK]
(SIM Group Limited.)

"Experience Testing E-commerce Systems (11I)"

Key Points

Stress●

Performance●

Security●

Available Tools●

Presentation Abstract

The format of the presentation will be a tutorial based on class studies and actual
experiences of the author. Results, observations and recommendations will be put
forward. The audience will come away with a good understanding of the kind of
approaches required to test industrial strength eBusiness solutions.

About the Speaker

Bob is the Chairman of SIM Group Ltd. SIM specializes in Software Testing and has
put in place a number of highly efficient testing systems that automatically test
sophisticated and mission critical software systems. SIM is the UK leader in
Providing efficient solutions for software testing. SIM's work has had a profound
impact on the way companies approach testing and improvements to testing have
been realized with SIM's help. Bob has over 30 years of software experience using
automated testing techniques. He is the Executive Director and Chairman of
Software testing specialist company today. He is also a member of the CSSA
executive council and has designed, developed and sold automated testing tools.
Bob, a manager of major software development and implementation projects, is a
test adviser to some of the largest testing projects taking place in U.K. Bob has
Trained and lectured in automated testing and software testing techniques,has a
track record for substantial reductions in time and cost to test, and successfully
managed the growth of start up companies throughout his career.

QWE2000 -- Conference Presentation Summary

http://www.soft.com/QualWeek/QWE2K/Papers/11I.html [9/28/2000 11:14:26 AM]

1

© 2000, SIM Group Ltd..

Experiences testingExperiences testing
eCommerce systemseCommerce systems

Bob BartlettBob Bartlett
bob@simgroup.co.ukbob@simgroup.co.uk

© 2000, SIM Group Ltd..

Who we are ….Who we are ….

Who are we?

Independent testing
organisation

Specialists in testing for 10
years

Largest implementor of
automated testing in UK

Full Service testing Solutions

What do we do?

Testing Projects

Hosted Testing

Testing Consultancy

Implementors of automated
testing for over 10 years

Methods, procedures and
strategies for efficiency &
effectiveness

2

© 2000, SIM Group Ltd..

AgendaAgenda

What is the commercial case for quality web
sites?
The 12 Commandments for a good web site
Testing requirements
Types of testing
Test processes
Test Automation and Continuous testing

What is the commercial case for quality web
sites?
The 12 Commandments for a good web site
Testing requirements
Types of testing
Test processes
Test Automation and Continuous testing

© 2000, SIM Group Ltd..

Quality web sites -
WHY bother?
Quality web sites -
WHY bother?

First to market is first in the mind.
Having a low percentage of the
market with a poor quality web site
is better than 0% of the market
with NO web site!
Visitors will tolerate imperfections
if the business proposition is
compelling enough.
There is no time AT ALL to test.

First to market is first in the mind.
Having a low percentage of the
market with a poor quality web site
is better than 0% of the market
with NO web site!
Visitors will tolerate imperfections
if the business proposition is
compelling enough.
There is no time AT ALL to test.

3

© 2000, SIM Group Ltd..

But on the other hand …
Quality does cost!
But on the other hand …
Quality does cost!

There are numerous examples where
quality problems caused misuse of
web sites - costing the owners millions
of pounds!
More than ever branding and brand
images are important - web sites
contribute to the definition and
qualification of a brand.
Research shows that most people
abandon web sites for quality reasons
- and they are unlikely to return.

There are numerous examples where
quality problems caused misuse of
web sites - costing the owners millions
of pounds!
More than ever branding and brand
images are important - web sites
contribute to the definition and
qualification of a brand.
Research shows that most people
abandon web sites for quality reasons
- and they are unlikely to return.

© 2000, SIM Group Ltd..

The 12 CommandmentsThe 12 Commandments

1. Speed and performance
2. Access and availability
3. Up to date and accurate information
4. Responsiveness visible and apparent
5. Tracking of the business conducted
6. Customer service is consistent
7. Feedback channels work
8. Search and intuitive menus
9. Real time processing when beneficial
10. Verification of business terms
11. Presentation and usability
12. Security of site, function and data

1. Speed and performance
2. Access and availability
3. Up to date and accurate information
4. Responsiveness visible and apparent
5. Tracking of the business conducted
6. Customer service is consistent
7. Feedback channels work
8. Search and intuitive menus
9. Real time processing when beneficial
10. Verification of business terms
11. Presentation and usability
12. Security of site, function and data

4

© 2000, SIM Group Ltd..

Important Requirements for
testing ecommerce systems
Important Requirements for
testing ecommerce systems

24 x 365
Loads impossible to predict
Most sites are an integration of many
components from many suppliers
Sites get developed and put in place
incrementally and iteratively.
All in the public domain
When something goes wrong - how do you
know it has gone wrong?
Some testing WILL happen after the site is
live

24 x 365
Loads impossible to predict
Most sites are an integration of many
components from many suppliers
Sites get developed and put in place
incrementally and iteratively.
All in the public domain
When something goes wrong - how do you
know it has gone wrong?
Some testing WILL happen after the site is
live

© 2000, SIM Group Ltd..

In the beginning ….
Testing was …..
In the beginning ….
Testing was …..

Functional
Function and Data security
Load and Stress

Functional
Function and Data security
Load and Stress

5

© 2000, SIM Group Ltd..

In the early 90’s we need
more testing ….
In the early 90’s we need
more testing ….

Functional
Function and Data security
Load and Stress
Integration

This was mostly caused by the move to Client
Server and integrated application solutions.

Functional
Function and Data security
Load and Stress
Integration

This was mostly caused by the move to Client
Server and integrated application solutions.

© 2000, SIM Group Ltd..

Not much later we began
another type of testing
Not much later we began
another type of testing

Functional
Function and Data security
Load and Stress
Integration
Presentation

This was driven by GUI systems

Functional
Function and Data security
Load and Stress
Integration
Presentation

This was driven by GUI systems

6

© 2000, SIM Group Ltd..

With web testing we added
four more types of testing ...
With web testing we added
four more types of testing ...

Functional
Function and Data security
Load and Stress
Integration
Presentation
Content
Usability
Compatibility
Site Security

Functional
Function and Data security
Load and Stress
Integration
Presentation
Content
Usability
Compatibility
Site Security

© 2000, SIM Group Ltd..

Alternatively -
Looking at a typical project

Functionality

App & Data Security

Integration
Presentation

Load & performance

Penetration

Content
Compatibility

Dev. Link Sys. Usab. Tech UAT Oper

√√√√

√√√√
√√√√√√√√

√√ √√√√√√

√√√√

√√√√

√√√√√√√√

√√√√√√√√

√√√√

Usability √√√√

√√

√√

7

© 2000, SIM Group Ltd..

Stakeholders involved in
testing
Stakeholders involved in
testing

Ownership of the site
Business responsibility and ultimate responsibility for success
of the site

Designer & Developer
Designer - Look & feel

Developer - technical and functional design

Integrator
The whole site

Back end integration

Independent Testing
Test Lab Testing

Ownership of the site
Business responsibility and ultimate responsibility for success
of the site

Designer & Developer
Designer - Look & feel

Developer - technical and functional design

Integrator
The whole site

Back end integration

Independent Testing
Test Lab Testing

© 2000, SIM Group Ltd..

What should the owner test?

Functionality
App & Data Security

Integration
Presentation

Load & performance

Penetration

Content
Compatibility

Usability

Key business transactions
and events

Accurate information

8

© 2000, SIM Group Ltd..

What should the designer /
developer test?

Functionality
App & Data Security

Integration
Presentation

Load & performance

Penetration

Content
Compatibility

Usability

Does it work?
Security features

© 2000, SIM Group Ltd..

What should the integrator
test?

Functionality
App & Data Security

Integration
Presentation

Load & performance

Penetration

Content
Compatibility

Usability
Do all of the pieces fit together
and work?

9

© 2000, SIM Group Ltd..

What should the
independent tester test?

Functionality
App & Data Security

Integration
Presentation

Load & performance

Penetration

Content
Compatibility

Usability

Does it do what it is suppose to?
Is everything secure?

Does all presentation work?
End to end testing.

© 2000, SIM Group Ltd..

What should the test lab test?

Functionality
App & Data Security

Integration
Presentation

Load & performance

Penetration

Content
Compatibility

Usability

Special hardware and skills needed

Target user representatives needed.

Special software and skills needed.
Wide variety of access needed.
Continuous testing on content changes

10

© 2000, SIM Group Ltd..

Automated Testing and
Continuous Testing
Automated Testing and
Continuous Testing

Automation is more attractive than ever,
but even harder to implement with
reduced time frames for testing and
constantly changing presentations.
Automated load and stress testing is an
absolute necessity.
We have found automated functional and
automated regression testing is possible
using table driven automated testing
techniques.
Continuous automated tests are selected
from automated test library.

Automation is more attractive than ever,
but even harder to implement with
reduced time frames for testing and
constantly changing presentations.
Automated load and stress testing is an
absolute necessity.
We have found automated functional and
automated regression testing is possible
using table driven automated testing
techniques.
Continuous automated tests are selected
from automated test library.

© 2000, SIM Group Ltd..

Methods of testing

Functionality

App & Data Security

Integration
Presentation

Load & performance

Penetration

Content
Compatibility

Manual Automated Continuous

√√√√
√√

√√

√√
√√

√√√√

√√

√√

√√

√√√√

√√

√√

√√√√

√√

√√
√√

Usability

√√

√√

11

© 2000, SIM Group Ltd..

To summarise ...

Functionality

App & Data Security

Integration
Presentation

Load & performance

Penetration

Content
Compatibility

Owner D & D Integrate Ind. Test Lab

√√

√√

√√

√√

√√
√√ √√

√√

√√√√

√√

√√Usability

√√

√√

© 2000, SIM Group Ltd..

Bob Bartlett
bob@simgroup.co.uk
www.simgroup.co.uk

QWE2000 Session 11M

Mr. Vassilios Sylaidis, Mr. Dimitrios Stasinos, Mr.
Theodoros [Greece]
(INTRACOM S.A.)

"Software Development Process Improvement For
Telecommunications Applications By Applying Gilb's

Inspection Methodology"

Key Points

Software Process Improvement Experiment●

Defect Detection and Prevention capability enhancement●

Reducing (in a measurable way) reliance on testing for achieving software quality.●

Presentation Abstract

This paper describes acquired experiences from the ESSI Process Improvement
Experiment GINSENG (Gilb's Inspections for Software Engineering, #27275,
1998-June 2000), funded by the European Union. Its objective was to establish at
Intracom's Software Design Centre (SWDC) a systematic framework for software
inspections based on Gilb's Inspection Method. Through this inspections framework,
Intracom aimed to improve its current practices for telecommunications and other
embedded software development by increasing the effectiveness of early defect
detection and prevention activities. Additionally, suitable inspections measurements
support improvements in the inspection and software development processes and
lead to reduced reliance on testing. Results obtained from introducing the method to
a typical software development project used as baseline were favourable and justify
the expectations and investments and plans are being implemented to internally
spread the practice.

Training was obtained by Tom Gilb himself, a world renown expert and consultant in
S/W Engineering, Management and Quality issues, as well as in a UK firm which had
pioneered the Gilb Inspection Method, where the field experience was also
evaluated.

The initial step of GINSENG consisted of introducing the experiment within a digital
telephone switch baseline project implementing new functionality in an incremental
way. Thus, training in Gilb's Inspection Method was carried out and the inspection
procedures for the baseline project were documented, by adapting Gilb's method to
the standard development procedures used which ran in parallel with the baseline
projects' implementation of early increments. Inspections were then executed
throughout the baseline project's latter stages (increments). PIE results were

QWE2000 -- Conference Presentation Summary

http://www.soft.com/QualWeek/QWE2K/Papers/11M.html (1 of 2) [9/28/2000 11:14:31 AM]

evaluated based on appropriate measurements. Finally, the appropriateness of
Gilb's inspection method for Intracom's software development environment (mostly
developing embedded systems) was evaluated, leading to plans for further internal
exploitation which has been started.

Improvements to date mostly relate to higher emphasis and efficiency of the defect
detection process, while defect prevention (i.e. avoidance of injecting defects in the
first place, i.e. in software design) will be facilitated in the future based on specific
activities and infrastructure built.

Gilb's Inspection broad interest and wide applicability support the transferability of
the GINSENG experiences. Internal dissemination actions address Intracom Group
of companies, while external ones Greek SMEs and European and international
firms, since the business problems addressed were not unique to INTRACOM but
applies to a very wide audience concerned with Software Development.

About the Speaker

Mr. Vassilios Sylaidis before joining INTRACOM S.A. in 1991, was employed in the
Hellenic Navy Research Centre as a system and software engineer. Besides the
program described here for which he provided expert support and performed a
monitoring role, he also previously coordinated adapting the ISO 9001 certified
Quality System for Software development as well as he was champion in introducing
various Process Improvements, s.a.: the CMM framework, AMI metrics
management, PSP, also planning P-CMM etc. Also participated in international
programmes in software quality area, as well as evaluated and reviewed EU funded
proposals and programs in the software IT area. He was also INTRACOM's project
manager for successfully implementing a Y2K compliance programme (for contact
data see above).

Mr. Dimitris Stasinos, MSc, an expert telecommunications S/W development
engineer in INTRACOM, was trained as an inspection expert by Tom Gilb and acted
as a facilitator for the introduction of Gilb's inspections in INTRACOM. He is also
currently responsible for implementing improvements by applying the Software CMM
improvement framework for which he was specially trained.

Mr. Theodoros Karvounidis, is currently a project manager for a telecommunications
software development project. He is also an experienced telecommunications
software designer. He was project leader responsible for the introduction of Gilb
Inspection Methodology in Intracom's Software Design Centre. He has been trained
at the SEI in the US as a trainer in Watt Humphrey's Personal Software Process and
has delivered courses for INTRACOM employees on the subject.

QWE2000 -- Conference Presentation Summary

http://www.soft.com/QualWeek/QWE2K/Papers/11M.html (2 of 2) [9/28/2000 11:14:31 AM]

QWE2000 Vendor Technical
Presentation VT 9

Mr. Peter Sterck [Belgium]
(ps_testware)

The Challenge of e-business
Testing

Key Points

Key Points to be supplied.

Presentation Abstract

If you want to make money in business, you have to comply with a set of rules.
Three rules require special attention within the context of software testing an
e-business solution. Present the benefit of the offering to the customer. Under all
circumstances, this presentation must be KISS (keep it simple and stupid), in
e-business it must be e-KISS, extremely - KISS. The challenge is usability.

The need for a smooth purchasing process. If you are confronted with a closed shop
door or have to queue up longer than expected, you are inclined to look for
alternatives. In e-business, the alternative is only one click away. The challenge is
availability and performance of the site. Confidence in the transaction and the people
involved. You do not give your money to anybody, you do not even accept money
from everybody. With e-business you do not have a voice, a face or a reference to
check. The challenge is security.

I know that you are already aware of these challenges, but what are you going to do
to avoid making a (big) mistake? Having know-how and experience in each of the
domains is too much luxury for most companies. Come and talk to us.

About the Speaker

Peter Sterck started his career at CMB, a worldwide shipping company, where he
was responsible for the software that managed the container logistics. In 1992 and
1993, he acknowledged the extreme importance of software quality and joined
Performance Software where he was a sales account manager. With the support of
Performance Software he established his own company in1993. At first, the
company concentrated on selling testing tools but soon experienced that tools
should be used with a proper testing method. The method that was developed within
the company was based on the V-model of Glenford Meyers. Since then, Peter
Sterck has been responsible for the growth of ps_testware from 9 till 35 co-workers

QWE2000 -- Conference Presentation Summary

http://www.soft.com/QualWeek/QWE2K/Papers/VT11.html (1 of 2) [10/11/2000 2:48:02 PM]

within 3 years. He is an acknowledged speaker when it comes to software testing.
Together with companies such as Oracle, HP, Sybase, Mercury Interactive and
Rational Software he increased the awareness of the need of Structured Software
Testing during several seminars and conferences. Peter Sterck received his degree
of Electronic Engineer in Leuven, Belgium, and his MBA in Louvain-la-Neuve,
Belgium.

QWE2000 -- Conference Presentation Summary

http://www.soft.com/QualWeek/QWE2K/Papers/VT11.html (2 of 2) [10/11/2000 2:48:02 PM]

1

psps__testwaretestware

C
op

yr
ig

ht
 ©

 2
00

0
ps

_t
es

tw
ar

e
–

Th
e

Ch
al

le
ng

e
of

 E
-b

us
in

es
s T

es
tin

g
 -

1

The Challenge of EThe Challenge of E--business Testingbusiness Testing

Copyright © 2000 ps_testware – The Challenge of E-business Testing - 2

The Challenge of The Challenge of
EE--Business TestingBusiness Testing

PeterPeter SterckSterck
CEOCEO

2

Copyright © 2000 ps_testware – The Challenge of E-business Testing - 3

The The Challenge Challenge of Eof E--Business Business TestingTesting

•• Challenge Challenge 1 : 1 : Usability Usability
•• Challenge Challenge 2 : 2 : Availability Availability and Performanceand Performance
•• Challenge Challenge 3 : 3 : SecuritySecurity

Copyright © 2000 ps_testware – The Challenge of E-business Testing - 4

Testing Software : The Reference Testing Software : The Reference
•• Structured Software TestingStructured Software Testing

•• MethodologyMethodology

•• Implementation ModelImplementation Model CodingCoding

Audit testAudit test

Acceptance testAcceptance test

System testsSystem tests

Integration testsIntegration tests

Modular testsModular tests

Strategic choicesStrategic choices

User requirementsUser requirements

Logical designLogical design

Physical designPhysical design

Program designProgram design

FollowFollow--upup

Test Test
executionexecution

Test Test
DevelopDevelop--

mentment

Test Test
PlanningPlanning

TestTest RepairRepair RetestRetestScopeScope PlanPlan DesignDesign BuildBuild

™

3

Copyright © 2000 ps_testware – The Challenge of E-business Testing - 5

Challenge Challenge 1 : 1 : Usability Usability

•• Ease of learningEase of learning
•• Efficiency of useEfficiency of use
•• MemorabilityMemorability
•• Error frequency and severityError frequency and severity
•• Subjective satisfactionSubjective satisfaction
•• Correct functionalityCorrect functionality

Is the e-business site
easy to use?

Is the e-business site
easy to use?

Copyright © 2000 ps_testware – The Challenge of E-business Testing - 6

ChalChal 2 : 2 : Availability Availability and Performance and Performance

•• PortabilityPortability
•• ReliabilityReliability
•• ScalabilityScalability
•• Download timeDownload time
•• Breakdown TestBreakdown Test
•• MonitoringMonitoring
•• ToolsTools

Is the e-business site
accessible and fast?

Is the e-business site
accessible and fast?

•• 24x724x7
•• Real WorldReal World

4

Copyright © 2000 ps_testware – The Challenge of E-business Testing - 7

Challenge Challenge 3 : 3 : Security Security

•• Continuity, Integrity, ConfidentialityContinuity, Integrity, Confidentiality
•• Never ending effortNever ending effort
•• BreakBreak--ins, Sniffing, Denialins, Sniffing, Denial--ofof--service attackservice attack
•• Trojan Horse, VirusTrojan Horse, Virus
•• Server, Network, connection, clientServer, Network, connection, client
•• Firewalls, Encryption, Authentication Firewalls, Encryption, Authentication
•• Security scanners and auditing toolsSecurity scanners and auditing tools

Is the e-business site
safe for seller and buyer?

Is the e-business site
safe for seller and buyer?

Tiensesteenweg Tiensesteenweg 329329
BB--3010 3010 LeuvenLeuven
Tel.: +32 (16) 35.93.80Tel.: +32 (16) 35.93.80
Fax: +32 (16) 35.93.88Fax: +32 (16) 35.93.88
ee--mail: info@mail: info@pstestwarepstestware.com.com
http://www.http://www.pstestwarepstestware.com.com

Copyright © 2000 ps_testware - <Name> - <Title Presentation> - 8

Info
Info

? ?
C

h 7
C

h 7
C

h 6
C

h 6
C

h 5
C

h 5
C

h 4.
C

h 4.
C

h 3
C

h 3
C

h 2
C

h 2
C

h 1
C

h 1
toc
toc

5

C
opyright ©

 2000 ps_testw
are -E-business Testing -9

QWE2000 Session 12T

Mr. Sanjay DasGupta & Indrajit Sanyal [INDIA]
(Usha Communications Technology)

"A Java-XML Integration for Automated Testing
(12T)"

Key Points

XML●

Java●

Scripting●

Presentation Abstract

The proposed paper describes an unusual application of XML: to represent and run
test scripts for software written in Java. There are two aspects to this: an XML
convention (enshrined in a DTD) for the representation of program scripts, and a
Java executable (archive) that can interpret them. The archive can be used with (or
to build) a test harness that performs tests automatically. The scripts and matching
run-time functionality are capable of representing ôhowö something is done with
flexibility comparable to any 3 rd generation language (specifically Java). The
proposed paper describes capabilities and design of the Jeeves system and
highlights its applicability in the automated testing arena. It includes a short tutorial
and describes scenarios to illustrate the advantages of using it.

About the Speaker

Mr. DasGupta is a consultant in the Engineering department of Usha
Communications Technology, playing the role of Chief Architect for the product
development, and is located in companyÆs R&D facility in Calcutta, India. With more
than 15 years of experience in software development prior to joining Usha Comm, he
was Product Director for Enterprise Management products with a Computer
AssociatesÆ subsidiary in India. Mr. DasGupta also held different strategic positions
in several international software companies in India and Europe. Mr. DasGupta holds
a BS degree in Chemical Engineering and a MS degree in Software Systems.

Indrajit Sanyal is a Group Manager in Engineering department of Usha
Communications Technology and is located in companyÆs office in Calcutta, India.
In this role Mr. Sanyal overlooks internet and web oriented strategic development
projects. He has been involved with software design and development for
telecommunications, simulation and graphics, and industrial automation for over 8
years. He earned his BS degree in Mechanical Engineering from the Indian Institute

QWE2000 -- Conference Presentation Summary

http://www.soft.com/QualWeek/QWE2K/Papers/12T.html (1 of 2) [9/28/2000 11:14:43 AM]

of Technology at Kharagpur, India.
QWE2000 -- Conference Presentation Summary

http://www.soft.com/QualWeek/QWE2K/Papers/12T.html (2 of 2) [9/28/2000 11:14:43 AM]

A Java-XML Integration for
Automated Testing

Sanjay DasGupta & Indrajit Sanyal

Ushacomm India Ltd.
www.ushacomm.com

Slide-1

Topics

• Programming Languages in Testing
• Embeddable Scripting Languages
• Java and XML-Based Scripting
• The Design of Axess
• Using Axess
• Applications of Axess
• Conclusions

A Java-XML Integration for Automated Testing

Sanjay DasGupta & Indrajit Sanyal Ushacomm India Ltd

A Java-XML Integration for Automated Testing

Sanjay DasGupta & Indrajit Sanyal Ushacomm India Ltd
Slide-2

© Copyright 2000, U

A Java-XML Integration
for

Automated Testing

Sanjay DasGupta,
Indrajit Sanyal,
CONTRIBUTORS:
sanjay.dasgupta@ushacomm.co.in
indrajit.sanyal@ushacomm.co.in

shacomm India Ltd. All rights reserved.

© Copyright 2000, Ushacomm India Ltd. All rights reserved.

1. Introduction
This paper describes a Java [1] tool that can interpret and run programming scripts written in a
language based on the Extensible Markup Language (XML) [2]. The software and XML extension
are referred to as Axess (An extensible, embeddable scripting system for Java). The Axess software
can load and use programming scripts at run-time, thus allowing scripts to be embedded in other
programs. This aspect allows Axess’ capabilities to be easily leveraged for other applications,
especially test automation.

The advantages of using XML for representing a programming script include the ability to use a
wide variety of tools and approaches for creation, examination and modification. This tools-based
approach and the choice of XML as the basis for a scripting language provides many possibilities.
This paper discusses the design of Axess and shows how its features support the objectives of
tools-based scripting and seamless integration with the Java run-time system. We use two case
studies to illustrate how an approach based on Axess can help in the creation of automated tests for
different domains.

2. Embeddable Scripting Languages
The use of scripting languages in automated testing is well established. There are numerous
proprietary systems in use by product vendors, but open-source systems and languages are also
used extensively. Case studies on the use of an open language called Tcl (the Tool Command
Language designed by John Ousterhout and now available from Ajuba) can be found at the Ajuba1
website [5]. To be truly effective and have synergy with an application, a scripting language must
be embedded with the host application’s implementation language. The appeal of Tcl is that it is
designed to be embedded in C and can, therefore, be used to seamlessly extend applications
(written in C and C++) with a scripting interface. Several open-source scripting languages are now
available for use with Java [6]. Some of these languages, such as DynamicJava and BeanShell [7]
are also embeddable.

2.1 Embedding in C
However, the capabilities gained through embedding depend on the design of the language as well
as the possibilities offered by the base language and platform. In the case of Tcl, an extremely
flexible model makes it possible to integrate the application’s C code very tightly with the scripting
infrastructure. Application-specific Tcl extensions typically use the following capabilities:

• = Map values of script and application (C/C++) variables (so changing the value on one side
appears to set the value on the other side as well)

• = Set traces on script variables (so a C function is called whenever a script variable is read or
written)

• = Define new script commands, which cause specified C functions to be called when the
command is invoked.

1 Ajuba recently changed their name (from Scriptics), but their website is still at www.scriptics.com.

© Copyright 2000, Ushacomm India Ltd. All rights reserved.

The ability to link script commands to specific functions within the application is especially
effective and makes Tcl applications extremely powerful.

2.2 Embedding in Java
In the case of Java, most scripting languages leverage capabilities provided by the java.lang.reflect
package. The reflection API allows Java code to access members of a class (or instance) without
using the dot notation. It provides utility classes called Field and Method that can be used to
manipulate data and function members respectively. Instances of these classes can be obtained by
specifying the name (and signature in the case of functions) of the member. A data member (of a
class or instance) can be accessed (read or modify) by calling appropriate member functions on the
Field object that represents it. Similarly, a Method object can be used to invoke a function, passing
suitable arguments, and receive the return value, if any. The reflection API also provides
mechanisms for the instantiation of new objects and the construction of new arrays without using
the new operator.

What this means to Java scripting languages is that they can use any accessible Java class. These
classes do not need any special code to allow them to work with the scripting system.

3. Java and XML
The synergy resulting from the use of XML with Java in an application has been widely discussed
and documented [3, 4]. Both Java and XML are platform-independent, open, standard2 and widely
available. Standards for the use of XML documents in Java programs – the Simple API for XML
(SAX), and Document Object Model (DOM) – are stable and universally accepted, and
implementations of these APIs are also available from Sun Microsystems, IBM and others. The
wide availability and applicability of this combination has spurred activity in many areas and as a
result, a variety of open de-facto standards and applications are becoming available.

Despite all the activity concerning Java and XML, there has been no attempt to use XML as a
scripting language for Java. The XSLT and XMLScript efforts involve the use of XML and scripts,
but are very definitely targeted for the use of scripts to transform XML into other forms better
suited to display devices.

4. Design and use of Axess
In designing Axess, we defined several objectives. The following subsections describe these
objectives and the extent the objective is met.

4.1 Compatibility with Java
Axess is written in Java and so can be used with other Java applications. The use of the reflection
API ensures that Axess is compatible with the Java run-time system and able to access and use all
standard as well as user-installed APIs and classes, just like code in any other compiled Java class.

2 Java is a registered trademark of Sun Microsystems. Though not yet formally standardized, a large part of the industry
accepts Sun’s stewardship of Java, and it is possible to obtain products compliant to Sun’s blueprints from many
sources.

© Copyright 2000, Ushacomm India Ltd. All rights reserved.

4.2 Java-Like Usage
Axess scripts are not expected to visually resemble Java code (see section 4.4 below). Although in
terms of the creation and use of data items, Axess scripts can be used to do everything3 that a Java
program can perform. They can instantiate objects as well as primitive data entities of all available
types and perform all the operations available to Java programs, using the same programming
constructs.

Figure 1. Using Microsoft’s XML Notepad to display an Axess script

4.3 Efficiency and Compactness
A Java jar file containing the Axess software is less than 80 Kbytes (not including the XML parser,
but minimal parsers fit in as little as 10 Kbytes). This makes it suitable to use even as an applet
downloaded into a web-browser.

3 With the exception of defining a new Java class. Other Java-based scripting languages include features that appear to
allow the creation of new classes. However, these are merely artifacts with a superficial similarity with real Java
classes.

© Copyright 2000, Ushacomm India Ltd. All rights reserved.

4.4 XML Based
Axess scripts need to be represented in XML to enable a tools-based approach to the creation,
analysis and modification of scripts. Figure 1 above shows how the Microsoft XML Notepad
displays an Axess Hello world application.

4.5 Simplicity
Axess is simple and intuitive to use. The tags that are used are as close to corresponding Java
keywords as possible. XML has numerous esoteric features such as DTD, Schema, Namespace, etc.
However, Axess uses none of them.

5. Experience With The Use of Axess
We used Axess in several testing situations, using different applications and handling different
aspects of the work. The following subsections describe our experiences using Axess for two
diverse applications and evaluate the value of a tool like Axess.

Figure 2. A typical application GUI

5.1 Toolkit for GUI-Driven Tests
Record and replay of GUI inputs is a very common technique used in regression testing. The
typical steps used are as follows:

1. Record user interaction and store for later replay.

© Copyright 2000, Ushacomm India Ltd. All rights reserved.

2. Play the stored information to recreate the test activity.

However, it is also useful to be able to write test scenarios from scratch (rather than to record them)
or to be able to edit and modify a recorded scenario. The ability to write the scenario as a script is
an advantage, since it can contain logic that is sensitive to the state of the application or the test’s
environment.

Axess was used to create a custom test harness for a customer care application of a convergent
billing system and exercise the following actions:

1. Find a particular customer’s record
2. Retrieve customer’s service details
3. Attach a specific product to the customer’s subscription

Figure 2 above illustrates the complexity of a typical application GUI.

5.1.1 Approach using Axess
The approach used for the test described above required close integration with the Java run-time
system, particularly the part used to process GUI events, and required the development of two sets
of Java classes – one for recording the GUI actions and another for their subsequent replay.

To record GUI events, an instance of a specialized sub-class of java.awt.EventQueue is created and
pushed onto the system event queue:

Toolkit.getDefaultToolkit().getSystemEventQueue().push(axessEventQueue);

The new class’ getNextEvent() function is overridden to add the new functionality required – the
awt event normally returned by it is also processed and stored as an element of a test script in the
form of function calls to a GUI robot.

For replaying scripts, the java.awt.Robot class is used. Unfortunately, the Robot class is only
available in recent versions (1.3) of Java, thus precluding its use with applications developed using
earlier versions of Java.

5.1.2 Generated Script
The text in Figure 3 below is an extract of a script file generated by the GUI testing toolkit.

<call> <name>auto.RoboUser.init</name> </call>

. . .
<call> <name>auto.RoboUser.clickOnXY</name> <i>286</i> <i>219</i> </call>
<call> <name>auto.RoboUser.delay</name> <i>1406</i> </call>
<call> <name>auto.RoboUser.typeInText</name> <s>151</s> </call>
<call> <name>auto.RoboUser.clickOnXY</name> <i>416</i> <i>223</i> </call>
<call> <name>auto.RoboUser.delay</name> <i>3406</i> </call>
<call> <name>auto.RoboUser.clickOnXY</name> <i>360</i> <i>59</i> </call>
<call> <name>auto.RoboUser.delay</name> <i>7141</i> </call>
<call> <name>auto.RoboUser.clickOnXY</name> <i>272</i> <i>217</i> </call>

Figure 3. Form of script generated by testing tool

© Copyright 2000, Ushacomm India Ltd. All rights reserved.

Observe that the script does not use knowledge of the GUI objects to which the events are directed.
In certain situations, this can be a severe disadvantage and while working with an object-oriented
language like Java, it must be possible to track object identities and deliver events to specific GUI
widgets. In fact, the object-orientation features of Axess (based on Java’s object model) allow this
to be done and later versions of our tools will leverage these capabilities to provide enhanced
capabilities.

5.2 Testing Message-Oriented Systems
Another application automated with Axess is the emulation of a device that provides voice over IP
(VoIP) usage data to a telecom billing system. Communication with a VoIP device occurs over IP
connections using well-defined messages organized in predefined scenarios. The basic approach to
such testing uses a Java program (see Figure 4 below) that allows the tester to select a message,
populate its fields, and send it to the system under test. The reply message was examined to
determine if the response was correct. Scenarios consisting of more that one pair of messages were
difficult to setup because the human intervention needed takes time, and can cause one of the
protocol state-machines to timeout.

5.2.1 Approach using Axess
The approach was modified using Axess to allow the tester to define configuration data and
functions that would allow complete message scenarios to be defined. The number of messages in a
complete scenario is not an issue since the tool populates messages automatically using test
configuration data and scripts. The tool is also able to check received messages (both type and
content), and respond with appropriate messages.

Figure 4. GUI used for selecting and populating messages

© Copyright 2000, Ushacomm India Ltd. All rights reserved.

6. Conclusions

a) XML is an optimal method to represent and store structured information; it must, therefore, be
applicable to programs as well.

b) An XML extension has been designed to represent any Java program. This programming
language has been used to represent test scripts used in automated testing.

c) A disadvantage of programming languages based in XML is verbosity. This is particularly
apparent when representing Java. However, the use of XML enables a tools-based approach and
it will be possible to use formal techniques to prove properties of testing scripts.

d) A compact and efficient Java-based interpreter for XML programming scripts has been created
and is used to assist in automated testing of software written in Java.

e) The ability of the interpreter to integrate with test environments and software written in Java is
a definite advantage and can be used to raise the level of test automation.

7. Acknowledgements
The authors wish to acknowledge the guidance and encouragement received from Grisha Alpernas,
EVP Technical Operations at Usha Communication Technology Inc., and the application ideas of
Anirban Mukhopadhyay, Consultant, at Ushacomm India Ltd. This article would not have been a
reality without their contributions.

References

[1] The Java Programming Language, Third Edition, Ken Arnold, James Gosling and David
Holmes, Addison Wesley, June 2000.
[2] Recommendation “REC-xml-19980210”, The World Wide Web Consortium, 1998.
[3] White Paper “Portable Data / Portable Code: XML and Java Technologies”,
(http://www.javasoft.com/xml/nfocus.html), J.P. Morgenthal, Sun Microsystems.
[4] “XML and Java: The Why and the How”, Israel Hilerio, in Java Developer’s Journal, Volume 4
Issue 9, September 1999.
[5] http://www.scriptics.com/customers/success/testautomation.html
[6] “Programming Languages for the JVM”, Rick Hightower, in Java Developer’s Journal, Volume
5 Issue 2, February 2000.
[7] “BeanShell and DynamicJava: Java Scripting with Java”, Rick Hightower, in Java Developer’s
Journal, Volume 5 Issue 7, July 2000.

http://www.javasoft.com/xml/nfocus.html
http://www.scriptics.com/customers/success/testautomation.html

© Copyright 2000, Ushacomm India Ltd. All rights reserved.

Addendum 1: Addendum 1: Addendum 1: Addendum 1: The Axess User Guide

1. Introduction
The Axess software is packaged as a Java jar file that can be used to run standalone or as well as
embedded scripts (see example in section 2 below) as described in the following sub-sections.

1.1 Standalone Scripts
In the standalone mode, the Axess interpreter is used as a Java application, executing script files in
much the same waya similar manner that a shell script is interpreted. To execute a file containing
scripts, it is passed as a command line argument to the Axess application:

C:> java Axess scriptOne.xml

Here As shown above, scriptOne.xml is the name of a file containing the script. One function in
every standalone script file has a special signature (name = main, type = void, and takes a single
argument of type java.lang.String[]), and execution begins hereat that point. The other functions
can be called directly or indirectly from main. Any command-line arguments (typed after the name
of the file containing the script) are passed as arguments to the main function.

1.2 Embedded Scripts
Embedded scripts are used in conjunction with Java code in end-user applications. In this mode,
Java methods can call script functions, which are passing and receiving data. The script functions
can access the Java run-time, and all accessible java classes installed in the system. Functions in the
script can also access public members − methods and data − of the invoking object (via a reference
passed to it). Embedded scripts are a useful mechanism for enhancing the flexibility and
customizability of Java applications. They are also useful for adding code for to traceing and de-
bugging applications when needed.

The Axess interpreter has a constructor that allows Java modules to create an embeddable module
of script functions from a file. Once such an objectthis module has been created, any function in the
script can be called by using the method callFunction. The following Java code can be used to call
the function scaleDistance in the script in the example above:

Axess module1 = new Axess(new java.io.File(“scriptOne.xml”));
float oldDistance, newDistance;

…
Float oldDst = new Float(oldDistance), newDst;
newDst = module1.callFunction(“scaleDistance”, new Object[] {oldDst});
newDistance = newDst.floatValue();

…

The method callFunction takes two arguments – the name of the script function to call, and a
java.lang.Object array containing the script function’s arguments. The number and type of
arguments is used to determine the which script function to call. If the function has arguments of
primitive types (float, boolean, etc.), objects of corresponding wrapper types (Float, Boolean, etc.)
must be used instead. Any function in the script used to construct script1 can be called through it.

© Copyright 2000, Ushacomm India Ltd. All rights reserved.

The embedding Java program can use any number of such Axess objects encapsulating different
scripts.

The calling thread itself executes the called script function. The method callFunction returns an
Object containing the value returned by the script function. If the script returns a primitive type, an
instance of the corresponding wrapper type is returned.

2. Program Structure
An Axess script must have a well-defined structure. The following sample illustrates the
organization of a script file:

<Axess>

<function> <name>scaleDistance</name> <type>float</type>
<arg> <name>oldDistance</name> <type>float</type> </arg>
<block>

<var> <name>newDistance</name> <type>float</type> </var>
…

<!-- body of function -->
…

<return> <r>newDistance</r> </return>
</block>

</function>

<function> <name>…</name> <type>…</type>
<!-- arguments (in any) and body of function -->

</function>
…
…

<function> <name>main</name> <type>void</type>
<arg> <name>args</name> <type>java.lang.String[]</type> </arg>
<block>

…
<!-- body of function -->

…
</block>

</function>

</Axess>

The main constructs are module and function elements. A script file contains a single module as the
outermost element, which contains one or more functions. All code (in a scripting sense) is
contained within block elements within functions as described in the sub-sections below.

2.1 arg (Function Arguments)
The arg element is used to define a function argument, and must contain elements to define the
name and type of the formal argument as shown in the example below. The name and type must
appear in the following order shown:

<function> <name>celciusToFahrenheit</name> <type>float</type>
<arg> <name>celcius</name> <type>float</type> </arg>
<block>

…

© Copyright 2000, Ushacomm India Ltd. All rights reserved.

A function may have any number (including 0) of formal arguments., eEach of these is represented
by an arg element, and placed after the type element that defines the function’s return type.

2.2 Axess (Module Definition)
A module element must be used as the outermost containing element of any Axess script. Operating
system files or Java Strings may contain modules. Each module may contain one or more function
elements.

2.3 block Definition
A block is the equivalent of Java’s curly braces – { and }. All of a function’s code must be
contained within a block.

A block is also used in another context –which is to encapsulate more than one statement into an
atomic unit that is executed either entirely or not at all. The following if statement illustrates a
typical use of a block.

<if>
<lt> <r>count</r> <i>15</i> </lt>
<block>

<call> <m> <type>java.lang.System</type> <name>println</name> </m>
<r>count</r> </call>

<inc> <r>count</r> </inc>
</block>

</if>

In this example, the two statements (call and inc) are both executed if the value of count is less than
15, (and neither is executed otherwise).

An empty block, written as <block/>, may be used in contexts that require an empty statement
(e.g., in a for statement – see example in section 5.7 below).

2.4 function Definition
The function element is used to define a script function within a module. Each function element
contains the following elements:

• = name (mandatory – 1 occurrence) – specifies the name of the function being defined. The
element must contain the name of the function as a piece of text.

• = type (mandatory – 1 occurrence) – specifies the type of the return value. The element must
contain the name of a type as text.

• = arg (0 or more occurrences) – specifies the name and type of any arguments accepted by the
function. The element must contain a name and a type element each containing text
specifying the name and type of the argument respectively.

• = block (mandatory – 1 occurrence) – contains the variable definitions and executable
statements in the body of the function.

A module may contain any number of functions.

© Copyright 2000, Ushacomm India Ltd. All rights reserved.

3. Variables and Values
Facilities exist for the definition of auto variables, which are (defined and used only within
functions). All variables are typed; and all of the Java types (primitives, standard JDK classes, user-
defined classes and 3rd party classes) may be used.

3.1 Variable Definition
A variable is defined by the var element, which must contain two mandatory elements – name and
type. The value element is optional, and may be used to specify the initial value for primitive types.
The value of an un-initialized variable follows the usual Java conventions. An example of the
definition of variables within functions followsis shown below.

<var> <name>maxCount</name> <type>int</type> <value>15</value> </var>
<var> <name>appTitle</name> <type>java.lang.String</type>

<value>Green Grapes</value> </var>
<var> <name>myFrame</name> <type>java.awt.Frame</type> </var>

To declare an n-dimensional array, n pairs of box-brackets ([]) are appended to the type-name, as
shown in the examples below:

<var> <name>args</name> <type>java.lang.String[]</type> </var>
<var> <name>chessBoard</name> <type>byte[][]</type> </var>

Memory allocation for the elements, however, has to be done separately as explained in section 4.7
below.

3.2 Accessing Primitive Variables
The r (reference) element is used to refer to the value of a primitive variable:

<var> <name>count</name> <type>int</type> <value>1</value> </var>
…

<while> <lt> <r>count</r> <int>15</int> </lt>
<block>

<call> <name>fillSilo</name> <r>count</r> </call>
<set> <r>count</r> <add> <r>count</r> <int>1</int> </add> </set>

</block>
</while>

The r element can be used to fetch obtain the value of a variable, as well as a lvalue to which a new
value may be assigned as illustrated by the set element in the example above.

3.3 Accessing Members of Java Objects
The m element (mnemonic for member) is used to access a field of a Java object. It must contain
two elements – the first a reference to an object whose field is to be accessed, and the second a
name element that specifies the field to access:

<var> <name>xVal</name> <type>int</type> </var>
<var> <name>center</name> <type>java.awt.Point</type> </var>

…
<set> <r>xVal</r> <m> <r>center</r> <name>x</name> </m> </set>
<set> <m> <r>center</r> <name>x</name> </m>

<add> <r>xVal</r> <int>128</int> </add> </set>

© Copyright 2000, Ushacomm India Ltd. All rights reserved.

The m element can be used to fetch obtain a value, as well as in the form of an lvalue, to assign a
new value to an object’s data-member as illustrated by the set in the example above.

3.4 Accessing Members of Java Classes
The m element (mnemonic for member) can also be used to access a field of a Java class (and in
this case, the specified data-member must be static). In this useinstance, the m element must
contain two elements – the first a type element specifying the class whose field is to be accessed,
and the second a name element that specifies the field to access:

<var> <name>out</name> <type>java.io.PrintStream</type> </var>
…

<set> <r>out</r> <m> <type>java.lang.System</type> <name>out</name> </m>
</set>
…

<call> <r>out</r> <name>println</name> <String>Hello world</String>
</call>

The m element can be used to fetch acquire a value, as well asand in the form of an lvalue, to assign
a new value to a class’ data-member.

3.5 Accessing Elements of Java Arrays
The x element (mnemonic for index) is used to access an element of a Java array. As its first
argument, Tthe x element must contain a reference to an array (whose element is to be accessed.) as
its first argument. References to integers, (eachwhich representing an index,) follow the array
reference. The number of index values must not exceed the number of dimensions:

<var> <name>temp</name> <type>float</type> </var>
<var> <name>studentAges</name> <type>float[]</type> </var>
<var> <name>i</name> <type>int</type> </var>

…
<for>

<set> <r>i</r> <int>0</int> </set>
<lt> <r>i</r> <int>15</int> </lt>
<inc> <r>i</r> </inc>
<block>

<set> <r>temp</r> <x> <r>studentAges</r> <r>i</r> </x> </set>
<set> <x> <r>studentAges</r> <r>i</r> </x>

<mul> <r>temp</r> <float>12.0</float> </mul> </set>
</block>

</for>

The x element can also be used as an lvalue (first argument of a set element) as shown by in the last
example above.

3.6 Garbage Collection
All variables defined within script functions are associated with a dynamically created instance of
any appropriately typed object. References to the dynamically created objects are erased when the
block within whichcontaining a defined variable is defined is exited.

© Copyright 2000, Ushacomm India Ltd. All rights reserved.

3.7 Literals
Literal constants of every Java primitive type may be defined using the elements in the table below.
The value of the constant is represented by the contained text without noany extra surrounding
blanks.

Type Example
boolean <boolean>true</boolean>, <boolean>false</boolean>

byte <byte>128</byte>

char <char>Y</char>

double <double>3.14159</double>

float <float>0.25</float>

int <int>25</int>

long <long>100000</long>

short <short>255</short>

4. Operators
Based on the Java model, Sseveral operators are implemented., based on the Java model. The
following sub-sections detail the behavior of these operators.

4.1 Assignment
The set operator can be used to assign a value to Axess variables, static or non-static data-members
of Java objects or classes, and elements of Java arrays. It takes two operands – the first is an lvalue
whose value is to be set, and the second an expression that can be evaluated to a value.

4.2 Cast
The cast operator can be used to pass a value of one type into a context that requires a value of
another compatible type. The cast operator is most useful for argument passing, as in the example
below which illustrates (where the run-time function overload resolution would fail to find the
function put unless the casts were used):

<var> <name>hash</name> <type>java.util.Hashtable</type> </var>
…

<call> <r>hash</r> <name>put</name>
<cast> <type>java.lang.Object</type> <String>LANGUAGE<String> </cast>
<cast> <type>java.lang.Object</type> <String>Java<String> </cast>

</call>

4.3 Arithmetic
As in Java, Aarithmetic operators as in Java are provided for addition, multiplication, subtraction,
division and modulo extraction. The operations perform type conversion as in Java. The following
examples illustrate the use of XML elements to represent arithmetic operations.

Java XML Example
* mul <mul> <r>celcius</r> <float>1.8</float> </mul>

+ add <add> <r>prod</r> <float>32.0</float> </add>

/ div <div> <r>sum</r> <r>count</r> </div>

© Copyright 2000, Ushacomm India Ltd. All rights reserved.

- sub _{<r>price</r> <r>disc</r>}

% mod <mod> <r>position</r> <int>8</int> </mod>

4.4 Bit Shift
As in Java, Bbit shift operators as in Java are provided. These operators take two arguments, and
return a value obtained by shifting the first operand by the number of bits specified by the second.

Java XML Example
<< shiftl <shiftl> <int>0x01</int> <r>offset</r> </shiftl>

>> shiftr <shiftr> <r>status</r> <int>3</int> </shiftr>

>>> shiftur <shiftur> <r>pattern</r> <r>count</r> </shiftur>

4.5 Comparison
As in Java, Ooperators as in Java are provided for comparing values of numeric and char types
(except eq and ne, which can be used to compare objects as well). The operations perform type
conversion as in Java. The following examples illustrate the use of XML elements to represent
arithmetic operations.

Java XML Example
== eq <eq> <r>diameter</r> <float>2.0</float> </eq>

!= ne <ne> <r>ptr</r> <r>firstElement</r> </ne>

< lt <lt> <r>x</r> <int>25</int> </lt>

<= le <le> <r>error</r> <float>0.0001</float> </le>

> gt <gt> <r>rate</r> <float>25.5</float> </gt>

>= ge <ge> <r>personsAge</r> <int>75</int> </ge>

As in Java, eq and ne check for object identity – and so should not, for example, be used for
comparing two strings. The equals() function should be used for these situations. The comparison
operators are typically used in conjunction with if, while and for statements.

4.6 Operator instanceof
This operator is used to check if an entity is of a particular type. It takes two arguments − a
reference supplying the entity to be tested, and a type element naming the type to be tested against:

…
<arg> <name>obj</name> <type>java.lang.Object</type> </arg>
<if> <instanceof> <r>obj</r> <type>java.awt.Point</type> </instanceof>

…
</if>

This operator takes two arguments – an entity-reference element and a type element, and returns a
boolean value.

4.7 Operator new
This operator is used to create new instances of Java classes, or to construct arrays. To create a new
instance, a type element specifying the class is used as the first argument. Subsequent arguments

© Copyright 2000, Ushacomm India Ltd. All rights reserved.

are used as needed for the constructor’s arguments. Run-time overload resolution is used to select
the constructor:

<var> <name>myFrame</name> <type>java.awt.Frame</type> </var>
…

<set> <r>myFrame</r> <new> <type>java.awt.Frame</type>
<String>My New Frame</String> </new> </set>

To construct an array, a type element specifying the component class is used as the first argument.
The second, and subsequent – (if any), elements are integers specifying the size of successive
dimensions of the array:

<var> <name>scores</name> <type>float[]</type> </var>
<var> <name>chessBoard</name> <type>byte[][]</type> </var>

…
<set> <r>scores</r> <new> <type>float</type> <int>300</int> </new> </set>
<set> <r>chessBoard</r> <new> <type>byte[][]</type>

<int>8</int> <int>8</int> </new> </set>

4.8 Boolean Operators
The operators, and and or, are used to combine the values of two boolean values. These are
sometimes also called short cut operators because the second operand is evaluated only if required
to determine the overall result.

The not operator inverts the value of its single boolean operand.

Java XML Example
&& and <and> <lt> <r>ix</r> <int>32</int> </lt>

<call> <name>allDone</name> </call> </and>
|| or <or> <gt> <r>error</r> <float>0.01</float> </gt>

<r>notAvailable</r> </or>
! not <not> <r>fileFound</r> </not>

4.9 Bitwise Operators
The operators band, bor and bxor are used to combine the bits of their two integral operands. The
bnot operator inverts the bits of its single integral operand.

Java XML Example
& band <band> <r>status</r> <int>0x0c</int> </band>

| bor <bor> <r>pixels</r> <r>0xffff</r> </bor>

^ bxor <or> <gt> <r>error</r> <float>0.01</float> </gt>
<r>notAvailable</r> </or>

~ bnot <bnot> <r>circPix</r> </bnot>

4.10 Increment, Decrement and Negate
The inc, dec and neg operators specify an entity reference which is incremented, decremented or
negated, respectively. The following table shows examples of their use. The inc and dec operators
optionally accept a second argument that gives provides the value by which to change the value of
the first argument.

© Copyright 2000, Ushacomm India Ltd. All rights reserved.

Java XML4 Example
++ inc <inc> <r>counter</r> <float>2.0</float> </inc>

-- dec <dec> <m> <r>center</r> <name>x</name> </m> </dec>

- neg <neg> <x> <r>factor</r> <r>i</r> </x> </neg>

5. Flow Control

5.1 break Statement
The break element causes execution to break out of a loop. This element must be empty (and must
not contain any other elements or text.) andIt should preferably be used only in the form prescribed
for empty elements in XML.

<while> <boolean>true</boolean>
<block>

…
<!-- some iterative computation -->

…
<if> <lt> <r>error</r> <float>0.0001</float> </lt>

<break/>
</if>

</block>
</while>

…
<!-- execution continues here if break is executed -->

5.2 call Statement
This element is used to call functions. Distinguished by their contents, Tthere are two kinds of call
statements, distinguished by their contents, for calling Java methods (on objects and classes), and
script functions respectively.

When used to invoke a Java method, the call element must contain other elements as follows:

• = A reference to an object or the name of a class whose method is to be called. (Applicable
only when invoking Java methods, and not when calling functions defined in the script.)

• = The name of the Java method or script function to be called
• = (A variable number of) Aarguments to the method or function5

The following example illustrates the invocation of methods on a Java object6:

<var> <name>myFrame</name> <type>java.awt.Frame</type> </var>
<var> <name>visible</name> <type>boolean</type> <value>true</value>
</var>

…

4 In Java the ++ and -- operators can be applied either as a prefix or a postfix. In this implementation we created an
operator that only increments or decrements the named variable – but no value is returned.
5 The type of arguments supplied is used to perform function overload resolution at run-time.
6 The method may be a static member of its class. The method invocation illustrated is functionally equivalent to the
following piece of Java: myFrame.setVisible(visible);

© Copyright 2000, Ushacomm India Ltd. All rights reserved.

<call> <r>myFrame</r> <name>setVisible</name> <r>visible</r> </call>

The following example illustrates the invocation of methods on a Java class7:

<var> <name>x</name> <type>double</type> </var>
<var> <name>cos_x</name> <type>double</type> </var>

…
<set> <r>cos_x</r> <call> <type>java.lang.Math</type> <name>cos</name>
<r>x</r> </call> </set>

The following example illustrates the use of call for invoking a function defined in the script (see
section 2.4 above):

<var> <name>x</name> <type>float</type> </var>
<var> <name>fac_x</name> <type>float</type> </var>

…
<set> <r>fac_x</r> <call> <name>factorial</name> <r>x</r> </call> </set>

5.3 continue Statement
The continue element is used within looping (while, for) constructs to skip execution of the
remaining part of the (innermost) enclosing loop. This element must not contain any other elements
or text, and should preferably be used only in the form prescribed for empty elements in XML.

<while> <boolean>true</boolean>
<block>

…
<if> <call> <name>isDone</name> <r>serialNo</r> </call>

<continue/>
</if>

…
<!-- this part skipped if isDone returns true -->
…

</block>
</while>

5.4 for Statement
A for element is used to create a loop (iterative section of program) as in the following example:

<var> <name>rate</name> <type>float</type> </var>
<for>

<set> <r>rate</r> <float>0.0</float> </set>
<lt> <r>rate</r> <float>15.0</float> </lt>
<inc> <r>rate</r> <float>2.0</float> </inc>
<block>

…
<!-- compute and use compound interest -->

…
</block>

</for>

7 The method must be a static member of the class. The method invocation illustrated is functionally equivalent to the
following piece of Java: cos_x = java.lang.Math.cos(x);

© Copyright 2000, Ushacomm India Ltd. All rights reserved.

The for element contains four statements – the first three exist for iteration control, while the last
one is the body of the loop. The iteration control statements are analogous to those used with for
statements in C, C++ or Java. The last statement is typically a block that contains all of the
statements to be executed repeatedly.

5.5 if Statement
The if element is used to conditionally execute blocks of code, as in the following example:

<if> <lt> <r>rate</r> <float>0.0</float> </lt>
<call> <name>lessThanZero</name> </call>

<elseif/> <le> <r>rate</r> <float>2.0</float> </le>
<call> <name>betweenZeroAndTwo</name> </call>

<elseif/> <le> <r>rate</r> <float>4.0</float> </le>
<call> <name>betweenTwoAndFour</name> </call>

…
<elseif/> <le> <r>rate</r> <float>10.0</float> </le>

<call> <name>betweenEightAndTen</name> </call>
<else/>

<call> <name>greaterThanTen</name> </call>
</if>

In its simplest form, the if element contains a boolean expression and a statement. The statement
being executed only if the boolean expression evaluates to true. An if can be augmented with any (0
or more) number of elseif elements (0 or more), and one optional else as in the example above. The
else, when present, and each elseif must be followed by a boolean expression and a statement. In
the general form illustrated above, the boolean expressions are evaluated in sequence till until one
is found that yields true is found. The associated statement is then executed, and processing of the
if statement is terminated.

Note that the elseif and else elements must be empty, and preferably be used in the form prescribed
for empty XML elements. As usual, a block (containing statements and blocks) can be used as a
conditional statement within an if structure.

5.6 return Statement
A return causes a function to return control to the caller optionally with a value (optional).

<return/> <!-- permitted only in a ‘void’ function -->
<return> <r>status</r> </return>

5.7 while Statement
A while is another form of iterative statement that is controlled by a single expression, as shown in
the following example:

<while> <gt> <r>error</r> <float>0.0001</float> </gt>
<block>

…
<!-- iterate computation one more time -->

…
</block>

</while>

© Copyright 2000, Ushacomm India Ltd. All rights reserved.

The boolean expression immediate following the start tag of the while is evaluated repeatedly, and
the block within the body of the while is executed as long as the controlling expression evaluates to
true. Execution on the while statement ends when the controlling expression evaluates to false.

6. Exceptions

6.1 try and catch Statement
A try element is the equivalent of Java’s try-catch structure. An example try element is illustrated
below:

<try>
<block>

…
<!-- attempt operation that might throw exception here -->

…
</block>

<catch/> <name>e</name> <type>java.lang.Exception</type>
<block>

…
<!-- handle e here -->

…
</block>

…
<catch/> <name>se</name> <type>java.sql.SQLException</type>

<block>
…

<!-- handle se here -->
…

</block>
</try>

A try element contains one statement (which may be a block), followed by any number of catch
sections. Each catch section is parameterized with the type of exception it can handle. The
statement (or block) associated with a catch is given control when an exception of the specified
type occurs. The catch element serves to separate out the catch sections, and must be used in the
form recommended for empty elements in XML.

6.2 throw Statement
A throw element can be used to throw an exception as in the example below:

<if> <gt> <r>error</r> <float>0.001</float> </gt>
<throw> <new> <type>AppException</type>

<String>Error-count threshold reached</String> </new> </throw>
</if>

Programming Languages in
Testing

• C and C++
• Proprietary (equipment or vendor specific)
• Open Source

A Java-XML Integration for Automated Testing

Sanjay DasGupta & Indrajit Sanyal Ushacomm India Ltd

A Java-XML Integration for Automated Testing

Sanjay DasGupta & Indrajit Sanyal Ushacomm India Ltd
Slide-3

Embedded Scripting Languages

• Tcl (for C and C++)
• DynamicJava (for Java)
• Axess

A Java-XML Integration for Automated Testing

Sanjay DasGupta & Indrajit Sanyal Ushacomm India Ltd

A Java-XML Integration for Automated Testing

Sanjay DasGupta & Indrajit Sanyal Ushacomm India Ltd
Slide-4

Java and XML-Based Scripting

• XSLT
• XMLScript (simplified XSLT)

A Java-XML Integration for Automated Testing

Sanjay DasGupta & Indrajit Sanyal Ushacomm India Ltd

A Java-XML Integration for Automated Testing

Sanjay DasGupta & Indrajit Sanyal Ushacomm India Ltd
Slide-5

Design of AXESS

• Java Compatible
• Java-like Usage
• XML based
• Simple
• Embeddable
• Compact
• Efficient

A Java-XML Integration for Automated Testing

Sanjay DasGupta & Indrajit Sanyal Ushacomm India Ltd
Slide-6

Use of AXESS

• Standalone use
• Embedded within Java programs

A Java-XML Integration for Automated Testing

Sanjay DasGupta & Indrajit Sanyal Ushacomm India Ltd
Slide-7

Invoking Axess Standalone

C:> java Axess scriptOne.xml

A Java-XML Integration for Automated Testing

Sanjay DasGupta & Indrajit Sanyal Ushacomm India Ltd
Slide-8

Example Standalone Script
<Axess>

<function> <name>scaleDistance</name> <type>float</type>

<arg> <name>oldDistance</name> <type>float</type> </arg>

<block>

<var> <name>newDistance</name> <type>float</type> </var>

<!-- body of function -->

<return> <r>newDistance</r> </return>

</block>

</function>

<function> <name>main</name> <type>void</type>

<arg> <name>args</name> <type>java.lang.String[]</type> </arg>

<block>

<!-- body of function -->

</block>

</function>

</Axess>

A Java-XML Integration for Automated Testing

Sanjay DasGupta & Indrajit Sanyal Ushacomm India Ltd
Slide-9

Embedded Use
Axess scr1 = new Axess(new java.io.File(

“scriptOne.xml”));

float oldDistance, newDistance;

…

Float oldDst = new Float(oldDistance), newDst;

newDst = scr1.callFunction(“scaleDistance”, new
Object[] {oldDst});

newDistance = newDst.floatValue();

…

A Java-XML Integration for Automated Testing

Sanjay DasGupta & Indrajit Sanyal Ushacomm India Ltd
Slide-10

Applications of AXESS

• GUI-based testing tool
• Messaging with VoIP device

A Java-XML Integration for Automated Testing

Sanjay DasGupta & Indrajit Sanyal Ushacomm India Ltd

A Java-XML Integration for Automated Testing

Sanjay DasGupta & Indrajit Sanyal Ushacomm India Ltd
Slide-11

Application: GUI-Based Testing

• Java tool captures GUI events
• Events are replayed at later time

<call> <name>auto.RoboUser.init</name> </call>

<call> <name>auto.RoboUser.delay</name> <i>2859</i> </call>

<call> <name>auto.RoboUser.clickOnXY</name> <i>361</i>
<i>64</i> </call>

<call> <name>auto.RoboUser.typeInText</name> <s>151</s>
</call>

Slide-12

Application: Messaging with
VoIP Device

• Manual procedure
required use of a GUI
to create each test

• Message scenarios can
be automated with a
scripting tool

A Java-XML Integration for Automated Testing

Sanjay DasGupta & Indrajit Sanyal Ushacomm India Ltd
Slide-13

Conclusions I

• XML is an optimal method to represent and
store structured information; it must,
therefore, be applicable to programs as well.

A Java-XML Integration for Automated Testing

Sanjay DasGupta & Indrajit Sanyal Ushacomm India Ltd

A Java-XML Integration for Automated Testing

Sanjay DasGupta & Indrajit Sanyal Ushacomm India Ltd
Slide-14

Conclusions II

• A XML extension has been designed to
represent any Java program. This
programming language has been used to
represent test scripts used in automated
testing.

A Java-XML Integration for Automated Testing

Sanjay DasGupta & Indrajit Sanyal Ushacomm India Ltd

A Java-XML Integration for Automated Testing

Sanjay DasGupta & Indrajit Sanyal Ushacomm India Ltd
Slide-15

Conclusions III

• A disadvantage of programming languages
based in XML is verbosity. This is
particularly apparent when representing
Java. However, the use of XML enables a
tools-based approach, and it will be possible
to use formal techniques to prove properties
of testing scripts.

A Java-XML Integration for Automated Testing

Sanjay DasGupta & Indrajit Sanyal Ushacomm India Ltd

A Java-XML Integration for Automated Testing

Sanjay DasGupta & Indrajit Sanyal Ushacomm India Ltd
Slide-16

Conclusions IV

• A compact and efficient Java-based
interpreter for XML programming scripts
has been created, and used to assist in
automated testing of software written in
Java.

A Java-XML Integration for Automated Testing

Sanjay DasGupta & Indrajit Sanyal Ushacomm India Ltd

A Java-XML Integration for Automated Testing

Sanjay DasGupta & Indrajit Sanyal Ushacomm India Ltd
Slide-17

Conclusions V

• The ability of the interpreter to integrate
with test environments and software written
in Java is a definite advantage, and can be
used to raise the level of test automation.

A Java-XML Integration for Automated Testing

Sanjay DasGupta & Indrajit Sanyal Ushacomm India Ltd

A Java-XML Integration for Automated Testing

Sanjay DasGupta & Indrajit Sanyal Ushacomm India Ltd
Slide-18

QWE2000 Session 12A

Dr. Adam Kolawa [USA]
(ParaSoft)

"Testing Dynamic Web Sites (12A)"

Key Points

Testing techniques for Dynamic Web sites●

Effectively and Efficiently testing Web applications●

Presentation Abstract

Today's dynamic Web sites are sophisticated n-tier software applications with Web
interfaces. Because dynamic Web sites involve extensive programming, developers
of these Web sites need to apply their standard testing procedures in their Web
development. In this session, we will discuss how to use the following techniques for
testing Web applications.

--Using White box testing to test the site's construction. White box testing in software
development involves calling every method or class. In Web development, this
involves testing every static and dynamic page for coding errors and li nk errors.

--Using Black box testing to test the site's functionality. Black-box testing helps
ensure that a program the way it was intended to function. In dynamic Web sites, the
states of pages are constantly changing depending on how a user visits a site.

--Using Web-box testing, a method of testing one dynamic page at a time, to test at
the program level as well as the output level (script and HTML page). Using Web-box
testing, will help you expose core dumps, uncaught exceptions, or any ot her
problems with code.

--Using Regression testing to uncover errors made during code modifications.
Developers use regression testing to help ensure any changes made to code does
not cause any other errors. In Web development, regression testing also helps
ensure that code changes do not cause any other problems.

Attendees will learn the following from the presentation:

--How Web developers and software development are similar
--Software development practices that Web developers can borrow
--Techniques for effectively and efficiently testing Web site pages

QWE2000 -- Conference Presentation Summary

http://www.soft.com/QualWeek/QWE2K/Papers/12A.html (1 of 2) [9/28/2000 11:14:53 AM]

--Techniques for effectively and efficiently testing software programs that generate
dynamic pages

About the Speaker

Adam Kolawa is the CEO of ParaSoft Corporation, a leading provider of software
productivity solutions. Dr. Kolawa holds a Ph.D. in theoretical physics from the
California Institute of Technology. Dr. Kolawa has extensive experience in both
programming and managing programmers. He has written several successful
commercial software products, and has headed the development of a large number
and variety of software projects, including software development tools, retail
solutions, Web development and management tools, data mining tools and more.
Heading a company that sells products to programmers and managers has given Dr.
Kolawa the unique opportunity to interact with software developers and managers at
mutiple levels. Dr. Kolawa established his ability to clearly communicate the
expertise he has gained from his education and experience in the many papers on
physics and computer science that appeared in such publications as the Caltech
Concurrent Computing Project Memo and the Proceedings of the Hypercube
Conference. Two of Dr. Kolawa's papers are included in Parallel Computing Works!.
Ed. Geoffrey Fox. Dr. Kolawa has spoken at many conferences including STAR East
'99, JavaOne, Linux Expo, Sigs Conference for Java, Software Development East,
SGI Expo, Quality Week, IEEE conferences and has also conducted national
seminars on Strategies for Effective Software Development.

QWE2000 -- Conference Presentation Summary

http://www.soft.com/QualWeek/QWE2K/Papers/12A.html (2 of 2) [9/28/2000 11:14:53 AM]

1

ParaSoft

Testing Dynamic Web
Sites

Strategies for Applying Traditional
Software Testing Techniques to N-Tier
Web Applications

USA France Germany UK

2

In the Beginning...

was the Web,
and the Web
was static.

2

3

Dynamic Sites Appear

• Content on
demand

• Database
connection

• Web browsers
as simple GUIs

4

Today’s Dynamic Web
Sites

• Complex n-tier software applications
• Theoretically contain an infinite number

of pages
• Require sophisticated testing

3

5

Static vs. Dynamic

• Static pages exist as actual files
• Dynamic pages are created on-the-

fly by back-end applications (CGI,
servlets, scripts, etc.)

6

Testing Static Sites

• Relatively straightforward task
– Pages are “real” and have only one instance
– Tools can automate many aspects of the

process

• Task includes:
– Checking links
– Checking anchors
– Checking spelling
– Validating HTML code
– Finding orphaned files

4

7

Testing Dynamic Sites

• Proven software testing techniques apply
– Coding Standards
– Automated Tools
– Error Prevention
– Error Detection

• Test individual elements/components
• Test the whole site
• Verify

8

Which Techniques Apply
to the Web?

• White-box (structural) testing
• Black-box (functionality) testing
• Regression testing
• Coding standards enforcement
• Web-box testing (specialized process of

testing one dynamic page at a time)

5

9

Typical Web Site Errors

• Servlets that throw exceptions
• Multiple types of broken links
• CGIs that core dump
• Databases that crash
• Various HTML, Cascading Style Sheet,

and JavaScript errors

10

White-Box Testing
In traditional software development:

• Determines whether application will crash
• Checks application’s construction
• White-box testing means slamming doors and

kicking tires

In dynamic Web sites:

• Create instances of all static and dynamic pages
• Ensures all back-end applications are robust
• Verifies that the program created valid HTML

6

11

White-Box Testing
Testing at the program level:

• Trigger each page
– load static pages

– execute programs with a set of inputs

– view pages that the programs return

• Create baseline for future stages of testing

Testing HTML construction and output:
• Coding standards are especially critical in HTML

– No compiler to catch errors

– Checking page display in a browser is unreliable

• HTML coding standards prevent errors

12

What Can Standards do?
An ounce of prevention…

• Data input errors that corrupt data
• Dynamic content errors
• Errors that affect localization
• Navigation-related errors (not “traditional” link

checking)
• Performance issues
• Browser incompatibilities
• Incorrect page appearance
• Security
• Accessibility

7

13

Coding Standard
Violations

• Missing content: Contact us at .
<IGM SRC=“picture.gif”>

• Navigation:

• Dynamic content
errors:
For <SCRIPT>,

TYPEor LANGUAGE

attribute must be set.

• Presentation
problems:
H1 {font-size:14s }

• Portability
Problems:
function foo() { var bar = new Array("foo",
"bar"); bar.pop(); }

14

Checking Links
• Part of white-box testing is to perform thorough

link checking

– Malformed URLs
– Broken anchors
– Missing pages
– Empty URLs
– Duplicate anchors

8

15

Link Errors Gotchas

1. Broken anchors

• Most link checkers do not test whether
links to anchors ()
actually lead to the correct anchor

• Tools that do check usually just verify
that the link leads to a valid page

16

Elusive Link Errors
2. Malformed URLs

• Most link testing tools restrict testing to server-
side links that have a valid
 statement, and fail to recognize
any other links

• These links do not necessarily result in delivery
of the requested page

• It is also important to test for
broken client-side links
– htp://www.parasoft.com

– http:/www.parasoft.com

– http//www.parasoft.com

– http://www.parsoft.com

9

17

Black-Box Testing

• Tests whether an application functions as
intended

• Compares actual functionality with intended
functionality described in specifications

• Two relevant types of black-box testing:
– Critical paths’ functionality
– Verifying existence of certain invariable

elements

18

Testing Critical Paths’
Functionality

• Two main difficulties of creating exact
instances of dynamic pages:
– Passing the appropriate parameters
– Setting the program’s internal variables

10

19

Testing Critical Paths’
Functionality

Example: Testing credit card verification
• Program Input:

– Payment type
– Credit card type
– Credit card number

• Internal variables
– User name
– Password
– Items in the shopping cart

• Correct inputs without correct variables, creates
a different page

20

Checking for Invariable
Elements

Common invariable elements include:
– Navigation bars
– Menus
– Clocks
– Calendars
– Advertising banners
– Buttons
– Copyright and contact information

11

21

Checking for Invariable
Elements

• Possible solution: Use a tool to create a test
case. IE record/playback

• Obvious complication: False positives. IE
calendars

22

Invariable Element Example

12

23

Checking for Invariable
Elements

• Describe content, design, or presentation
features that you want to appear in specified
pages

• Describe page features in an invariant way
• Avoid false positives, only real true errors
• Language is purposely ambiguous

24

Regression Testing

• Tests whether changes have introduced errors

• Tests whether your site continues to pass the
white-box and black-box tests it passed
previously

• Should be a simple process if you save all
white-box and black-box test cases each time
you test

13

25

Web-Box Testing

• Modeled after traditional unit testing
• Adapted to accommodate dynamic Web sites
• Tests at the program and output level as early

as possible
• “Test as you go” approach prevents errors
• Exposes exceptions, core dumps, and other

problems in back-end applications
– Verifies that HTML output pages are correct
– Checks functionality of output pages (links,

spelling, invariant elements, etc.)

26

Web-Box Testing

1. Establish an infrastructure for building,
publishing, and testing programs and scripts
– Use a makefile to automate “housekeeping”

functions such as:
• Compiling programs
• Transferring files to the correct directory of

the Web server
• Modifying databases
• Initializing objects

– Use publishing infrastructure to deploy
programs automatically each time you modify

14

27

Web-Box Testing

2. Set up tool checks for programs and scripts
– Automatically enforce coding standards for

languages in which applications were written
– Perform automatic unit testing for C/C++ and

Java applications
– Use a runtime error detection tool to check

for memory corruption in C/C++: especially
important for applications that work with
CORBA and other object brokers

If back-end applications do not pass tool
checks, publishing of your site should be
canceled

28

Web-Box Testing

3. Enforce HTML coding standards
– Use W3C standards

4. Inspect the output pages
– Trigger specific instances of each page by

setting internal state variables
– Look for broken links, broken anchors,

spelling errors, etc.
– Check for required page elements

15

29

Summary
• Tools for Building/publishing
• Traditional program error detection
• Prevention is much cheaper
• Static HTML analysis
• Coding Standards
• Thorough Link checking
• Regression testing
• Record/Playback & Scripting
• Sensible Server Response

30

Conclusion
• Dynamic Web sites are bringing traditional

developers into Web development.

• Now is the time apply traditional proven
development testing techniques to the Web.

• Integrating these techniques into the Web
development cycle create the high quality Web
applications while slashing development time,
effort, and cost.

ation
n-tier

eb

pplica-
n also
e
One
cod-

d
serv-

ic
t and
eb

g
ected
y

rs. We
sting
Testing Dynamic Web Sites
Dr. Adam Kolawa, ParaSoft Corporation

Introduction

Not long ago, Web sites were collections of simple, static pages that merely displayed inform
in the form of unchanging text and images. But today’s dynamic Web sites are sophisticated
software applications with Web interfaces. Software developers who are now building these
dynamic Web sites typically want to apply their standard development procedures to their W
development projects.

Most of all, developers need a way to prevent and detect errors as they develop n-tier Web a
tions. Testing techniques that have proven to be successful in conventional development ca
apply to the Web. Web developers should test all elements of their dynamic site, then test th
whole site together. It is important to verify that each piece of the site will behave as it should.
way to accomplish this is to perform white-box testing, black-box testing, regression testing,
ing standards enforcement, and unit testing throughout the site building process.

By adapting and implementing these traditional testing techniques, Web developers can:

• Create an instance of every static page (a page that exists as an actual HTML file) an
dynamic page (a page that is returned by a form-processing program such as a CGI,
let, or script) available on a site

• Map the various paths through a site

• Test a site’s construction (white-box testing)

• Test a site’s functionality (black-box testing)

• Maintain site integrity (regression testing)

• Test one dynamic page at a time

Applying conventional testing techniques helps developers create the highest quality dynam
Web sites possible. At the same time, it reduces the time and effort required for developmen
testing. We will now explain how each of these testing concepts can be applied to dynamic W
site development.

White-Box Testing

By now, most developers are familiar with the concept of white-box testing. White-box testin
determines whether any parts of the application will crash when the application is used in exp
or unexpected ways. During white-box testing, you can check an application’s construction b
examining the source code and then creating and executing tests designed to flush out erro
can draw an analogy between white-box testing and inspecting a new building. White-box te
1

m-
and

sure
ple,

we

rmine
es,
nally,
, we

s to
nd
isplay
test
most
vari-

the

ript

ide

ght
i-
s).

an-

ifi-
for a new building might involve testing every building element that you encounter--including
walls, doors, windows, and doorknobs--by pounding, slamming, twisting, or kicking it. Perfor
ing white-box testing on a dynamic Web site requires us to create an instance of every static
dynamic page, then test each page in ways that expose construction errors.

There are two levels to performing white-box testing on a dynamic Web site. First, we must en
that all of our back-end applications that generate pages are built with robust code. For exam
these back-end applications must not contain exceptions and must not core dump. Second,
must verify that the program actually created the HTML pages we wanted.

To begin white-box testing, we first must examine a site’s programs and static pages to dete
the most effective way to test the site. Next, we must trigger each page by loading static pag
executing programs with a set of inputs, then viewing the pages that the programs return. Fi
we must make note of our site’s file and directory structure. Having gathered this information
know what to expect during future stages of testing.

After triggering each page, we must thoroughly test whether each page’s links, including link
and from dynamic pages, will operate properly. We must also check all HTML, JavaScript, a
Cascading Style Sheet (CSS) code against coding standards to be sure that the pages will d
as we intended. One of the greatest problems of testing dynamic sites is figuring out how to
pages that don’t exist as physical HTML pages. After we trigger each page, we can apply the
sophisticated tests available to the pages, with the intention of exposing a large number and
ety of errors. The types of problems we should be looking for include:

• Servlets that throw exceptions

• CGIs that core dump

• Databases that crash

• Multiple types of broken links

• HTML, CSS, and JavaScript problems, including:

• Data input errors that corrupt data between the user form and the program on
server.

• Dynamic content errors that deliver inconsistent results from the program or sc
that generated them to the user.

• Errors that affect localization (for those doing business across the globe in a w
array of languages).

• Navigation-related errors that prevent visitors from reaching the place they thou
the link led to. (It is important to go beyond the errors normally reported by trad
tional “link-checkers” by recognizing malformed URLs and testing them as link

• Performance issues that can slow down your Web site.
• Browser incompatibilities, portability issues, and old tags from earlier HTML st

dards that may cease to be supported.
• Presentation errors that can affect the way your page looks.
• Security errors that affect data protection for those relying on client/server cert

cates to prove identity.
2

tware
rst
r of

ould

come
ite,
test the
a

You

ing
nt

s of

ci-

ant to

(i.e.,

d

ty. In
te
ro-
d has
the
the
• Style issues that can make the code more error-prone.
• Accessibility issues for users with special needs.

Here we come to a change of mindset for developers who are moving from conventional sof
to the Web. Developers are not used to structured inputs to their applications. HTML is the fi
type of input that can really be considered a structured input. Developers can apply a numbe
different algorithms to check it. HTML also gives a structured output, in which developers sh
check links, spelling, and code for common errors.

By using white-box testing techniques to test your site based on its code structure, you over
the main problem inherent in testing frequently-changing sites: every time you change the s
you need to create new tests. If you generate and execute the same tests each time that you
site, you can test a dramatically changed site with about the same effort that you use to test
slightly-modified site.

Black-Box Testing

Black-box testing tests whether an application actually functions as it is intended to function.
can perform black-box testing by comparing an application’s actual functionality with the
intended functionality described in the application’s specification document. To use the build
inspection analogy again, black-box testing might involve checking that every building eleme
included in the blueprint is actually present and meets the specifications. There are two type
black-box testing we can apply to dynamic Web applications:

• Testing critical paths’ functionality (i.e., checking certain functionality by testing if asso
ated paths through the site contain errors).

• Testing whether all appropriate pages contain certain invariable elements.

Testing critical paths’ functionality

The problem with testing critical paths through the site is creating the exact pages that you w
test. There are two main difficulties involved in creating these exact pages:

• Passing the appropriate parameters to the program that creates each dynamic page
entering appropriate form inputs).

• Setting the program’s internal variables to the values they would be set to if a user ha
actually taken the path through the site that you are trying to test.

For example, let’s assume that you want to test your site’s credit card processing functionali
order to test this functionality, you would not only have to give the program inputs that indica
payment type, credit card type, and credit card number, but you would also have to set the p
gram’s internal variables in such a way that the program has a user name and password, an
some items in the shopping cart. If you created this program’s return page by the submitting
correct inputs but not the correct variables, you would get a dramatically different version of
page, and would not be able to accurately test this aspect of the site’s functionality.
3

ere.

ild new
inputs
aths

rs to
lity,
paths
s to

spe-
iate

news
calen-
ple-

ent.
rror"
u
st

, cre-
ions
end,

tation
sion
scribe
mple)

pe of

rn one
revi-
lack-
spec-
Fortunately, you can use the information you gathered during white-box testing to help you h
During white-box testing, you mapped a default set of paths through your site. Now you can
examine the test cases that you used in white-box testing, then extend these test cases or bu
test cases to indicate exactly which paths through the site you want to test. As you add more
into forms, you will be able to navigate through more and more dynamic pages in whatever p
you choose to follow.

For example, let’s assume that you wanted to test functionality on your site, which allows use
receive daily news stories that are tailored to the interests they specify. To test this functiona
you would add inputs and expand default paths until your path tree represented all possible
that you were interested in testing. Then you would run your full array of tests on those path
expose any errors related to the site’s functionality.

Testing to ensure all dynamic pages contain certain invariable
elements

There is a second facet to performing black-box testing on a Web site. We must ensure that
cific items required by the page or application’s specifications actually appear in the appropr
pages.

For example, pretend again for a moment that you have a site that delivers specially selected
stories to users. Your specifications say that every page titled “My News” needs to contain a
dar with the current date highlighted. How would you test that this functionality was indeed im
mented? If you had a tool that performed functional testing at the GUI level, you could try to
create a test script that played that test and alerted you to any change in that graphical elem
However, if your site was working correctly, the calendar would change every day, and an "e
would be reported for any calendar that did not match the one in your control case. Thus, yo
would get false errors ("false positives") every day except for the day that you created the te

When you are working with a frequently changing application (as most Web developers are)
ating rules that enforce specifications is considerably more efficient than checking specificat
by graphically indicating and testing whether certain pages contain certain elements. To this
we have designed our own language that we can use to describe content, design, or presen
features that we want to appear in specified pages. During white-box, black-box, and regres
testing, we enforce the “rules” we create with this language. Because this language lets us de
these features in an invariant way, we avoid false positives (as are reported in the above exa
and only worry about true errors. For example, we can enforce the calendar functionality
described above by writing a rule that specifies that a certain type of page contain a certain ty
calendar with dates that fall within a certain valid range.

Regression Testing

Regression testing tests whether changes have introduced errors into an application. To retu
last time to the building inspection analogy, regression testing might involve performing all p
ous white-box tests (pounding walls, slamming doors, kicking railings on the stairway) and b
box tests (making sure shutters are still attached in the right locations according to blueprint
4

and

cases
ox

e pro-
g, but
for

and

xpos-
s (in

tput
g at

nd fix

build-
cture
pro-

each
cor-
our

try to

ool to
cod-

t mem-
er
ifications) to determine if a natural disaster affected the building’s integrity. In terms of a Web
application, regression testing would test whether your site continues to pass the white-box
black-box tests that it passed previously.

Performing regression testing should be simple if you save all white-box and black-box test
each time you test. When you make new modifications, you can execute all previous white-b
and black-box test cases, which should alert you to any new errors.

Specialized Unit Testing

There are additional unit testing techniques that are unique to dynamic Web sites, such as th
cess of testing one dynamic page at time. This process is modelled after traditional unit testin
is adapted to accommodate the complexities unique to dynamic Web sites. The goal here is
dynamic Web site developers test their programs or scripts at two levels--the program level
the output level--as early as possible. The precise meaning of “testing at the program level”
depends upon the language in which the program was written. For example, it could mean e
ing all exceptions (Java), exposing core dumps (C/C++), exposing other programming failure
Visual Basic and other languages), or making sure that scripts do not exit. “Testing at the ou
level” entails testing that the HTML page returned by the program is actually correct. By testin
both of these levels, you can expose problems associated with all aspects of the program, a
these problems at the stage when it is easiest and fastest to do so.

The first step in establishing an efficient testing process is establishing the infrastructure for
ing, publishing, and testing the program or script. In most cases, you can set up this infrastru
using a makefile that allows you to automate many of the housekeeping functions related to
gram creation and publication. These housekeeping functions might include:

• Compiling programs

• Transferring files to the correct directory of your Web server

• Modifying databases

• Initializing objects

This publishing infrastructure can and should be used to automatically deploy your programs
time that they are modified. You can make this deployment process even more efficient by in
porating special tool checks into it. If you have testing tools you use to monitor the quality of y
pages, you can automatically run appropriate files through specific tests each time that you
modify your Web site. If these tools detect any problems, your modifications will not be pub-
lished.

For example, if you have Java programs on your site, you might want to use a Java testing t
check automatically during publishing, so that you can ensure that your Java programs follow
ing standards and pass unit testing. If you are developing in C/C++ and are concerned abou
ory corruption (which is a particularly critical issue when applications work with CORBA or oth
object brokers), you would want to use a runtime error detection tool.
5

turns.
ipt
ernal
o set
can
ay
r you
hether

TML
tains

ortu-
ent

y
stan-
vel-
rs.

es as
cod-
have
ted

ll find
rs.
con-
cur-

t harm-
e the
rtant
will
effect.

ite.
es,
exam-
e

only
The second level of testing is performed by inspecting the page that the program or script re
To do this, you need to trigger specific instances of this page to see what the program or scr
really did. Dynamic pages normally cannot be triggered on their own, so you need to have int
state variables set. For example, to test a shopping cart page on your site, you would need t
the program’s internal variables so that the shopping cart page contained several items. You
either set variables by hand or by clicking through the prerequisite pages. These solutions m
seem time-consuming and tedious at first, but they are essential to thorough site testing. Afte
have created and tested the return page, you can manually examine the page to determine w
the program or script actually does what it is supposed to do. You can also test this page for H
errors, link errors, CSS errors, and JavaScript errors, and you can ensure that the page con
certain invariant elements by enforcing any specification rules you have created.

Coding Standards Enforcement

Coding standards are language-specific “rules” that, if followed, significantly reduce the opp
nity for making errors. In order to maintain quality Web applications, managers should implem
and enforce coding standards in every programming language, for every developer, on ever
project. If they do so, they can prevent errors from ever entering the code. Enforcing coding
dards will result in higher quality code—in less time—than would be possible by allowing de
opers to make errors and having them perform extensive debugging to find and fix their erro

You can apply HTML, JavaScript, and CSS coding standards to both static and dynamic pag
you perform white-box, black-box, regression, and Web-box testing. This helps you uncover
ing problems in your static pages, and—more importantly—helps you target what programs
the potential to generate a virtually unlimited number of dynamic pages with poorly construc
HTML, JavaScript, and CSS code.

By tailoring coding standards to your team or project’s exact needs, you can ensure that you’
the precise problems that you are trying to target and will not have to deal with irrelevant erro
By building a custom coding standard each time that you find a coding error, you can rapidly
struct a set of coding standards that will prevent your most common coding mistakes from re
ring.

HTML coding standards address a wide range of issues. Some standards address simple ye
ful style errors such as providing empty tags in a document. For example, perhaps you wrot
tags and but did not put any text between them. If you intended to display an impo
piece of information in boldface but neglected to provide the text, the contents of your page
be incomplete. Coding standards can also alert you when you have written a tag that has no

Of course, coding standards also prevent many errors that have a more serious effect on a s
Browser incompatibility is a thorn in the side of many a Web developer. Certain tags, attribut
and attribute values display properly in one browser only to be unrecognized in another. For
ple, developers using the ALIGN attribute within the tag should be aware that only th
valuestop , middle , bottom , left , andright will display properly in both Netscape Navi-
gator and Internet Explorer. To maintain the integrity of each page’s display, it is wisest to use
6

a
s

who

orth
d.

These
devel-
imes
l
tech-
lity
these universally-accepted attributes. Non-standard attributes such asabsmiddle , baseline ,
andabsbottom are recognized only by Netscape.

HTML coding errors can also harm your site’s accessibility. Consider theaccesskey attribute
within a form. You use this attribute to create a shortcut key, which will allow users to jump to
particular element in a form with a few keystrokes. If you fail to specify a correct value for thi
attribute, you will hinder your users’ ability to navigate through your document. Theaccesskey
attribute is not yet widely used, but it will become increasingly important for Web developers
want to offer the ultimate level of convenience to their visitors.

Of particular interest to dynamic Web site developers is the coding standard that for each
<SCRIPT> tag, a TYPE or LANGUAGE attribute must be set. If you are using JavaScript or
Visual Basic in your HTML pages, you must provide this information in the TYPE or LAN-
GUAGE attribute to ensure that the server will handle your embedded scripts properly. It is w
noting that LANGUAGE will be deprecated in HTML 4.0. TYPE will become the new standar

Conclusion

The advent of dynamic Web sites has brought traditional developers into Web development.
developers are accustomed to applying certain types of testing techniques throughout their
opment process, and would like to do the same with their Web development, but they somet
lack the knowledge to translate the techniques to the Web. Now is the time to take traditiona
development testing techniques and apply them to dynamic Web sites. By integrating these
niques into your Web development cycle, you will be able to create the highest possible qua
Web applications while slashing development time, effort, and cost.
7

QWE2000 Session 12I

Mr. Steven D. Porter [USA]
(Practical Consulting Group)

"From Web Site To Web App: Ensuring Quality In A
Complex Environment"

Key Points

Differences between websites and web applications●

Things to consider for a Quality Strategy●

Some metrics as a guideline for estimating time needed for testing●

Presentation Abstract

The continued success of web development teams will depend heavily on the ability
to make the transition from deliverying web sites to delivering reliable, stable web
applications.

We must develop a cost-effective strategy for quality assurance and testing through
this transition and beyond. The foundation of this strategy must rest on a thorough
understanding of the nature and dynamics of applications within a web environment.
The key to success is separating the volatile aspects of the application and the web
from the non-volatile ones, and focusing on the quality assurance efforts accordingly.

About the Speaker

Steven Porter has been a certified instructor for Rational Team Test since 1996. He
has written a one-day Quality Assurance class that he teaches as part of the Object
Oriented Project Management Certification Series developed by Advanced
Programming Institute of El Dorado Hills, CA. as well as providing content for the
Process Management course of the same series.

In 1998, he provided QA Management for a yearlong Y2K object-oriented project
involving over 40 reengineered applications for CalPERS (California Public
Employees Retirement System). Since leaving Advanced Programming Institute, he
has consulted as lead tester for iSeer of Seattle, WA - a web development company,
and is currently serving as QA Manager for Practical Consulting Group in Rancho
Cordova, CA.

QWE2000 -- Conference Presentation Summary

http://www.soft.com/QualWeek/QWE2K/Papers/12I.html [9/28/2000 11:14:59 AM]

From Web Site to Web App: Ensuring
Quality in an Increasingly Complex
Environment 1

Copyright © 2000 by Steven D. Porter
1

From Web Site to Web App:From Web Site to Web App:
Ensuring Quality in aEnsuring Quality in a
Complex EnvironmentComplex Environment

sporter@2xtreme.net

Copyright © 2000 by Steven D. Porter
2

The Medium is The MessageThe Medium is The Message
 -Marshall McCluhan-Marshall McCluhan

The Web Creates Great Potential
– Increased Profits from e-Commerce
– Lower Barriers of Entry
– Easier Information Distribution and Access

The Web is Developing at Warp Speed
The Web is Still Immature, But is Being
Asked to Perform in a Mature Manner

From Web Site to Web App: Ensuring
Quality in an Increasingly Complex
Environment 2

Copyright © 2000 by Steven D. Porter
3

AgendaAgenda

 “Web Site” vs. “Web Application”
The Web Paradox & Its Effect On Quality
Forces that Affect Quality
Quality Strategy Overview
Examples
Wrap Up

Copyright © 2000 by Steven D. Porter
4

Web SiteWeb Site
Static Pages Built with HTML
Organized Documents and Files Accessed
Through Hyperlinks
HTTP Protocol
Site Accessed Through Browsers
Capable of Providing Secured Access
Examples
– www.iseer.com
– www.a-p-i.com Volatility

Complexity
Risk

From Web Site to Web App: Ensuring
Quality in an Increasingly Complex
Environment 3

Copyright © 2000 by Steven D. Porter
5

Web ApplicationWeb Application
Contains the Elements of a Web Site and Extends
the Capabilities to:

Allow User Input
Perform Standard Database Transactions
Perform Business Logic
Provide Client and Server Side Validation of Data
Perform Queries and Display Dynamically Generated
Reports

Examples
On-line Reservation Systems

– www. AlaskaAir.com
On-line Sales

– www.Amazon.com

Volatility
Complexity
Risk

Copyright © 2000 by Steven D. Porter
6

The Web ParadoxThe Web Paradox
Web Browsers allow for Platform Independence

Thin Client / Fat Server
Competing Web Browsers do not:

Uniformly Display Content
Uniformly Perform Logic
Uniformly Accept User Input

Examples
Buttons Do Not React the Same in Netscape and Internet
Explorer.
Some Browser Versions Do Not Support JavaScript
File Downloading is Handled Differently from Browser to
Browser.

User Plug-Ins Effect Capabilities

From Web Site to Web App: Ensuring
Quality in an Increasingly Complex
Environment 4

Copyright © 2000 by Steven D. Porter
7

Effect on the Quality StrategyEffect on the Quality Strategy

The Strategy for Quality is becoming more
Complex due to the Rising VCR Forces.

The Web is a Cauldron of Rapid Change
The Transition from Building Web Sites to Web
Applications Increases Complexity and Risk
Escalating User Expectations Increases
Complexity
Security and Privacy Issues Increase Risk
Market Demands Compress Development
Schedules

Copyright © 2000 by Steven D. Porter
8

Quality StrategyQuality Strategy
Organize the Quality Effort into Categories
Establish the Standards of Quality for each
Category
Manage the VCR Forces that Influence Quality
– Volatility
– Complexity
– Risk

Negotiate Cost and Time
Implement the Strategy
Manage and Leverage Resources to Accomplish
our Purposes

From Web Site to Web App: Ensuring
Quality in an Increasingly Complex
Environment 5

Copyright © 2000 by Steven D. Porter
9

Strategic ElementsStrategic Elements
Quality Category

Quality Criteria

Quality Forces

Verification Method

Implementation

Review

What are the basic categories that relate to quality?

Copyright © 2000 by Steven D. Porter
10

Quality CategoriesQuality Categories

Theme
Content
Presentation
Navigation

Data Exchange
Performance
Technology
Security

Quality Category

Quality Criteria

Quality Forces

Verification Method

Implementation

Examples

From Web Site to Web App: Ensuring
Quality in an Increasingly Complex
Environment 6

Copyright © 2000 by Steven D. Porter
11

Create StandardsCreate Standards

Product
– Based on Quality to the User
– Based on Quality to the Business
– Based on Technical Constraints

Quality Category

Quality Criteria

Quality Forces

Verification Method

Implementation

Copyright © 2000 by Steven D. Porter
12

Quality to UserQuality to User
Responsiveness
Accuracy
Completeness
Ease of Use

Relevance
Aesthetics
Security
Privacy
Reliability

From Web Site to Web App: Ensuring
Quality in an Increasingly Complex
Environment 7

Copyright © 2000 by Steven D. Porter
13

Quality to BusinessQuality to Business

Customer Impact
Sales
Business Credibility

Cost
Time to Delivery
Reliability / Maintenance

Copyright © 2000 by Steven D. Porter
14

Create StandardsCreate Standards

Development Process
– Input Artifacts
– Activities and Tasks
– Output Artifacts
– Change Management
– Roles and their Relationship to other Roles

Manage to the Standards

Quality Category

Quality Criteria

Quality Forces

Verification Method

Implementation

From Web Site to Web App: Ensuring
Quality in an Increasingly Complex
Environment 8

Copyright © 2000 by Steven D. Porter
15

Manage VolatilityManage Volatility

Non-Volatile
– Business Analysis
– Application’s

Architecture
– Theme

Volatile
– Content
– Technology
– Personnel

Quality Category

Quality Criteria

Quality Forces

Verification Method

ImplementationSeparate The Elements

Copyright © 2000 by Steven D. Porter
16

Manage ComplexityManage Complexity

Competing Internal Business Interests
Development Environment
User Environment
Technology
Hardware Architecture
Software Architecture
Interactions between Quality Categories

Quality Category

Quality Criteria

Quality Forces

Verification Method

Implementation

From Web Site to Web App: Ensuring
Quality in an Increasingly Complex
Environment 9

Copyright © 2000 by Steven D. Porter
17

Reduce RiskReduce Risk

Affects
– All Quality Categories
– All Development Related Processes
– Estimates and Schedules

Identify Analyze Mitigate

Quality Category

Quality Criteria

Quality Forces

Verification Method

Implementation

Copyright © 2000 by Steven D. Porter
18

Negotiate Cost & TimeNegotiate Cost & Time

Increase as Volatility Increases
Increase as Complexity Increases
Increase as Risk Increases
Factor in the Impact of Compressed
Schedules

Quality Category

Quality Criteria

Quality Forces

Verification Method

Implementation

From Web Site to Web App: Ensuring
Quality in an Increasingly Complex
Environment 10

Copyright © 2000 by Steven D. Porter
19

Strong BusinessStrong Business
AnalysisAnalysis

Promotes Understanding of the Business
Objective

Used to Establish Standards, Success Criteria, and
Verification Methods

Reduces Volatility
Allows for Many Solutions
Transcends Technological Changes
Maintains Consistency Over Time

Decreases Complexity
Communicates the Same Information to Different
Development Teams or Different Members of the Same
Team

Quality Category

Quality Criteria

Quality Forces

Verification Method

Implementation

Copyright © 2000 by Steven D. Porter
20

DetermineDetermine
Verification MethodVerification Method

Manual or Visual
Review
Spell Checkers
Link Checkers
Site Monitors

Manual Testing
Automated
Regression Testing
Performance Testing
Beta Testing

Quality Category

Quality Criteria

Quality Forces

Verification Method

Implementation

From Web Site to Web App: Ensuring
Quality in an Increasingly Complex
Environment 11

Copyright © 2000 by Steven D. Porter
21

Use the WebUse the Web

Web-Enabled Defect Trackers
Web-Accessible Project Notebook
 Link Checkers
 Web-Oriented Automated Regression
Tools
 Web-Oriented Performance Tools

Quality Category

Quality Criteria

Quality Forces

Verification Method

Implementation

Copyright © 2000 by Steven D. Porter
22

Maximize the UseMaximize the Use
 of Resources of Resources

Create and Maintain an Affordable Testing
Environment
Develop the Core Application in Phases that
Allow Testing to be Performed in Tandem with
Development
Divide the Testing Effort between In-House
Resources and Independent Test Labs
Use Trusted Beta Sites to Duplicate Test
Coverage and provide Unusual or Expensive
Testing Configurations

Quality Category

Quality Criteria

Quality Forces

Verification Method

Implementation

From Web Site to Web App: Ensuring
Quality in an Increasingly Complex
Environment 12

Copyright © 2000 by Steven D. Porter
23

The Strategy in PracticeThe Strategy in Practice
Theme
Content
Presentation
Navigation

Data Exchange
Performance
Technology
Security

Copyright © 2000 by Steven D. Porter
24

ThemeTheme
Standards Corporate Image

Site Objective

Volatility Low Volatility

Complexity Depends on objective (Inform vs
Exchange)

Risk Consistency with Overall Corporate
& business objectives.

Verifications Corporate Image Guidelines
Standards etc.
Traceability to site objectives

Implementation In-House Manual Review

From Web Site to Web App: Ensuring
Quality in an Increasingly Complex
Environment 13

Copyright © 2000 by Steven D. Porter
25

ContentContent
Standards Writing Style

 Language Usage
 Legal Constraints
Accuracy, Completeness, Relevance

Volatility Potentially volatile

Complexity Variable - Depends on audience and message.

Risk Moderate – Depends on rate of change

Verifications Traceability to Objectives
Spelling
Syntax
Grammar
Logical organization etc.

Implementation Manual Reviews
Spelling & Grammar Checkers
Professional Editing

Copyright © 2000 by Steven D. Porter
26

PresentationPresentation
Standards Graphic & Visual Standards, Corporate Image Guidelines,

Fonts, Logos, Trademarks, Target Video Display Standards

Volatility Moderate – Depends on supported browsers, platforms &
versions.

Complexity Moderate to High – Depend on
 Html usage (frames etc)
 Target browsers
 Dynamic page presentation
 The use of plug-ins

Risk Moderate – Affects Performance, Consistency, Reliability
etc.

Verifications Verify that all features of the site /Application work in the
supported browsers. (Compatibility Testing)

Implementation Consider a strategy that supports in-house compatibility
testing on current versions of major browsers, and out-
source compatibility testing of all other browsers

From Web Site to Web App: Ensuring
Quality in an Increasingly Complex
Environment 14

Copyright © 2000 by Steven D. Porter
27

NavigationNavigation
Standards Site architecture

Navigation standards
User Interface guidelines

Volatility Depends on site objectives and the outside links

Complexity Low to High
 Sequential
 Hierarchical
 Grid
 Web-Linked

Risk Low to Moderate – Outside links, unstable site
architecture

Verifications Manual review of architecture
Verify functioning of all links

Implementation Use link checkers to:
 Verify links
 Identify orphans
 Slow downloads

Copyright © 2000 by Steven D. Porter
28

Data ExchangeData Exchange
Standards Accuracy & Completeness, N-Tier Architecture,

Coding & Validation

Volatility Low to Moderate for the exchange mechanism.

Complexity Moderate to High - Depending on N-Tier &
Server Environment

Risk High – due to complexity and web

Verifications Verify that communication objects pass data
correctly between client and the servers, as well
as between servers
Verify that Web Application handles Add,
Modify, Delete and Query capabilities correctly

Implementation Functional Regression testing
 Manual techniques
 Automated techniques

From Web Site to Web App: Ensuring
Quality in an Increasingly Complex
Environment 15

Copyright © 2000 by Steven D. Porter
29

PerformancePerformance
Standards Established project requirements

Industry standards
User expectations

Volatility Low – If changes comply with the standards for performance.
Performance stability is affected by the rate of change of the
hardware, software, site content and structure

Complexity Moderate to high. Depends on the Architecture

Risk High – Concurrent access to the site and database is higher
than predicted.
Hardware is insufficient to handle load.
Application is not designed for optimum performance

Verifications Volume, Load and Stress Testing across the Web.

Implementation Use In-House owned performance tools that verify
performance for 200 virtual users submitting distinct requests.
Outsource performance tests for higher numbers of users

Copyright © 2000 by Steven D. Porter
30

TechnologyTechnology
Standards Minimum requirements for hardware and software

configurations.
Supported environments

Volatility Moderate to High – We can manage the rate of change of the
configurations we control. We have no control over the rate of
change of technology, nor the use of it by our customers.

Complexity High – Client/Server Hardware coupled with firewall
implementations create a complex application environment.

Risk High – The broad spectrum and rapid change of technical
solutions causes the system environment to be unpredictable
and uncontrolled

Verifications Testing configurations.
Review changes to server-side and evolving client
configurations

Implementation In-House compatibility testing for primary supported
environments.
Out-source compatibility testing of marginal environments.
Perform beta testing at beta sites with different firewalls.

From Web Site to Web App: Ensuring
Quality in an Increasingly Complex
Environment 16

Copyright © 2000 by Steven D. Porter
31

SecuritySecurity
Standards Corporate Security Policies

Fiduciary Responsibilities
Purpose of Site

Volatility High – Changes caused by new methods to
bypass current technology

Complexity High – Various encryption schemes
Various levels of security access to users and
groups of users

Risk High –Breaches of security may be
catastrophic to the business and the users

Verifications Automated and manual monitoring

Implementation 24/7 monitoring
Immediate notification for security breaches
Mitigation Plan

Copyright © 2000 by Steven D. Porter
32

SummarySummary

Web Sites are increasingly becoming
complex Web Applications
Establish a Clear Business Direction and
Purpose
Manage the Quality Forces
Divide and Conquer

Quality Category

Quality Criteria

Quality Forces

Verification Method

Implementation

From Web Site to Web App: Ensuring
Quality in an Increasingly Complex
Environment 17

Copyright © 2000 by Steven D. Porter
33

Contact InformationContact Information

Steven D. Porter
 3034 Estepa Dr.
 Cameron Park, CA 95682
 Sporter@iventex.com

Thank you to David Wilkerson for the hours spent helping me organize,
clarify and edit this presentation.

 Dwilkers@calweb.com

Copyright © 2000 by Steven D. Porter - 1 -

From Website to Web App: Ensuring Quality in a
Complex Environment

Introduction
Marshall McCluhan, a professor of communication from the University of Toronto, in
trying to explain the effect of the mass media on our lives, coined the phrase, “The
Medium is the Message”. At the time his ideas were popular (1960s and 1970s), he
theorized that television, radio and the print media help define the way we schedule and
alter our lives as much as the information broadcasted. For example, people tend to make
phone calls during tv commercial breaks, thus causing a spike in the amount of traffic
over the phone system. From a social aspect, each medium affects the way we
communicate with our family, friends, and associates on a daily basis. For example, I find
myself tuning into the conversation on the radio as I’m traveling with my family rather
than talking with the family. This is a function of the medium, and how I use it, rather
than the actual information presented by the medium. Furthermore, with limited delay,
we can actually experience much of the day-to-day realities of life from all parts of the
globe at any time of the day.

The web is an extremely young volatile medium when compared to television, radio and
print, but has already shown its impact on our lives. It has changed the way we
communicate with our friends, perform business, and use our disposable time.
Governments are regulating it, considering tax and political strategies around it, and
determining the best methods of defense from it and through it. For good or for bad, the
internet is literally invading every aspect in our lives. The words of Marshall McCluhan,
“The Medium is the Message”, have never been more relevant.

The business community has recognized the potential value of the web for increasing
profits. The barriers of entry are still relatively low. Anyone with an idea, and the desire
to promote it, can publish it on the web in a matter of minutes. From the consumer side,
we can access information on virtually any subject and purchase anything from books to
cars to real estate. New ways to use the web, to support the infrastructure, and to harness
its power are developing at an unprecedented rate. In our headlong rush to maximize its
potential, we are asking a relatively new, immature medium, to support communication
and commerce in a very mature way. We expect the same level of excellence from the
web as we have come to appreciate in the older technologies of television, radio and
print.

The risk of depending on a rapidly changing, immature medium is similar to the risk we
assume when we expect a child to act like an adult. Sometimes the results are spectacular,
other times they are downright dismal. Some web oriented companies, initiatives, or
forms of entertainment, are highly successful, while others are posting record losses.
Some great websites go unnoticed, while others generate incredible excitement. A new
Internet startup is flush with cash in one year, and the next year it is fending off
bankruptcy. But we take the risk anyway knowing the odds of success are against us. The
web is enticing, the rewards are high for those who succeed, and the initial effort and cost
to startup on the web seems low in comparison to other more conservative, proven

Copyright © 2000 by Steven D. Porter - 2 -

choices. We get to experience the entrepreneurial rush of exploring uncharted territory.
“To boldly go where no man has gone before”.

We are not going to stop developing good ideas and businesses that depend on the web
simply because it is not quite ready. The way to lower the risk of failure is to apply the
mature concepts we have developed over centuries of communication and commerce to
the new medium of the Internet.

Copyright © 2000 by Steven D. Porter - 3 -

Websites and Web Applications – The Same Thing Only
Different

Conceptual View

There are two main methods of interaction defined in any verbal communication.

1. Monologue

2. Dialogue

In the first category, a person merely presents information, and receives feedback from
the audience through nods, smiles or even thrown tomatoes. Political speeches, lectures
and sermons fall into this category. In the second category of communication, a person
initiates a conversation, expecting interaction with another person or group. Direct Sales
and Roundtable discussions fall into this category.

The targeted use of every medium incorporates these two mechanisms. Television and
radio tend to be monologues, although the use of rating services and rise of talk shows
generates a level of feedback. The print medium tends to be the one-way presentation of
ideas with purchases being the primary feedback mechanism. The exchange of letters is
an example of written dialog. The electronic forms of print combined with letters have
created the dialog we experience through email, chat rooms and the like. The
combination of communication type and the degree of feedback involved constitutes the
essential foundation of any medium of communication.

In terms of eCommerce, the two forms of communication are represented by:

1. Websites

2. Web Applications

In many respects, a web application is merely a website with added capabilities. Some
development shops view them as one in the same, creating opportunities for quality gaps.
For the purposes of clarity, we will distinguish between the two forms of communication
by their purpose and function. Websites are for the purpose of presenting information,
whereas Web Applications present information and promote dialogue or interaction
between the customer and the business.

In a website, users open the home page, search for information, view graphics, hear audio
files, and generally peruse the site for what interests them. They may be encouraged to
call for further information or send an email. An example of this type of site is
www.allhealth.com, a site that provides medical information. The Internet is deluged
with these types of sites. Personal home pages are another example of websites.

Web applications, on the other hand, are the natural result of the effort to promote
dialogue across the Internet. The primary purpose of this dialogue for business is to sell a
product or service. A customer is presented with information and encouraged to order
online. The customer chooses an item and selects a method of payment. Pertinent data for
each transaction is passed back and forth between the customer and the business until the
transaction is complete. An example of a web application is www.Amazon.com, an

Copyright © 2000 by Steven D. Porter - 4 -

online business that provides a catalogue of information about books, cds, etc., and a web
interface for the purchase of those items.

As we move from the monologue approach of websites to the dialogue approach of web
applications we significantly increase the amount of complexity to the relationship
between the participants. Where once we were able to limit our effo rts to the publishing
of a sophisticated online organization of linked ideas and information, now we expect and
promote direct interaction and involvement from our current and potential customers. We
collect information about our customers and their orders, storing that information so that
we may build a lasting relationship in which the only interface between the business and
the customer may be the web application itself. If the web application is well designed for
this purpose, then the relationship is a prosperous one.

Technical View

Websites and web applications are different from a technical view as well as a conceptual
one. Websites are collections of static pages built with html and associated through
hyperlinks. The site is accessed through web browsers using an http protocol. Many sites
provide secured access.

Web applications contain the same basic elements of web sites, however they are also
very similar to client/server applications. Web applications allow for user input and
standard database transactions (read/write). Business logic is performed as well as client -
side validation of data. Queries can be initiated, as well as dynamically generated reports
displayed. The security for these sites tends to be implemented in a more complex and
sophisticated manner than for websites.

The web is a means to achieve platform independence. We are not required to have a
specific type of operating system to access the web and it’s incredible amount of
information. We only need a web browser on the client and a portal to the web to access
the data on a site server.

As the sophistication of the applications increase, the constraints of the current web
technology have more impact. We are hampered by the lack of standardization within the
browsers themselves rather than the platforms. Competing web browsers do not
uniformly display content. They do not perform logic the same way, and they do not
accept user input in quite the same manner. For example, some browsers do not support
Java scripts. Objects such as buttons and grid controls react in different ways. File
downloading is handled through alternative strategies. This lack of standardization makes
it difficult for us to confidently predict the appearance of our website or application to
our customers, and whether it will perform correctly. Furthermore, we sometimes require
plug-ins such as Shockwave or QuickTime to be loaded on the client machine to achieve
maximum impact. This dependence on 3rd party software increases the risk that our
customers, with unknown technical knowledge and hardware configurations, may be
incapable of using our site effectively. In this case our web site or application will be of
limited help to our business and customers.

Copyright © 2000 by Steven D. Porter - 5 -

The Quality Strategy
Our challenge as Quality Assurance and Quality Control professionals is to help create
successful websites and web applications that fulfill their mission in spite of the
Volatility of the web, the Complexity of the implementations, and the associated Risks
of doing business on the web. Any strategy we use must take into account these VCR
forces (volatility, complexity and risk) and minimize their impact on our effort.
Recognize that the web is volatile, and that the transition from websites to web
applications increases the complexity. Projects must deal with not only complex
technology but also security and privacy in a way that will minimize the overall risk.
Finally, be aware that market demands compress development schedules increasing the
likelihood of error.

The strategy for managing a quality control effort in a web environment involves
applying best practices to the web development effort.

1. Organize the quality effort into categories

2. Establish the standards of quality for each category

3. Determine the verification methods.

4. Establish a review process

5. Manage the VCR forces (volatility, complexity and risk)

6. Negotiate cost and time

7. Implement the strategy

8. Manage and leverage all resources to accomplish the task

Divide and Conquer

The first step toward outlining a specific strategy for quality is to divide the effort into
manageable pieces much like dividing a pie into edible portions. The categories chosen
depend upon the purpose or mission of the web site. The type, priority, criticality and
importance of each category will influence the amount of effort required to achieve high
quality. The VCR forces will influence our ability to achieve a desired level of assurance.
Cost and time will influence the amount of effort we can afford and how that effort will
be administered within each category. Some examples of verification categories are:

Theme Data Exchange

Content Performance

Presentation Technology

Navigation Security

Copyright © 2000 by Steven D. Porter - 6 -

Theme - The core message and objectives of the site in the context of the business.

Content – The visual, auditory and written information that realizes the site theme.

Presentation – The look and feel of the content and the site. Includes such things as
visual appeal, content flow, and internationalization.

Navigation – The means by which a user traverses the site.

Data Exchange – The means by which discrete pieces of information is passed to or
collected from users, validated and retained by the site.

Performance – The speed at which a site can be navigated under varying conditions.

Technology – The underlying hardware and software that is necessary to meet the site’s
objectives in delivering the content, presentation and exchange of data.

Security – The methods used to assure integrity and reliability of data, control access,
maintain confidentiality of information and assure the continued reliable operation of the
site.

Create Standards and Evaluation Criteria

The second step is to create quality standards for each category. The standards reflect the
need to satisfy user and business expectations, and are tempered by technical constraints.
Quality to the user may include requirements for:

Responsiveness Relevance

Accuracy Aesthetics

Completeness Security

Ease of Use Privacy

Reliability

Any standards must incorporate the expectations of the business such as:

1. Customer Impact

2. Sales Generation

3. Business Credibility

4. Cost

5. Time to Delivery

6. Reliability and maintenance

For example, the standards for web application performance must encompass the discrete
sales generation desires of the business (e.g. 1000 completed financial transactions per
hour), and the polled or predicted expectations of the user community (e.g. less than 3
seconds to load static pages).

Copyright © 2000 by Steven D. Porter - 7 -

Implement a Review Schedule

Develop standards and their evaluation criteria for the development process as well as for
the application. Candidates for review are:

1. Process

2. Artifacts

3. Roles

4. Tools

5. Standards

Two examples of processes are requirements elicitation and change management. Each
activity of the processes has input and output artifacts. Individuals or groups perform
various roles. Tools are used to accomplish the tasks. We review and evaluate all of these
parts to verify they are performing as planned, as well as managed to the needs of the fast
paced web development lifecycle. Constantly evaluate whether the standards you have set
are correct and attainable.

Manage the Impact of the VCR Forces

Though there are many similarities between web applications and client/server
applications, there is at lest one main difference. This is the underlying assumption that
the websites and web applications are built to incorporate change whereas client/server
applications remain as unchanged as possible. For example, content to a website may
change daily or more often. Web server technology may change every couple of months
as load is increased. The number of users may increase dramatically. Furthermore, due to
high demand for services, developers and webmasters come and go as quickly as higher
salaries are offered from the competition. In comparison, client/server applications appear
absolutely frozen. The content changes little, the system is set up to manage a predictable
stable population, and change to the technology is discouraged due to the amount of cost
and work to update the client/ server infrastructure corporate-wide.

The built-in volatility of web applications represents a significant challenge for the
quality assurance / control professional. One way to handle this challenge is to separate
the volatile elements of the project and product from the non-volatile ones. For example,
we don’t expect the theme to change much from month to month. However we expect the
content to change often. We therefore need to setup a process of review that handles the
highly volatile content more aggressively than the more stable theme.

Some examples of non-volatile elements are:

1. Business Model

2. Application’s Architecture

3. Theme

Some examples of volatile elements are:

1. Content

Copyright © 2000 by Steven D. Porter - 8 -

2. Technology

3. Personnel

Complexity creeps into the project in a myriad of ways. Just determining the theme can
be difficult due to internal business interests with differing visions and goals, such as
marketing, with its long-range efforts, and sales, with its short-term needs. Other areas of
complexity include the:

§ Development Environment

§ User Environment

§ Technology

§ Hardware Architecture

§ Software Architecture

§ Dependencies between Quality Categories

§ Internationalization

§ Internal political agendas

Risk affects all the quality categories. It affects the development related process and the
estimates and schedules. On the flip side, the choice of the development processes as well
as the estimates themselves can alter risk. Reduce risk by identifying the sources of risk,
analyzing their impact on the project, and providing a plan to reduce the affect of a
realized risk. For example, one way to reduce the damage created by a server crash is to
provide some form of redundant server configuration.

There is never enough money or time to do the job as well as we would like. Even NASA
has its budgetary constraints. In order to get the maximum advantage, negotiate cost and
time with the business decision makers. In general increase the amount of cost and time
as:

§ Volatility increases

§ Complexity increases

§ Risk increases

Factor in the impact of compressed schedules demanded by the market. Consider
alternative ways to use increased budget to offset limited time or resource availability by
outsourcing a portion of your work to professional testing labs.

Copyright © 2000 by Steven D. Porter - 9 -

Promote Business Analysis - Its Good Business

With every good idea, there is a plan to implement it. In the software industry we are
sometimes guilty of taking a problem or idea, and designing a solution or application
without fully understanding the vision. We do this in order to “speed delivery”. Some of
the modern methodologies such as rapid application development seem to promote the
idea that we can begin coding with limited knowledge. Some groups implement RAD in
such a way that business analysis is limited, design is forgotten, or testing is not
considered.

Imagine trying to build a bridge without understanding its purpose and predicted load
conditions. The subsequent disaster would be reported in the front page of every
newspaper complete with body counts. But some of us look for ways to bypass important
steps in the software lifecycle. We increase the risk of failure with every bypass of
essential steps. Websites and web applications need the same diligence paid to the
important activities of business analysis, design and testing as other mission critical
projects.

The business model may be the most reusable work of the project. The business model
may be the least volatile of all artifacts during the life of the software. The model
transcends technological changes, allows for many solutions, and maintains consistency
over time. Strong business analysis communicates the same information to different
development teams, evolving teams, or different members of the same team, thus
reducing the negative effect of the VCR forces.

Once we have an adequate business model we can validate the site’s objectives and
theme, obtain customer buy-in, establish success criteria and choose verification
methods. Maintaining our focus on the business objective will help us build the right site.

Verification Methods – The Means to an End

There are several types of verification methods from which to choose:

Manual or Visual Review Manual Tests

Spell Checkers Automated Regression Tests

Link Checkers Performance Tests

Site Monitors Beta Tests

We may include the use of one or more than one of the methods identified to verify the
quality for each category. For example, content may require manual review, spell
checking, and link checking. Security may require manual tests, beta tests and automated
regression tests. Theme may only require a manual or visual test.

When considering the implementation of the strategy and the verification methods, use
the capabilities and tools associated with the web. The use of web-enabled defect

Copyright © 2000 by Steven D. Porter - 10 -

trackers, web accessible project notebooks, link checkers and other web oriented
automated tools will aid immensely in supporting the quality strategy.

Maximize the use of resources by:

1. Creating and maintaining an affordable testing environment

2. Developing the core application in phases that allow tests to be performed in
tandem with development of code

3. Dividing the test effort between in-house resources and independent test labs.

4. Using trusted beta sites to duplicate test coverage and provide unusual or
expensive testing configurations.

Copyright © 2000 by Steven D. Porter - 11 -

The Strategy in Practice
Suppose an investment firm wants to create an informational website. The marketing
department is interested in a website where current customers can view relevant
information about the investment firm, access a weekly newsletter (which is already sent
by mail), and navigate to pages about each investment opportunity highlighted in the
newsletter. An archive of all newsletters will be maintained for research and investment
purposes. The sales department would like potential customers (or guests) to also visit the
site. Sample newsletters from archived material will be available to the guests. Only
paying customers will have access to the current newsletter. Guests will have the ability
to pay a subscription fee online. Current customers include citizens of many countries.
Thus the site must be multi-lingual and a solution for financial transactions must support
multi-currency.

The board of directors, though they are committed to the initiative, would like to know
whether the investment in the website is increasing business, or diverting valuable
resources from other proven marketing and sales tactics. The board is concerned because
they are unfamiliar with the costs of creating and maintaining a website. If, over two
years, the website proves profitable, they will continue supporting the effo rt. We have
been given 6 months to deliver the website. At this point, cost has not been estimated,
though some money has been placed in an account to use as startup capital.

This website is actually a web application. Though the requests appear relatively simple,
a number of technical challenges await the developers. For instance, the newsletter is
changing weekly as well the links to detailed information about each investment
opportunity. Guests may view sample material, but there must be some way to
distinguish them from paying customers; i.e. some form of secured access. Guests may
pay for the service online – there is a requirement for secured transactions. A database of
archived material points to a need to manage data storage. We can only estimate the
possible number of concurrent hits to the site. Some method of correlating site statistics
to sales needs to be implemented. Last, but not least is the request for an international site
that handles multi-currency transactions.

Since the investment firm is unfamiliar with costs and the effort required to develop this
project, there is a potential of insufficient funds. Furthermore, the deployment date has
been dictated rather than estimated. This might prove injurious since we don’t know the
full scope of the project, we have not chosen a set of development tools, the hardware and
software configuration of the web application has not been designed, and the project team
has not been assembled.

The complexity of the web application, the rapid change of content, and the risks
introduced by the board of directors contribute to the factors working against success of
this project. But we move forward anyway, knowing that high-risk projects also produce
great rewards when successful.

Even though we have a vision of the site, we have not pinned down all the requirements
and business rules. Nor have we determined how the board of directors will determine
whether the project is a success. These tasks can be done while we are preparing our test
plan and environment.

Copyright © 2000 by Steven D. Porter - 12 -

As the test manager on this project, begin by validating the business objectives and
success criteria with the project manager and/or key stakeholders. Procure written
confirmation of these items. Then plan the test effort by dividing the project into essential
categories for evaluation.
Categories

Theme Data Exchange

Content Performance

Presentation Technology

Navigation Security

Set standards for evaluation in each area. To avoid meaningless tests, verify that the
methods and standards of evaluation for each category support the site and business
objectives as well as the success criteria.

Estimate the amount of volatility and complexity for each area, and identify the
associated risks. Plan the type of verifications that will be used and how they will be
implemented. The following tables show the results of this planning for the web example.
They are not intended to be complete, but rather they are intended to present a method of
organizing the high level information.

Theme – The core message and objectives of the site in the context of the business.
 Investment Newsletter

Standards Business Objective

Site Objective

Corporate Image

Volatility Low

Complexity Low

Risk Maintain corporate and business objectives

Verifications Corporate Image Guidelines, Standards etc

Implementation In-house manual review

Copyright © 2000 by Steven D. Porter - 13 -

Content – The visual, auditory and written information that realizes the site theme.
Changes Weekly

Standards Writing Style

Language Usage

Legal Constraints

Accuracy, Completeness, Relevance

Volatility High – Weekly changes to the content

Complexity Moderate – market is sophisticated
investors

Risk Low – company has proven quality in
newsletter publication

Verifications Traceability to objectives

Spelling

Syntax

Grammar

Logical organization

Implementation Manual Reviews

Spelling and grammar checkers

Professional editing

Presentation - The look and feel of the content and the site. Includes such things as visual
appeal, content flow, and internationalization.

Standards Graphic and visual standards

Corporate image guidelines

Fonts

Logos and Trademarks

Target Video Display

Internationalization

Volatility Low – More investigation is needed to
determine supported browsers, platforms
and versions of these elements

Complexity Moderate – More investigation into the
supported technologies (browsers,
platforms) and features such as:

HTML Usage (Frames etc.)

Dynamic page presentation

Use of plug-ins

Risk Moderate – Affects performance,
consistency and reliability

Copyright © 2000 by Steven D. Porter - 14 -

Verifications Verify that all features of the web
application work correctly in the supported
browsers (compatibility testing)

Implementation Consider a strategy that supports in-house
compatibility testing on current versi9ons of
major browsers, and outsource testing on all
other browsers. Create a plan that supports
testing the application on future browser
offerings as they become available.

Navigation - The means by which a user traverses the site.

Standards Site architecture

Navigation standards

User Interface guidelines

Volatility Low to Moderate – Basic links can be
stable, however, external links may change
as well as links within the changing
newsletter

Complexity Unknown at this time. The team has not
determined the type of site navigation to be
implemented:

Sequential

Hierarchical

Grid

Web-linked

Risk Low to Moderate – Outside links or an
unstable site architecture can create errors

Verifications Verify chosen site architecture meets needs
of users

Verify site meets the site architecture (map)
requirements.

Check for broken links, orphans etc.

Implementation Visual review of site architecture

Use automated link checkers to find broken
links, identify orphans and slow downloads.

Manually verify links that are missed by the
automated site checkers.

Data Exchange - The means by which discrete pieces of information is passed to or
collected from users, validated and retained by the site.

Copyright © 2000 by Steven D. Porter - 15 -

Standards Accuracy & Completeness

N-Tier Architecture

Coding & Validation

Volatility Moderate – depending on the technology
used to enable the exchange.

Complexity Moderate to high – the transactions being
processed are relatively commonplace now
–security and personal information is being
exchanged. There are no calculations other
than subscription dates. Though the
technology is evolving, there are good and
stable choices to handle these elements of
the application.

Risk High – due to the complexity and volatility
of the web itself.

Verifications Verify that communication objects pass data
correctly between client and the servers, as
well as between servers

Implementation Invoke manual and automated methods for:

Functional testing

Regression testing

Performance - The speed at which a site can be navigated under varying conditions.
Standards Established project requirements

Estimates of usage for each functional area
of the web application

Industry standards

Polled user expectations

Volatility Low – Changes to the application and
server environment must comply with the
standards for performance.

Complexity May be high since some standards have not
been determined as well as the deployment
plan

Risk High – Concurrent access to the site and
database may be higher than predicted.

Hardware may be insufficient to handle the
load

Application must be designed for optimum
performance within a complex web
environment

Verifications Verify performance against the standards
and expectations.

Copyright © 2000 by Steven D. Porter - 16 -

Verify hardware and software configuration
is designed and implemented for optimum
performance

Implementation Implement automated tools for volume,
load and stress testing across the web.

Use in-house owned performance tools to
verify performance for 200 virtual users
submitting distinct requests at the same
time. Outsource performance tests for larger
numbers of users.

Technology - The underlying hardware and software that is necessary to meet the site’s
objectives in delivering the content, presentation and exchange of data.

Standards Minimum standards for hardware and
software configurations.

Supported client configurations

Volatility Moderate to high (depends on our target
customers). We can manage the rate of
change for the configurations we control.
We have no control over the rate of change
for the industry, the web, or the use of it by
our customers.

Complexity High – Client/Server Hardware coupled
with firewall implementations and multiple
platform/browser configurations

Risk High – The broad spectrum and rapid
change of technical solutions causses the
system environment to be unpredictable and
uncontrolled

Verifications Prove the deployment design

Constantly monitor and review changes to
server-side and evolving client
configurations

Implementation In-house compatibility testing for primary
platform/browser configurations.

Perform proof of concept of the deployment
design including hardware, and off the shelf
software used in the deployment

Outsource testing for marginal
environments

Perform beta tests at corporate beta sites
that implement differing firewalls

Copyright © 2000 by Steven D. Porter - 17 -

Security - The methods used to assure integrity and reliability of data, control access,
maintain confidentiality of information and assure the continued reliable operation of the
site.

Standards Corporate security policies

Fiduciary responsibilities

Volatility High – Changes to the security
implementation are caused by the need to
prevent breaches created when hackers
bypass current technology

Complexity High – Two main areas of concern:

Security that allows only authorized users
into specific areas of the site.

Security that protects the privacy of
individuals who purchase their
subscriptions through the web application

Risk High – Breaches of security may be
catastrophic to the business and users.

 Potential of lawsuits

Verifications Prove security model prior to deployment

Automated and manual monitoring of
security

Implementation Functional testing of security

Consider hiring a firm that specializes in
web security to create and monitor this
aspect of the site

24/7 monitoring

Immediate notification to IT staff and
corporate officers

Mitigation plan

Summary
The demands of the marketplace and the evolution of technology are changing the way
we use the web. Informational websites are now becoming highly interactive web
applications. Our job as QA and QC professionals is becoming more difficult as we try to
grapple with the forces of volatility, complexity and risk that affect the development
effort and success of the application. We can use known methods of organization to help
us manage the testing effort. First establish a clear business direction and purpose for the
application. Divide the effort into areas of concern. Establish standards and success
criteria for each area. Calculate the impact of the VCR forces to the project and manage
your resources accordingly. Determine the methods of verification that will be used on
the project and create an implementation strategy. As much as possible, use automated

Copyright © 2000 by Steven D. Porter - 18 -

technology designed for the web. Consider the use of outsourcing the tests that are
complex, marginal or otherwise difficult and expensive to achieve within the internal
testing environment. Use beta sites for testing the web application on divergent corporate
network configurations. Establish a method of ongoing review that evaluates the essential
process, artifacts, roles, tools and standards for your project.

QWE2000 Session 12M

Ms. Tuija Lamsa [Finland]
(University of Oulu)

"Using Knowledge Management in the Quality
Improvement of the Development Processes"

Key Points

Utilization of Knowledge management in software business●

Individual and organizational intelligence and learning●

Quality improvement in the context of development processes●

Presentation Abstract

Today's business environments are more and more complex of their nature.
Organizations are undergoing continuous changes and needs in their markets,
information technology, interest groups and competitors, and in the management of
processes and intangible assets. These essential things force the companies in
different industries to change their ways of actions and processes, and to focus
increasingly on both quality and performance improvement and the utilization of
multidimensional intelligence and intellectual capital both at individual and
organizational levels.

Especially knowledge management (KM) has gained plenty of attention among
practitioners and academies, and this topic has been approached from different
points of view in different studies. KM can be considered as an interdisciplinary
research, the domain of how we renew, success, improves competitiveness and
harness the human talent and know-how for the use of organizations. Whether the
notion of KM is defined in terms of learning, intellectual capital, knowledge assets,
intelligence, or otherwise, managing all kind of knowledge is one of the most
significant challenges in management. Managing knowledge, and using it for
improving organization's development processes, can be seen as one of the most
valuable way to increase organization's success.

This paper focuses on using knowledge management in the quality improvement of
the processes in the organizations, which presents a specific research challenge, for
the reason that these business environments face the most intensive and highest
rate of change. The purpose of this paper is to discuss how knowledge management
can be utilized in the context of innovative and turbulent conditions, in the R&D
development processes. The paper aims to increase understanding of the
implementation of knowledge management and its importance in development
processes. The paper also pursues to develop a system of concepts for describing

QWE2000 -- Conference Presentation Summary

http://www.soft.com/QualWeek/QWE2K/Papers/12M.html (1 of 2) [9/28/2000 11:15:05 AM]

and analysing the management of knowledge in the above-mentioned context, in the
software business.

About the Speaker

The author's field of research is in Knowledge Management, Individual and
Organizational Know-how/Intelligence and Quality focused on software and R&D
business environments. Tuija Lamsa is a M.Sc., economist, who has completed her
Masters Degree in Economics and Business Administration, as her subjects being
Marketing, Business Law, Accounting and Industrial Management. Her current post
is in University of Oulu, at Faculty of Economics and Industrial Management,
Department of Management and Entrepreneurship where she works as a
Researcher and Assistant of Quality Management. She has lectured in
Organizations and Management, and Quality, and currently she is working in
co-operation in projects dealing with Knowledge management and Process
improvement.

QWE2000 -- Conference Presentation Summary

http://www.soft.com/QualWeek/QWE2K/Papers/12M.html (2 of 2) [9/28/2000 11:15:05 AM]

1

Using Knowledge Management in
Improving the Quality of the

Development Processes

Tuija Lämsä
The University of Oulu

Finland

4th International Software Quality Week
Europe (QWE2000)

Brussels, Belgium
20-24 November 2000

The Focus of Research

The utilization of Knowledge Management in
improving the quality
The role of management in the context of
innovative and turbulent conditions, in the
R&D environment
Managing organization’s knowledge assets

2

Definitions of Knowledge
Management

The task of developing and exploiting an
organization’s tangible and intangible
knowledge resources. Knowledge
management covers organisational and
technological issues.

Applications,
markets and
technologies

Organizing information from disparate
sources into a context that reflects the
business and the decisions and processes of
the business.

Novins

Knowledge Management allows you to
determine the explicit knowledge that is
somewhere in your organization that you
can find and leverage rather than having to
reinvent the wheel.

Leonard-Barton

Challenges in Quality
Improvement & New

Revolution of Knowledge
”Writing software is an art, not a science, and must be managed as a
craft, if it can be managed at all”

By Blackburn, Scudder and Van Wassenhove, 1995

The nature of business environment
The nature of software
- amount, complexity, criticality
Pressures of developing systems (>> demands for
higher quality and performance)
Globalization
- global market, emerging markets in developing
countries, importance of Internet and R&D
Consolidation

3

”Management has two sets of problems;
those of today and those of tomorrow”

By Dr. Deming

New paradigm of management:
1) The change in factors of production
2) Focus on knowledge assets and individual

competences
3) The dilemma of Knowledge Management

Changing Role of
the Management

The Nature and Value
of Knowledge

Data

Information

Knowledge

Know-how

4

The Nature and Value of
Knowledge - Intelligence as

Generator for Selective Action

Tuomi, 1999

The Nature and Value of
Knowledge –

Tacit vs. Explicit Knowledge
Tacit knowledge:

- Context-specific, personal, hard to formalize and
communicate, inherent in our very thinking,
embedded in work >> unconscious value

Explicit knowledge:
- Written knowledge, easier to identify, re-usable in

consistent and repeatable manner, can be stored as
artefact (physical or virtual) in systems >> can be
identified, measured, distributed and audited

5

The Nature and Value of
Knowledge

”In an economy where the only certainty is uncertainty, the one sure
source of lasting competitive advantage is knowledge.”

By Ikujiro Nonaka, 1991
The value and quality of knowledge
- knowledge of new technology
- knowledge of information processes
- individual and organizational

competences
- knowledge has no intrinsic value
- depends on a complex social system of

activity, creating value using environment
- difficult to estimate

Managing Knowledge

A presupposition for successful implementation of
improvement approaches is the use of appropriate
knowledge

The need for the development of high-class
competences is extensive >> strategic knowledge
assets, knowledge contents: know-how, know-why,
and know-what - are used in different strategic
contexts
KM and TQM
Process improvement techniques >> not a universal
list for development of processes

6

Managing Knowledge –
Knowledge Management Process

Knowledge Management Disk

Managing Knowledge –
Knowledge Management Process

Nonaka & Takeuchi, 1995

 1

Using Knowledge Management in Improving the Quality
of the Development Processes

Tuija Lämsä

Assistant of Quality Management
University of Oulu, Finland

Abstract

Today’s business environments are more and more complex of their nature. Organizations
are undergoing continuous changes and needs in their markets, information technology,
interest groups and competitors, and in the management of processes and intangible assets.
These essential things force the companies in different industries to change their ways of
actions and processes, and to focus increasingly on both quality and performance
improvement and the utilization of multidimensional intelligence and intellectual capital
both on individual and organizational levels.

Especially knowledge management (KM) has gained plenty of attention among
practitioners and academies, and this topic has been approached from different points of
view in different studies. KM can be considered as an interdisciplinary research, the
domain of how we renew, success, improves competitiveness and “harness” the human
talent and know-how for the use of organizations. Whether the notion of KM is defined in
terms of learning, intellectual capital, knowledge assets, intelligence, or otherwise,
managing all kind of knowledge is one of the most significant challenges in management.
Managing knowledge, and using it for improving organization’s development processes,
can be seen as one of the most valuable way to increase organization’s success.

This paper focuses on using knowledge management in the quality improvement of the
processes in the organizations, which presents a specific research challenge, for the reason
that these business environments face the most intensive and highest rate of change. The
purpose of this paper is to discuss how knowledge management can be utilized and what is
the role of management in the context of innovative and turbulent conditions, in the R&D
environment, in software business. The paper aims to increase understanding of the
implementation of knowledge management and its importance through development
processes. The paper also pursues to present the main issues to be considering in managing
knowledge assets – both individual and organizational capital.

1 Introduction and Theoretical Background

Organizations are facing continuous changes and uncertainty in their business
environments. They are realizing that if they want to succeed in today’s business, it is
important to maximize the use and utilization of the knowledge in the best possibly way.
Companies embodies enormous extent of resources, not just concrete and “explicit

 2

hardware”, but also resources, which could call, for example, knowledge assets1, intangible
or tacit resources. One of the main matters for managing knowledge resources2 is diffusion
of knowledge within organizations. These knowledge resources reside in many different
places such as: databases, knowledge bases, processes, and above all, in people’ heads.
Organizations need to know what their knowledge resources are, and how to manage these.

During the last few years, there has been a lot of hype around knowledge management
(KM). Like Peter Drucker has said: ”The effective management of knowledge is the key
management challenge of the late 20th century”, and I think that KM can be seen as a
critical tool also for the 21st -century organization. KM is increasingly gaining respect
among companies as a tool to increase profits, reduce costs, improve competitiveness, and
develop additional markets. Whether it is defined in terms of learning, intellectual capital,
knowledge assets, intelligence, know-how, insight or even wisdom, ”the conclusion is the
same: manage it better or perish” (Amidon, 1996). Knowledge management can be seen
shifting from the logistics of storing information to the unexplored potential of the human
imagination. There has been said, that KM is truly leading to innovation and the renewal of
organizations.

There occur a great number of definitions to describe knowledge management in literature.
One body of literature on KM has its origins in approaches to information technology,
information systems and related issues. I have gathered few fundamental definitions about
KM to describe its nature and meaning for development of the different processes within
organization (table 1).

Table 1. Examples of definitions of Knowledge Management.

Author Definition of Knowledge Management
Leonard-Barton, D.
(1995)

Knowledge management allows you to determine the explicit
knowledge that is somewhere in your organization that you
can find and leverage rather than having to reinvent the
wheel.

Novins Organizing information from disparate sources into a
context that reflects the business and the decisions and
processes of the business.

Applications, markets
and technologies (1998)

The task of developing and exploiting an organisation’s
tangible and intangible knowledge resources. Knowledge
management covers organisational and technological issues.

According to above-mentioned definitions, it is crucial to specify how organizations
manage the relevant knowledge, and how these knowledge assets are intertwined and
utilized in the different processes of the business. Organizations are able to make theirs
workers to operate more productive and break down the traditional organizational hierarchy

1 Knowledge assets are the knowledge regarding markets, products, technologies and organisations, that a
business owns or needs to own and which enable its business processes to generate profits (Macintosh, 2000).
2 Different levels of knowledge, regarding the possibility to codify, can be recognized in organizations
knowledge resources (Gore and Gore, 1999).

 3

on its plant floors by using knowledge management. It is also, along with a number of other
companies, harnessing KM to organize and understand the potential uses of internally
developed technologies, with an eye toward marketing them to other companies.

On the operating level, individual is more likely to use the notion of KM as an umbrella
term to refer to a host of technologies and decision-support tools. These include search
engines, data mining, and expert systems. These technologies make it easier for
corporations to seek out, sort through, organize, refine, disperse and share information.
Other vendors provide software that supports these technologies. Knowledge management
covers then organizational and technological issues.

For all the hype about these offerings, however, KM is more a way of doing business than
it is a piece of software; it’s more about business processes than systems. The technical
solutions being offered under the KM rubric simply make it possible to address certain
business issues more effectively and more comprehensively. According to several software
managers, they claim that “writing software is an art, not a science, and must be managed
as a craft, if it can be managed at all” (Blackburn, Scudder and Van Wassenhove, 1995).

There can be found pressures and challenges to improve quality in organization’s
development processes in today’s turbulent business environments, particularly, in software
industry. As contemporary business environment is becoming more and more complex,
organizations face continuous pressure to change theirs functions and procedures. In
addition to the ubiquitous nature of software, the amount of software code in most
consumer products and systems is doubling every two to three years (Dutta,
Kulandaiswamy and Van Wassenhove, 1996). Further, software developers are scrambling
to cope with the pressures of developing systems which are not only a couple of orders of
magnitude bigger and more complex than those developed a few years ago, but which also
need to meet ever-increasing demands for higher quality and superior performance. Also
the complexity and criticality of software within industry is high and continues to grow
significantly every year, as software becomes an increasingly important component in
many products (Maxwell, Van Wassenhove and Dutta, 1996).

The New Revolution of Knowledge and Information Technology

Globally, organizations appear to be remarkably similar in the way they structure the
software process. Today, especially the information technology sector in Europe is growing
up. The competition among these IT-organizations can be very rough and it is developing
fast. There can be identified two trends, which characterize the world software industry –
globalization and consolidation. The first means that location is becoming far less
important than size for both developing and selling software. Consistently, consolidation
means that mergers and acquisitions are increasing the market share of the largest
companies – it has been estimated that some 90% of the global software market is now
accounted for around ten companies, including IBM, Microsoft and Oracle.

According Gannon (1997), the information technology industry is a prime example of such
a globalized industry; the cost of development, the cost of marketing and the powerful trend
towards standardization combine to make the industry globally interdependent. Boutellier,

 4

Gassman and von Zedtwitz (1999) have pointed that there is four most important drivers for
globalization:

1. The global market;
2. Emerging markets in developing countries;
3. Emerging suppliers / work forces in developing countries;
4. Internet-based global communication driving the world to a 24-hour / 365day open

market and bringing customers to businesses they would never see otherwise.

Especially, the importance of internet for globalization is unquestionable. As the
information revolution continues, new possibilities for storing, retrieving and
communicating information are created. World-wide access to information is facilitated by
the Internet, new information technologies break down the walls both inside the company
and to the outside world.

Traditionally among the most centralized functions of the firm, R&D is adjusting to world-
wide dispersion of knowledge and technology creation (Boutellier et. al. 1999).
Particularly, knowledge acquisition and know-how are of central importance in R&D.
During the last century the amount of knowledge has tremendously increased, mostly
through new and sophisticated information technologies. R&D can be considered as the
most important element in industrial technology intensive organizations to source, store,
create, transfer and diffuse knowledge. The organization of R&D must therefore be
desingned to selectively retain information, process knowledge, and apply know-how.

First and foremost, I think that when organization decide to use knowledge management in
their development processes, it must be adapted to organization’s needs, not that image to
‘must have’ certain kind of new method to solve all problems. First of all, organizations
must consider their own goals and objects, where they want to be in markets. Hence, I’m
presenting some crucial elements and factors of knowledge management, which improve
organization’s capability to operate in best possible way through its developed processes.

2 Research methodology

Developing processes in software business have been approached from quite different
perspectives; for example, being emphasized both, constructive or more reacting
viewpoints. Development processes have been studied very often from the social
constructivist view of the technology in literature. Researchers (e.g., Barley 1986; Jones
1990; Weick 1990) working with this point of view claim that the information technology
is equivocal, i.e., that it can take on different forms and holds an infinite number of possible
applications, and thus, needs ongoing sense making to be managed. And yet, a few of them
have also been taken on a reactive approach to the information technology, as they analyze
how organizations and people in them interpret and react to new IT-applications introduced
to them. Furthermore, Vendelø (1998) has been adopted a proactive approach in his study,
as it examines how a software company produces interpretations of its software platforms.

In this paper, I have adopted the institutional perspective, which brings quite a diverging,
but still refreshing and new point of view in the discussion of developing and improving the

 5

quality of the processes in R&D environment within IT-organizations. In recent years
institutional theories and these application have been one of the growing field of interest in
business economics, and particularly in organizational study (e.g., Scott 1995; Greenwood
and Hinings 1996; Hinings, Greenwood, Brown and Cooper 1996). Earlier institutional
study has been focusing mainly on public organizations, but the dimension of institutional
research and theory is a great deal of expansive for the time being. Hence, present study is
opening a challenging perspective to study knowledge management in such organizations
who are operating in turbulent, unstable and high-risk circumstances.

Organizations are becoming more and more homogenous, for example, by their nature,
structure and technology in their business environments. It can be assumed that almost
every organizations in software business obtain the alike or of the same kind of technology.
So, if these environments are fairly the same and the organizations in these organizational
fields constitute a recognized area of institutional life: key suppliers, resource and product
consumers, and other organizations that produce similar services or products, there is
needed means and systems to make a difference in competitivity between organizations.
Like DiMaggio and Powell (1983) have stressed nearly 20 years ago,

Organizations may change their goals or develops new practices, and new organizations enter the
field. But, in the long run; organizational actors making rational decisions construct around
themselves an environment that constrains their ability to change further in later years. Early
adopters of organizational innovations are commonly driven by a desire to improve performance.

But new practices are becoming continuously. Organizational changes in formal structure,
organizational culture, and goals or processes are happen. Organizational change varies in
its responsiveness to technical conditions (DiMaggio and Powell, 1983). In this paper I’m
focusing in these development processes that improve quality, both in different processes
and in organization in its entirety. Research and development is an institutionalized
category of organizational activity, which has meaning and value in many sectors of
society, as well as a collection of actual research, and development activities (Meyer and
Rowan, 1977). It is fundamental to the argument of this paper that institutional rules may
have effects on organizational structures, managing information and knowledge assets, and
especially on different processes in the organization. The main idea is that developed or/and
improved processes must be institutionalized in order that they can be incorporated in
organization’s ways of action, strategy and operating plans. The objective is to get those
processes – consisting of all required knowledge and competences (both organizational and
individual) - to be confirmed knowledge systems or construction. And like Soin (1999) is
saying; “people may come and go, but processes stay”.

3 Changing role and position of the management

According to Dr. Deming (Walton, 1994), management has two sets of problems; those of
today and those of tomorrow – on the supposition that there is a tomorrow for the company
that hopes to stay in business. The problems of today concern the immediate needs of the
company: how to maintain quality, how to match output to sales, budget, employment,
profits, service, public relations, forecasting. He advises companies to think hard about
future, developing both a plan and methods to stay in business.

 6

Peters and Waterman (1982) have developed the profiles of “excellence” organizations.
According them, in today’s business environments organizations need to organize and
manage themselves decisively in new ways, which question old models of thinking and
behavior. Organizations have to increase the speed, the rate of change of adaptation and
reactivity, so that they learn to develop and change their ways of doing things, for example,
change their key processes when needed. There can be seen a new paradigm of
management and it’s role in business environment, which can be described in three points:

• = The change in factors of production. The meaning of traditional factors of
production is decreasing, since the utilization of other elements, like intangible
assets raise the approval among managers.

• = The increasing focus on knowledge assets and individual competences. The

importance of knowledge assets, intelligence, individual and organizational
competencies as one of the major resources are emphasized. The dilemma is, how,
for example, individuals’ know-how, performance and creativity are able to transfer
forward, to the utilization of the whole organization.

• = The dilemma of knowledge management; “it is totally new and you must drop

everything else and adopt our nostrum”. It’s crucial to understand that information
and knowledge have always been in organizations, it is nothing new, but managing
it creates multidimensional challenges to managers. Grönroos (2000) has said that
“knowledge in itself cannot be managed, instead the systems and processes being
contained in knowledge, will be able to manage”.

The position of the knowledge management cannot be seen as a separate function in
organization’s operations. Other sources, which will help management to use knowledge
management in the developing and improving theirs processes, are, for example,
Information Systems, Finance and Accounting, Engineering and R&D, and Human
Resources. With the help of Information Systems (includes information sharing),
technology infrastructure can be mapped for the use of knowledge management. Finance
and Accounting can help figure how to value knowledge and the efforts to manage it, and
Engineering with R&D can help mastering particular knowledge, with product knowledge.
Human Resources may help to motivate workers to share and use knowledge, and to
identify knowledge nodes – individuals, teams, and networks (Davenport and Prusak,
1998).

There are clear signs that companies will move in the next few years towards systematically
understanding and improving the management of the new product design and development
process while also ensuring it fits with the business activities of the organization
(McQuater, Peters, Dale, Spring, Rogerson and Rooney, 1998). By managing all the
knowledge, both on individual and organizational level, it’s time to find such tools for
management, which help to combine different kinds of resources in the organization. These
new tools have to be developed to exemplify and identify all this information more quickly
and more accurately.

 7

Implications of Motivation and Commitment

Especially human resources play essential part in the new requirements of management.
Management must take charge of various kinds of cross-functional teamwork, respond to
the demand for continuous improvement, undertake the strategy development processes,
and first of all, to achieve not just collaboration but also mutual trust both across functions
and also up and down the hierarchy. Particularly the notions of motivation and commitment
are emphasized when dealing with change resistance shifting to new ways of management.
Juran (1974) defines motivation in the following manner:

Motivation is the process of stimulating people to act in ways, which serve the needs of the
organization providing the stimulus.

It is important that the senior managers “buy” the improvement effort; a full commitment of
management is desirable but not decisive (Beer, Eisenstat and Spector, 1990). The
committed managers are able to transfer knowledge of the improvement efforts and their
results to other, maybe more sceptical managers. Management support for improvement
efforts at all levels is critical to the success of the process or product quality improvement
effort. Optimally this requires an active involvement of all the managers involved in the
selected processes, as well as of the managers who provide input into these processes and
receive output from them. (Pastinen, 1998). Management’s responsibilities include (adapted
from: Harrington, 1991):

• = Providing the resources required, including staffing and capital
• = Developing common objectives that support the proposed changes
• = Breaking barriers between organizations
• = Searching out improvement opportunities
• = Setting up department improvement teams to support the processes being evaluated
• = Changing its own thinking to get a total process perspective
• = Providing the necessary training and education to support the new processes
• = Anticipating the impact of process changes on their organization and preparing for

them
• = Establishing systems and reviews to ensure that the progress does not degrade
• = Rewarding teams and individuals who make significant contributions to the

improvement effort
• = Showing interest in the improvement effort by frequent reviews of status results
• = Finding equivalent or better jobs for people whose jobs have been eliminated as a

result of the improvement efforts

The importance of the role of management is enormous extensive when dealing quality
improvement of the development processes. Deming has said that management must lead
the way. Only management can initiate improvement in quality and productivity.
Improvement is not a one-time effort, so management is obligated to improve continually.

 8

4 The nature and value of knowledge

There is used in knowledge management mainly concepts data, information and
knowledge. According to Davenport and Prusak (1998) data is by its nature so-called
primary information, structured data record and transactions. It can be said that data is
unfinished information, which is typically stored in to the information systems. Data is
always a one-dimensional concept, and alone it is not worth nothing, but it is going to be
valuable, when it is combined other data and is analyzed together, for example, with project
leaders. To same extent, information is more about “active” data, meaning the same than a
message – message, which have a impact on receiver’s knowledge, know-how and
behavior. However, “knowledge” which is held only by people, contains instruction in
“how” things are accomplished. This is more complex, more valuable, and also more
elusive. Knowledge is arising throughout people’s experience in course of time -
experience is the result of daily work and provides a historical perspective to view new
situations and events. From the base of experience, connections between what have
happened before and what is happening now, can be created.

These notions, data, information and knowledge can be seen as a process, from data to
information, and from information to knowledge, and this way to know-how. The know-
how of organization generates both tangible and intangible capital or substance of
organization. Moving from data towards know-how, knowledge is becoming more active
and human. In know-how the knowledge is able to apply for the purpose of accomplishing
some mission or solving the problem.

Knowledge has no boundaries. Most companies are not using their intellectual resources up
to their full potential. Most can be traced to a misfit between required capabilities and those
that are available, as the transition from the industrial economy creates new kinds of needs
that are only now becoming fully understood. The emphasis has shifted from the focus on
managing hard assets, labor, and technology, to managing tacit and explicit knowledge and
business processes in a competitive architecture (see figure 4.1). The relative importance of
capital and tools has diminished significantly in the Knowledge Age, while people with
knowledge, technology, and businesses processes have become much more important.

Figure 4.1 Capability Assets in Two Ages (Miller and Morris 1999, 162).

 9

Knowledge can be considered the insights, understandings, and practical know-how that we
all possess, it is the fundamental resource that allows us to operate intelligently. The
interdependency between knowledge and intelligence is integral, so intelligence creates that
world in which it operates, and where knowing occurs (Tuomi, 1999). He is presenting the
relations between intelligence, knowledge, and capability as shown in Figure 4.2. Here
intelligence generates knowledge structures that underlie capabilities that manifest
themselves in selective action. The figure doesn’t mean that intelligence, knowledge,
capability and action follow each other chronologically. In real life also action can produce
knowledge directly (i.e. learning –by-doing or action learning, Argyris and Schön 1996,
50), and develop in this way individual’s know-how and capabilities.

Figure 4.2 Intelligence as generator for selective action (Tuomi 1999, 122).

Nonaka (1991) has stated that “In an economy where the only certainty is uncertainty, the
one sure source of lasting competitive advantage is knowledge”. The nature of knowledge
can be described, for example, time critical, virtual, reflexive, complex, interactive,
intuitive, evolving, social, often self-organizing, creative, nonlinear, and selective. Nonaka
has with Takeuchi (1995) brought more extensive meaning for tacit and explicit
knowledge. It is essential to make a difference between these notions of knowledge, so that
we could understand these nature and importance in developing and improving our
processes.

• = Tacit knowledge is context-specific, personal, and it is hard to formalize and
communicate. It is part of everything that we do and say, and as it is inherent in our
very thinking, it is deeply embedded in the way that we work. First of all, tacit
knowledge is unconscious value.

• = Explicit knowledge is easier to identify, because it is written knowledge. It can be
stored as artefact – physical or virtual - in different systems, so that it can be
identified, measured, distributed and audited. Explicit knowledge is re-usable in
consistent and repeatable manner.

Especially in today’s competitive marketplace the success of businesses depends critically
on the quality of knowledge, which those organizations apply to their key business
processes. For example the process development and improving requires knowledge of new
technology, information processes, individual and organizational competencies,

Intelligence

Knowledge

Capability

Action

 10

organization’s strategy, etc. In knowledge assets can be included organization’s processes,
products, technologies, markets – all the elements that business owns and needs to own and
which make possible its business processes to generate profits, add value, etc.

Knowledge can be considered as information combined with experience, context,
interpretation, and reflection, says Davenport, De Long and Beers (1998). It is a high-value
form of information that is ready to apply to decisions and actions. While knowledge and
information may be difficult to distinguish at times, both are more valuable and involve
more human participation than the raw data.

Knowledge, as such, has no intrinsic value, and only in relatively exceptional cases we can
fix a price tag on a specific piece of articulated knowledge. The value of knowledge
depends on a complex social system of activity that creates value using knowledge, and
often knowledge transforms into value only at a later time and only for agents that have
complementary resources available. The value of knowledge is difficult to estimate because
of a fundamental problem: knowledge simultaneously underlies the social division of labor,
enables effective action, and is the basis from which ways of working possible. However,
even if the value of knowledge is something we cannot know in general or absolute terms,
we still need to be able to measure organizations in the knowledge dimensions. (Tuomi,
1999)

5 Managing knowledge

There can be found in many organizations that existing knowledge is not fully exploited by
the management. It seems that organizations do not complete understand how to take
advantage of all that competence and knowledge within organization. Management should
also pay more attention to the utilization of process improvement, together with of quality
and competence approaches and methods. A presupposition for successful implementation
of improvement approaches is the use of appropriate knowledge.

Especially the need for the development of high-class competencies, involving both on
individual and organizational level, is extensive. There is needed effective strategic
management of an organization’s knowledge assets, thus, considered both from individual
and organizational point of view. It requires recognition of the potential strategic value of
each of the organization’s different stocks of knowledge. Ron Sanchez (1997) proposes a
framework for analyzing an organization’s knowledge assets that suggests several
approaches to leveraging and controlling an organization’s strategic knowledge assets.
After a critical appraisal of the strategic value of “tacit” knowledge within organizations, he
suggests that knowledge within companies has different contents – which are characterized
as know-how, know-why, and know-what –that are used in different strategic contexts.

It is obvious that KM has significant implications for TQM and continuous improvement
processes and strategies. Even though knowledge management is somewhat problematic its
nature, current perspectives on knowledge management can still be characterized as
extensions of either information management systems, which can consider the IT paradigm,
or organizational learning, which ally more into humanistic perspective.

 11

When discussing about organization’s development processes, process improvement
techniques3 come up. A successful implementation of process improvement requires also
marketing and business knowledge, psychological and communication skills as well as a
true spirit to improvement including the critical examination of the own performance
(Pastinen, 1998). It is important to understand that using only one approach, technique or
method will not be enough in today’s quality improvement of the processes.

Different kinds of process improvement techniques are needed, but these must not regard as
a universal list for development of processes. Because organizations are operating in fast
changing markets, it is prerequisite to develop also these process improvement tools and
methods. It is crucial to remember that in the use of all these tools is needed human being,
intellectual individual whose knowledge and know-how must be able to utilized. It is
needed flexibility and new management of knowledge, so that we can keep up with
competition.

Knowledge Management Process

Knowledge engineering methods and tools have come a long way towards addressing the
use of a company’s knowledge assets. They provide disciplined approaches to designing
and building knowledge-based applications. There are tools to support capture, modeling,
validation, verification and maintenance of the knowledge in these applications. However
these tools do not extend to supporting the processes for managing corporate knowledge
(Macintosh, 2000).

I’m presenting a knowledge management cycle, one way to manage knowledge by
pointing, what main issues have to take into account when using knowledge management in
developing and improving quality in processes. There can be found some similar factors
and ideas with other improvement cycles, for example Deming Cycle (‘PDCA Cycle’
because it was Dr Deming who introduced it), or with knowledge processes, like the
learning cycle of Nonaka and Takeuchi (1995). I’m describing four stages to manage
knowledge, and also what processes are in these stages included. The stages for knowledge
management are presented in Figure 5.1, which would call as “Knowledge Management
disk”.

The first step for knowledge management is identification. On this stage is identifying the
need, urgency and form of necessary knowledge assets. Here are many problems associated
with finding out organization’s knowledge assets and being able to use them in an efficient
and cost-effective manner. At first, it is essential to map out, how acute need there is for
process development, and also for the implementation of these processes. When also the
need and urgency of knowledge has been specified, its time to find out what kind of
knowledge is needed and where are they located within organization.

3 Considering quality management as an example, there is a vast number of approaches advocating a step-by-
step approach to process improvement. Examples of such include Deming’s universal fourteen points to
management, Juran’s ten steps to quality improvement, Crosby’s fourteen points, Vendelø’s CASE tools and
Beer’s, Eisenstat’s and Spector’s “Critical Path” (a six-step approach).

 12

 4. Development stage 1. Identification stage
 · adaptation · need
 · improvement · urgency
 · formalization · form
 · standardization · resources

 · vision and objects
 Knowledge processes:
 - knowledge developing
 - knowledge updating
 - knowledge transformation

 3. Operation stage 2. Analyzing stage
 · implementation · value
 · utilization · cause & effect
: · action
 · barriers
 Knowledge processes:
 - knowledge saving Knowledge process:
 - knowledge transferring - knowledge assessment

Figure 5.1 Four stages for knowledge management – “Knowledge management disk”.

Knowledge can be found from very different places and concerns within organization. In
this can be related the concept of organizational memory, therefore the metaphor and
construct of organizational memory has multiple interpretations, and its use varies across
research traditions. For example, organizational memory can be associated with two kinds
of data, “hard data” and “soft data”. Hard data consists, among other things, databases,
software, risk tools, audits, reports, manuals and policy documents. Soft data is more
associated with individuals, theirs competencies, ability to learn new things, peoples know-
how and experience. Besides soft data is stored in peoples’ capabilities, it can be traced also
from both internal and external social coalitions or clusters in the organization, for
example, teams, groups, communities and networks.

When we are identifying these knowledge resources in diversified sources, it is crucial to
find out and understand what kind of information these knowledge assets contain, and what
purpose they are able to use. By specifying the form of knowledge, and its most optimal
practical application, it is possible to achieve better final outcome, and this way – of course
– the best satisfied customers. In the very end, customer values the most how this output
serves its needs, and what is its utilization and added value for its operations. Organization
must take care of that it can offer the best possible applications via the best possible
knowledge and development processes.

Another important issue, which is included in identification stage, is to create the vision and
set the target and objectives. Vision answers the question where are we going, giving the
direction of the upcoming improvement efforts. Objectives include more detailed statement

 13

of the item, it can be either numerical (i.e. improve output to x percent by year xxxx) or
other measured value, like improved quality. Setting target must be reasonable and realistic
but not too easily attainable. Objectives also describe more detailed the ways and means
how to get to vision. Both vision and objectives should have mutual support and
commitment within organization, both with management and employees. It is important to
“visualize” these points in every level of the organization.

On analyzing stage is studied how these – on the previous stage identified - knowledge
assets can add value, and what are the opportunities for using the knowledge assets. Like I
earlier mentioned, knowledge is a high-value form of information that is ready to apply to
decisions and actions. The value of knowledge involves much more human than the raw
data - it depends on a complex social system of activity. The importance of individuals
cannot underestimate, because they are bringing theirs capability, intelligence, know-how
in the use of organization. Blackburn, Scudder and Van Wassenhove (1995) have said that
talented people are essential to a fast development process. Virtually no amount of
management technique and team organization can overcome a lack of talented designers
and coders. This is not a new observation, but is a recurring theme in the literature on
innovation, research and development. The lesson for managers is that, since these talented
people are so important to the time-to-market process, the firm should make a special effort
to identify, reward and make heroes of their best people. Making most effective use of
development talent must be a key concern for software managers

In analyzing organization’s knowledge assets, must pay attention to what would be the
cause, and also the effect of theirs use. By mapping the whole chain of knowledge from the
need to the effect of this knowledge, leads us to better understanding what is the eventual
advantage and utility to use particular form of knowledge. Besides we know what is the
true value of knowledge, we must also ask what would be the increased value of knowledge
to the organization. In order that organization will have the most valuable knowledge for its
utilization, it is substantial appraise what sort of action should carry out, and what current
and potential barriers there exists.

Especially the knowledge process, assessment, is associated in this stage for knowledge
management. These above-mentioned issues should appraise, evaluate, validate, verify, etc.
the most accurately way.

Through the third stage, operation stage, organization has possibility to achieve the
identified objectives. Correspondingly, the main objectives of this stage are to implement
and utilize the identified and analyzed knowledge, to be able to gain the best possible
result. First, the analyzed and required knowledge must collect, pack and preserve in the
right format, in order that it is easier to formalize in specified function. After that, the
knowledge must be secured, so that organization can rely on its constancy and stability.
Being “unprotected”, there is a risk that this knowledge is changed, or even is vanished or
destroyed, for example because of unexpected changes in organization’s information
channels, technologies, or even in business environment.

The next thing is experienced probably the most difficult phase to perform. Transferring the
knowledge contains various functions, for example communicating, deploying and sharing

 14

the knowledge. The knowledge must be able to transfer within organization, between
organization levels, projects, individuals, etc. Japanese professors Nonaka and Takeuchi
(1995) have provided a major contribution to the theory and practice of knowledge
management. Much of the recent interest in knowledge management can be traced back to
theirs work. To visualize how to share and transform tacit and explicit knowledge, Nonaka
and Takeuchi have been developed a matrix that describes the transitions of knowledge
(Figure 5.2). The matrix shows that tacit knowledge can be shared from one person to
another without being made explicit, the process of socialization is used in advertising to
convey social meanings that are powerful, even as they are intended to remain at the
unconscious level. This socialization process happens through observation, imitation,
practice, and shared experience.

Figure 5.2 The transitions

The upper right quadran
externalized, made manif
seek to do just this, render
innovation process. In th
analogies, concepts, hypot
key to knowledge creation,

Combination occurs whe
Combination process inclu
knowledge, for example, i
made tacit when it is inte
externalisation, and combi
in the form of shared meta
assets.

This model points out tha
often moves from one qua

k
Explicit

knowledge

Tacit
knowledge

Explicit
knowledge

From

To

S
S

Inte
O
k

Tacit
nowledge
 of knowledge (Nonaka and Takeuchi, 1995).

t shows that when tacit knowledge is made explicit, it is
est in spoken words, writings, or tangible objects. Researchers
ing the hidden tacit forms explicit, and therefore applicable in the
is process, tacit knowledge takes the shape of metaphors,

heses, and models. It can be said, that externalization holds the
 because it creates new, explicit concepts from tacit knowledge.

n explicit knowledge is shared and integrated through learning.
des such activities as sorting, adding, and categorizing explicit

n formal education and training at schools. Explicit knowledge is
rnalized through experience. Experiences through socialization,
nation are “internalized into individual’s tacit knowledge bases
l models or technical know-how”, and therefore become valuable

t as knowledge moves through an organization or a society, it
drant to the next as indicated by the spiral that connects the four

ocialization
ympathized
knowledge

Externalization
Conceptual
knowledge

rnalization
perational
nowledge

Combination
Systemic

knowledge

 15

quadrants. It can be said, that innovative learning and knowledge creation is understood as
conversion of tacit knowledge into explicit forms where it can be combined, followed by an
internalization process where this new combined knowledge becomes a part of the learner’s
knowledge structure.

In this knowledge discuss has come up, that in a knowledge economy, companies that
could leverage their knowledge and transform them into competitive advantage, will
advance. This means that companies should invest heavily in knowledge that could increase
productivity and innovation.

On the fourth stage, on development stage, knowledge is further adapted. Knowledge
developing process contains, for example, capturing the required knowledge, to create, and
find the new forms of knowledge for the next processes, when the knowledge is needed.
Knowledge must also update, meaning improving, evolving and also maintaining the
knowledge. So that knowledge is able to maintain continuously, it is crucial to review how
the certain kind of knowledge will ensure added value and ask have we achieved the
desired added value of quality?

The main idea of this paper is culminating in next knowledge process – knowledge
transformation – where the knowledge is compiled, formalized, and standardized.
Knowledge assets need to be “classified by type”, to allocate them in certain categories or
forms, and this way to create some kind of “hierarchy of needs”. By formalizing knowledge
assets by the need (i.e., in what purpose the knowledge is needed, how soon, who needs it,
etc.), it is easier and more effective to address the exact information in the certain need. The
formalization and standardization of knowledge assets makes the utilization of these assets
much more efficient.

It is fundamental to the argument of this paper that institutional rules may have effects on
organizational structures, managing information and knowledge assets, and especially on
different processes in the organization. Different ways to operate and behave are defined by
various regulations and rules of orders. Because organization’s all functions include some
sort of information and knowledge, it is obvious that through standardization of these
knowledge assets the management is able to get the situation where organization’s
knowledge or intellectual capital are available, ready for the new purpose and use. So,
knowledge management can be seen as a cycle where different knowledge stages can be
repeated even on several occasions during the development processes.

Conclusions

Knowledge management can be seen as an essential capability in the today’s emerging
knowledge economy. Research suggests organizations to use knowledge management in
circumstances where their needs and requirements change rapidly. Knowledge management
process/system - which organization is using – have to have a good reactivity, and also to
function, take action explicitly in the lead of changes. It must be able to predict those
sudden and sometimes very revolutionary changes happening in business environment, and
not just wait them happen.

 16

The one primary dilemma in Knowledge Management is that it is hard to make concrete
and that way to manage it in comprehensive way. There can also be found some difficulties
in commitment, how to commit KM to organization’s activities, procedures, and/or
operations models, but also, how to manage people’s knowledge, know-how and
intelligence – intellectual capital. It is important to notice that knowledge management
draws from existing resources that your organization may already have in place – good
information systems management, organizational change management, and human
resources management practices (Davenport and Prusak, 1998). The basis of the
information and knowledge can be found within organizations, but in the very end,
organization itself has to make its own decisions about what knowledge is most crucial to
manage, how to motivate people to share and use knowledge, and what will make a process
or project succeed in its own specific environment.

One of the basic tenets of total quality is continuous improvement. It can be considered that
in any organization, we need both improvements and breakthroughs. Managing
organization’s key processes and improving them will help to increase efficiency,
productivity, and quality. The results will be a more competitive and productive personnel
that provide increased customer satisfaction, higher profits and commitment. Especially,
Deming (Walton, 1994) has emphasized that statistical thinking is critical to improvement
of a system. Only by use of properly interpreted data can intelligent decisions be made. But
to depend only on the use of statistics is a sure way to go out of business. But after all, the
exact knowledge have to be available, the right, useful, just-in-time, and ‘just-in-need’ (to
be focused in certain need) in order that, organization will get the fully benefit.
Development process should be seen as an approach to improve and increase organization’s
performance.

Organizations must rely on information and knowledge tools to coordinate and concentrate
knowledge flows within organization, between units, departments, teams, accordingly both
on individual and organizational levels. Development processes – which can been
considered as one of the most important activities in improving the quality – should not
carry out “slavishly”, “by the books”, but using these levels and phases as tools to develop
the organization’s own processes. There must take into account organization’s own needs
and competences, especially both existing information, knowledge, know-how and its
management, but also pay regard to the creation of new knowledge.

The objective of this paper is not to give an integral analysis of conceptual system how to
manage all that information and knowledge within organization, but to create a one
perspective to review the knowledge and its value in development processes – both on
organizational and individual levels. When KM is used to improve quality in all stages of
organization, it is important to know and understand what kind of knowledge processes
exist within organization. As I earlier mentioned, the main idea is that developed or/and
improved processes must be institutionalized in order that they can be incorporated in
organization’s ways of action, strategy and operating plans. The objective is to get those
processes – consisting of all required knowledge and competencies (both organizational
and individual) - to be confirmed knowledge systems or construction.

 17

REFERENCES

Amidon, C.M. (1996). The Momentum of Knowledge Management. Research/Technology

Management, 39 (4, May-June).

Barley, S.R. (1986). Technology as an occasion for structuring: Evidence from

observations of CT scanners and the social order of radiology departments.
Administrative Science Quarterly, 31, pp. 78-108.

Beer, M., Eisenstat, R. and Spector, B. (1990). The Critical Path to Corporate Renewal.

Harvard Business School Press.

Blackburn, J., Scudder, G. and Van Wassenhove, L.N. (1995). Improving Speed and

Productivity of Software Development: A Survey of European Software
Developers. INSEAD Working Paper, Fontainebleau, France.

Boutellier, R., Gassman, O. and von Zedtwitz, M. (1999). Managing Global Innovation.

Heidelberg, Berlin.

Davenport, T.H., and Prusak, L. (1998). Working Knowledge: How Organizations Manage

What They Know. Harvard Business School Press, Boston, MA.

Davenport, T.H., De Long, D.W. and Beers, M.C. (1998). Successful knowledge

management projects. Sloan Management Review, (Winter), Cambridge.

DiMaggio, P.J. and Powell, W.W. (1983). The Iron Cage Revisited: Institutional

Isomorphism and Collective Rationality in Organizational Fields. American
Sociological Review, vol. 48, April, pp. 147-160.

Dutta, S., Kulandaiswamy, S. and Van Wassenhove, L.N. (1996). Benchmarking European

Software Management Best Practices. Working Paper, INSEAD, Fontainebleau,
France.

Gannon, P. (1997). Trojan Horses & National Champions: The Crisis in the European

Computing and Telecommunications Industry. Apt-Amatic Books, London.

Gore, C. and Gore, E. (1999). Knowledge Management: the way forward. Total Quality

Management, vol. 10, no. 4-5, pp. 554-560.

Greenwood, R. and Hinings, C.R. (1996). Understanding Radical Organizational Change:

Bringing Together the Old and the New Institutionalism. Academy of
Management Review, vol. 21, no. 4, pp. 1022-1054.

Grönroos, M. (2000). “Knowledge Management” –seminar on May 4th 2000. FINESSE

SPI, VTT, Oulu.

 18

Haldin-Herrgård, T. (1999). Difficulties of Tacit Knowledge Management – A Study on
Diffusion of Tacit Knowledge in Organisations. ISO 9000& TQM for 2000+.

Harrington, H.J. (1991). Business Process Improvement. McGraw-Hill Inc., New York.

Hinings, C.R., Greenwood, R., Brown, J. and Cooper, D. (1996). Organizational Change:

the Role of the Archetypes, Environmental Dynamics and Institutional Ideas. In
production Global Perspectives on Prosessual Research on Management and
Organization, edited by A. Ropo, P. Eriksson and J. Hunt. University of
Tampere, series C: Conference Papers and Occasional Papers 6, Tampere, pp.
41-75.

Jones, M.R. (1990). Ecuivocality and Information Systems. Working Paper, Cambridge

University, Engineering Department.

Juran, J.M. (1974). Quality Control Handbook. Third edition, Mc-Graw-Hill, New York.

Leonard-Barton, D. (1995). Wellsprings of Knowledge. Building and Sustaining the

Sources of Innovation. Harvard Business School Press, Massachusetts.

Macintosh, A. (2000). Knowledge Management. Position Paper on Knowledge Asset

Management. [WWW-document]. <http://aiai.ed.ac.uk/~alm/kamlnks.html>.

Maxwell, K., Van Wassenhove, L. and Dutta, S. (1996). Software Development

Productivity of European Space, Military and Industrial Applications. Research
Initiative in Software Excellence (RISE). INSEAD, Fontainebleau, France.

McQuater, R.E., Peters, A.J., Dale, B.G., Spring, M., Rogerson, J. and Rooney, E.M.

(1998). The Management and Organisational Context of New Product
Development: diagnosis and self-assessment. International Journal of
Production Economics, vol. 55 (2).

Meyer, J.W. and Rowan, B. (1977). Institutionalized Organizations: Formal Structure as

Myth and Ceremony. American Journal of Sociology, vol. 83, no. 2, pp. 340-
363.

Miller, W.L. and Morris, L. (1999). 4th generation R&D : managing knowledge,

technology, and innovation. John Wiley & Sons, Inc., New York.

Nonaka, I. (1991). The knowledge-creating company. Harvard Business Review,

(November-December).

Nonaka, I. and Takeuchi, H. (1995). The Knowledge-Creating Company : How Japanese

Companies Create the Dynamics of Innovation. Oxford University Press,
Oxford.

 19

Pastinen, M. (1998). Process Improvement Essentials: A Framework for Creating and
Implementing Operational Improvement Plans. 2nd edition, Vistalize Ltd.,
Helsinki.

Peters, T. and Waterman, R.H. (1982). Menestyksen profiileja. Hyvin hoidettuja yrityksiä

ja mitä niistä opimme. Original book: In Search of Excellence. Rastor, Helsinki.

Sanchez, R. (1997). Strategic Learning and Knowledge Management. In R. Sanchez and A.

Heene (Eds.), John Wiley & Sons, New York.

Scott, W.R. (1995). Institutions and Organizations. Sage, Thousand Oaks CA.

Soin, S.S. (1999). Total quality essentials: using quality tools and systems to improve and

manage your business. McGraw-Hill Companies, New York.

Tuomi, I. (1999). Corporate knowledge. Theory and Practice of Intelligent Organizations.

Vendelø, M.T. (1998). Recycling software – on the road to high performance in software

companies. International Journal of Technology Management, vol. 16, Nos.
1/2/3, pp. 93-104.

Walton, M. (1994). The Deming Management Method : The Complete Guide to Quality

Management. Management Books 2000 Ltd., Chalford.

Weick, K.E. (1990). Technology as equivoque: Sensemaking in new technologies. P.S.

Goodman, L.S. Sproull, and Associates, Technology and Organizations, Jossey-
Bass Publishers, San Fransisco.

QWE2000 Vendor Technical
Presentation VT12

Mr. Bob Bartlett
(SIM Group)

The dream comes true - Scriptless
Automated Testing

Key Points

Record play back techniques do not produce well-designed automated tests that can be
re-used and grown for continuous automated testing. At best, record & playback will give
the ability to play back the same tests for very few test executions. There is no substitution
for well-designed tests that have flexibility, robustness, reusability and expandability.
However, producing automated tests with these characteristics is time consuming and
requires high levels of programming skills.

●

A well designed automated test system is developed using software engineering disciplines
to support a wide variety of tests that survive a number of changes and evolutions of the
system under test. This design practice should be applied and maintained as testing
requirements are defined, matured and evolve.

●

The test system must also support good practices and efficiencies in test planning, test case
preparation, test execution and problem management.

●

The way to achieve the foregoing requirements and allow non-programmers to develop and
run automated tests is to use an extreme implementation of table driven testing. SIMÆs
table driven testing technique and software (tMosaic) satisfies all of the requirements of
good automated testing design and practice, but is controlled and used by professional
testers that do not possess programming skills.

●

Presentation Abstract

o The dream for automated testing – what we all want.
o Why record and play back techniques have not satisfied the requirements.
o Test System Design
o Table Driven Testing
o The SIM methodology for Table driven testing = tMosaic
o How this approach makes the dream come true

About the Speaker

Bob is the Chairman of SIM Group Ltd. SIM specialises in Software Testing and has
put in place a number of highly efficient testing systems that automatically test
sophisticated and mission critical software systems. SIM is the UK leader in

QWE2000 -- Conference Presentation Summary

http://www.soft.com/QualWeek/QWE2K/Papers/VT12.html (1 of 2) [10/11/2000 2:23:20 PM]

providing efficient solutions for software testing. SIMÆs work has had a profound
impact on the way companies approach testing and improvements to testing have
been realised with SIMÆs help.

SIM has managed the development of testing strategies for software projects and
has implemented automated testing techniques for many different software
environments.

A summary of BobÆs experience follows:
● Over 30 years in software, and using automated testing techniques throughout
● Executive Director and Chairman of Software testing specialist company today
● Member of the CSSA executive council
● Has designed, developed and sold automated testing tools
● Manager of major software development and implementation projects
● Testing adviser to some of the largest testing projects taking place in U.K.
● Training and lecturing in automated testing and software testing techniques
● Track record for substantial reductions in time and cost to test
● Successfully managed the growth of start up companies throughout his career.

QWE2000 -- Conference Presentation Summary

http://www.soft.com/QualWeek/QWE2K/Papers/VT12.html (2 of 2) [10/11/2000 2:23:20 PM]

1

© 2000, SIM Group Ltd.

ScriptlessScriptless
AutomatedAutomated

TestingTestingBob Bartlett
Managing Director
bob@simgroup.co.uk
www.simgroup.co.uk

© 2000, SIM Group Ltd.

AgendaAgenda

The record / playback myth
Why it can’t work as advertised

The dream for automated testing
What everyone really wants

The first step of good practice
Test System Design

Data Driven and Table Driven Testing
Advantages and ideals

The record / playback myth
Why it can’t work as advertised

The dream for automated testing
What everyone really wants

The first step of good practice
Test System Design

Data Driven and Table Driven Testing
Advantages and ideals

2

© 2000, SIM Group Ltd.

Agenda ContinuedAgenda Continued

Test System Framework
tMosaic & SIM’s methodology for automated
testing
Example of benefits

Test System Framework
tMosaic & SIM’s methodology for automated
testing
Example of benefits

© 2000, SIM Group Ltd.

Background...Background...

Who are we?

Independent testing
organisation

Specialists in testing for 9
years

Largest implementor of
automated testing in UK

Full Service testing
Solutions

Who are we?

Independent testing
organisation

Specialists in testing for 9
years

Largest implementor of
automated testing in UK

Full Service testing
Solutions

What do we do?

Testing Projects

Testing Improvement

Implementors of
automated testing for over
11 years

Methods, procedures and
strategies for efficiency &
effectiveness

100% success on all
automated testing work

What do we do?

Testing Projects

Testing Improvement

Implementors of
automated testing for over
11 years

Methods, procedures and
strategies for efficiency &
effectiveness

100% success on all
automated testing work

3

© 2000, SIM Group Ltd.

The Record / Playback MythThe Record / Playback Myth

If Record / Playback worked, we wouldn’t have
scripting languages, wizards or extensive script
support:

Only the very oldest of testing tools did not have scripting support

Many enhancements to testing tools try to make record / playback
work properly!

Some of the best tools started life without record / playback

Automating unstructured and poorly designed
tests is only “automating the chaos” of testing
It is only used effectively during sales
demonstrations

If Record / Playback worked, we wouldn’t have
scripting languages, wizards or extensive script
support:

Only the very oldest of testing tools did not have scripting support

Many enhancements to testing tools try to make record / playback
work properly!

Some of the best tools started life without record / playback

Automating unstructured and poorly designed
tests is only “automating the chaos” of testing
It is only used effectively during sales
demonstrations

© 2000, SIM Group Ltd.

Experiences With Record / PlaybackExperiences With Record / Playback

“The tests would not rerun because dependent
tests or actions had not been run the same.”
“Interfering or asynchronous activities prevented
the tests from re-running.”
“The tests were not worth re-running because
what was recorded was mostly irrelevant tests.”

SIM’s experience
When tests are recorded, any play back of tests
works AT BEST for 50% or the resultant tests -
each time playback is attempted.

“The tests would not rerun because dependent
tests or actions had not been run the same.”
“Interfering or asynchronous activities prevented
the tests from re-running.”
“The tests were not worth re-running because
what was recorded was mostly irrelevant tests.”

SIM’sSIM’s experienceexperience
When tests are recorded, any play back of tests
works AT BESTAT BEST for 50% or the resultant tests -
each time playback is attempted.

4

© 2000, SIM Group Ltd.

Why Record / Playback Is
Bad Practice
Why Record / Playback Is
Bad Practice

Test are not necessarily well designed and
generally lack:

Re-runnability

Robustness

Results verification

Expandability

Flexibility

Time spent fiddling with the tool, detracts from
the advantages of manual testing

Test are not necessarily well designed and
generally lack:

Re-runnability

Robustness

Results verification

Expandability

Flexibility

Time spent fiddling with the tool, detracts from
the advantages of manual testing

© 2000, SIM Group Ltd.

Automated Testing -
What We All Really Want
Automated Testing -
What We All Really Want

For a small minor increase in time to build the
automated tests - substantial reductions in time
when the tests are run automatically
Automated tests should be built by testers - NOT
software developers
If one automated test fails, the rest should run
without impact from the failing test
Easy and fast to select tests and run
Tools should be intuitive to pick up and use when
required
Enhancing the tests for SUT changes or new tests
should be fast and easy to undertake

For a small minor increase in time to build the
automated tests - substantial reductions in time
when the tests are run automatically
Automated tests should be built by testers - NOT
software developers
If one automated test fails, the rest should run
without impact from the failing test
Easy and fast to select tests and run
Tools should be intuitive to pick up and use when
required
Enhancing the tests for SUT changes or new tests
should be fast and easy to undertake

5

© 2000, SIM Group Ltd.

Characteristics of Automated TestsCharacteristics of Automated Tests

It should be easy to see the relation between a
manual test and its automated version
Easy to build, maintain, modify and execute
The user interface to the tool should be intuitive
and easy to use at any time
Tests should be robust, always re-runnable and
easily expanded
Tests should run without ANY manual
intervention
Tests results, testing metrics and success or
failure of tests should be instantly available

It should be easy to see the relation between a
manual test and its automated version
Easy to build, maintain, modify and execute
The user interface to the tool should be intuitive
and easy to use at any time
Tests should be robust, always re-runnable and
easily expanded
Tests should run without ANY manual
intervention
Tests results, testing metrics and success or
failure of tests should be instantly available

© 2000, SIM Group Ltd.

The Implication for AutomationThe Implication for Automation

Good Tests are well planned, well designed and
thoroughly prepared
The required characteristics of tests come about
from the test design process used
The “end users” of automated testing must also
be considered and their requirements included.
Automated tests have:

Inputs - conditions, data & expected results

Outputs - testing results, metrics, information about the testing

Automated Tests ARE a SYSTEM that automates
the testing required

Good Tests are well planned, well designed and
thoroughly prepared
The required characteristics of tests come about
from the test design process used
The “end users” of automated testing must also
be considered and their requirements included.
Automated tests have:

Inputs - conditions, data & expected results

Outputs - testing results, metrics, information about the testing

Automated Tests ARE a SYSTEM that automates
the testing required

6

© 2000, SIM Group Ltd.

Automation
Proof of
Concept

Test
Planning

Automation
Strategy

Automated
Testing

Manual
Testing

Prepare test conditions

Prepare test data

Prepare test scripts

Test System Design

Test System Development
•Tables of test data & results
•GUI Maps
•Functions

Testing

© 2000, SIM Group Ltd.

Test System Design
Sample Contents
Test System Design
Sample Contents

Environment & tools to use
Test System structure and flow
Scripts and scripting methods
System Under Test & testing requirements
Object and method customisation
Test Execution
Test Management
Test Results & Test Data
On Line Data & GUI maps

Environment & tools to use
Test System structure and flow
Scripts and scripting methods
System Under Test & testing requirements
Object and method customisation
Test Execution
Test Management
Test Results & Test Data
On Line Data & GUI maps

7

© 2000, SIM Group Ltd.

Implementing the Test System
Design - the HARD Way
Implementing the Test System
Design - the HARD Way

The tool MUST work for the SUT and environment
Modular scripting
Develop all requirements
Thoroughly test infrastructure
Design and populate tests
Prove tests and test data
Run many times to make sure it works
Document and train users
Keep test system developers available

The tool MUST work for the SUT and environment
Modular scripting
Develop all requirements
Thoroughly test infrastructure
Design and populate tests
Prove tests and test data
Run many times to make sure it works
Document and train users
Keep test system developers available

© 2000, SIM Group Ltd.

Script

Screen A
Screen B

GUI
MapGeneric

Functions

CSV
files

Test tool

Script

Screen B
Screen D

Script

Screen A
Screen D

Script

Screen A
Screen B

Script

Screen D

Test Plans

Data

Table A

Data

Table B

Data

Table C

Data

Table D

Automated Test SystemAutomated Test System

Test System Structure exampleTest System Structure example

8

© 2000, SIM Group Ltd.

Test System DesignTest System Design

Sample of data driven testingSample of data driven testing

© 2000, SIM Group Ltd.

Implementing the Test System
Design - the EASY Way
Implementing the Test System
Design - the EASY Way

Start with a solid frame work
Customise the planning interface for the SUT and
the user
Design the planning structure & prove it
Populate with tests and test data
Prove the tests
Use it

Start with a solid frame work
Customise the planning interface for the SUT and
the user
Design the planning structure & prove it
Populate with tests and test data
Prove the tests
Use it

9

© 2000, SIM Group Ltd.

Business
Process 1

Test A
Test B
Test C

Test Case A Test Case CTest Case B Test Case D Test Case E

Business
Process 2

Test B
Test C
Test E

Test Plans

Application
Specifics GUI

Map

Object
Methods

tM
os

ai
c

C
or

e
Li

br
ar

ie
s

Test tool

Test System OverviewTest System Overview

CSV
files

© 2000, SIM Group Ltd.

tMosaic OverviewtMosaic Overview

Sample of table driven testingSample of table driven testing

10

© 2000, SIM Group Ltd.

System Under Test

Testing tool

tMosaic

Tables

tMosaic OverviewtMosaic Overview

© 2000, SIM Group Ltd.

Test Instances
•Data
•Results
•Methods

Scenarios
•End to end tests
•Tests to run
•Frequencies
•Intervals
•Alert rules

Continuous Automated TestingContinuous Automated Testing

11

© 2000, SIM Group Ltd.

Experiences & BenefitsExperiences & Benefits

The best testers can now be the best automated
testers without having to be programmers as well!
Initial test systems are developed in less than half
the time it use to take
Fully robust and unattended automated test
systems built in about a third of the time
Testing tables can be developed and proven
before the application is available
Test Systems are easy to maintain, support and
expand

The best testers can now be the best automated
testers without having to be programmers as well!
Initial test systems are developed in less than half
the time it use to take
Fully robust and unattended automated test
systems built in about a third of the time
Testing tables can be developed and proven
before the application is available
Test Systems are easy to maintain, support and
expand

© 2000, SIM Group Ltd.

Bob Bartlett
bob@simgroup.co.uk
www.simgroup.co.uk

QWE2000 Extra Session

Mr. Leif Balter [Sweden]
(Cap Gemini Ernst & Young)

"Create Your Own Testtool"

Key Points

The power of Excel●

The power of doing it yourself●

Commercial test tools are not always the best choice●

Presentation Abstract

With Excel you have the power to do almost anything. You don't have to buy it -
everyone has it on the PC, you don't have to go to training classes - so many people
already knows Excel. You can make VB macros, you can make graphs and reports
and paste it into Word documents.

Comericial test tools have always had an attraction to me but after working in y last
project surrounded by some Excel experts, I strongly recommend all Project
Managers and Test Managers:

Check out the capabilities and possibilities with Excel before introducing any other
Test Administration tool.

About the Speaker

Leif Balter has started as Cobol programmer 30 years ago. For the last 10 years he
worked at Cap Gemini Sweden. Mostly as Test Manager or Project Manager. He has
been deeply involved in building competence networks for software testing, writing
articles and as teacher.

QWE2000 -- Conference Presentation Summary

http://www.soft.com/QualWeek/QWE2K/Papers/SB1.html [10/12/2000 3:26:37 PM]

1

QWE2000 - Create your own test tool/Leif Bälter Cap Gemini Ernst & Young - 1

Create your own testtool

Leif Bälter,
Cap Gemini Ernst & Young,
Sweden

QWE2000 - Create your own test tool/Leif Bälter Cap Gemini Ernst & Young - 2

Agenda

Typical SW dev startup factors
The case (Project background)
Test specifications and statistics
Defect Reports and statistics
Test Data generation
Expected Result calculation
Used Excel features
Limitations, Benefits
Lessons learned

2

QWE2000 - Create your own test tool/Leif Bälter Cap Gemini Ernst & Young - 3

Some typical SW Dev project
startup factors

Meeting strangers who become
colleagues with different experience
levels and ages
Delivery on time important
No extra budget for tools
Tools used by PM are treated with special
favour
No time for test tool evaluation
You always have MS Office including
Excel installed

QWE2000 - Create your own test tool/Leif Bälter Cap Gemini Ernst & Young - 4

Test tool requirement

Ideal

Needs

Time

Evaluate
Choose
Install

Usage

Reality

Needs

Time
Usage

3

QWE2000 - Create your own test tool/Leif Bälter Cap Gemini Ernst & Young - 5

The project background
A part of the new Swedish pension
system
Selection of stockbroker funds for 60
biljon SEK for 4.2 miljon Swedes
Prototyping development method
Platform: Oracle 8, Linux, Perl, NT, VB,
ASP
Reservsystem for the mainsystem, a
"garageproject" with limited req.
specifications
Restriction to make it simple but safe

QWE2000 - Create your own test tool/Leif Bälter Cap Gemini Ernst & Young - 6

My personal test tool experience
SW bugs needs to be detected, managed,
tracked
Bug statistic always of interest as PM
Not easy to choose, a large amount
Started with SQA Manager 1995
Have seen market leading products to
selfmade tools
General market knowledge,
demonstrations, newsletters, conferences
etc.

4

QWE2000 - Create your own test tool/Leif Bälter Cap Gemini Ernst & Young - 7

Profile of the verification
startup team

Project and Test Management
Actuarian and Excel expert
Senior consultant, UNIX and
Operation expert
Support from PM also Excel
expert

QWE2000 - Create your own test tool/Leif Bälter Cap Gemini Ernst & Young - 8

Our requirements for the
verification process

Document What to test => Test Spec's
Define expected result
Create Test data
Track the test progress
Test reporting
Track Defect Reports and Change Requests
Automate test execution

5

QWE2000 - Create your own test tool/Leif Bälter Cap Gemini Ernst & Young - 9

Test specification/Protocol

Test case ID
Description
Keyword
Tester Sign
Date
Status
Tested Sign
Comment

QWE2000 - Create your own test tool/Leif Bälter Cap Gemini Ernst & Young - 10

Test resp. statistics
Open Defect Pending

LBä 1 0 0 21 95.5%
YJo 0 0 0 0
FLu 1 0 0 87 98.9%
SFj 0 3 0 84 100.0%
ANy 0 2 0 56 100.0%
KSa 0 0 0 30 100.0%
FAn 0 1 0 47 100.0%
KSa 0 0 0 30 100.0%
LÅV 0 0 0 7 100.0%
MBj 0 0 0 13 100.0%
Totalt 6 7 0 380 98.4%

OK

6

QWE2000 - Create your own test tool/Leif Bälter Cap Gemini Ernst & Young - 11

Test progress
Percentage tested and OK

0.00%

10.00%

20.00%

30.00%

40.00%

50.00%

60.00%

70.00%

80.00%

90.00%

100.00%

2000-03-30 2000-04-01 2000-04-03 2000-04-05 2000-04-07 2000-04-09 2000-04-11 2000-04-13 2000-04-15

%Test
% OK

QWE2000 - Create your own test tool/Leif Bälter Cap Gemini Ernst & Young - 12

Issue list, (Defects, CR's, To Do List)

ID #
Subsystem
Program
Severity level
Description
Written by
Date
Priority
Responsible
Peer
Tester
Planned Rel.
Status
Comment
Sheets

7

QWE2000 - Create your own test tool/Leif Bälter Cap Gemini Ernst & Young - 13

Defect Report distribution
Distribution Responsible/Status PIANO 2000-09-04

1 3 2 2 4 2 1

8

15

7
10

13

15

1

11

4 2

6

41

26

4

1 2
4

9

1

6

4 3

1

4

1

2

2

0

5

10

15

20

25

30

35

40

45

50

Open
Test
Closed
No action

Open 1 2 2

Test 1 6 4 3 1 4
Closed 8 15 7 10 13 15 1 11 4 2 6 41 26 4 1 2 4 9

No action 1 3 2 2 4 2 1

HES HPJ HSY KSI LNI LÅV MBJ MLE MPE OÖS PBJ LBA YJO HSA ANY KSA SFJ FLU

QWE2000 - Create your own test tool/Leif Bälter Cap Gemini Ernst & Young - 14

Defect Report Status/Severity
Distribution Status/Severity PIANO 2000-09-04

73

6 6 1 3 2

59

5 6 9 4

42

3 3 1

8

1 2
1

182

15 15 13 7 3
0

50

100

150

200

250

300

350

400

Tota
lt
4

3

2

1

Totalt 182 15 15 13 7 3

4 8 1 2 1

3 42 3 3 1

2 59 5 6 9 4

1 73 6 6 1 3 2

Closed No action Test Work To Be Rel Open

8

QWE2000 - Create your own test tool/Leif Bälter Cap Gemini Ernst & Young - 15

 Press a button and print a
Work Order

Åtg ärd sd o kument ut skrivet Excel-ark ID PV CS ID

Pluto fr 00-09-01 #733

Benämning

Ansvarig: Oös Prioritet: Hög
Peer: HeS Klar: #NAME?

Analyse
Pro b lemb eskrivning

Fix Description
Ansvarig S ig n Datum Peer S ig n Datum

Oös HeS
Berö rd a mo d uler/p ro g ram

FHa Batch; ;
Åtg ärd /Ko mmentar

Dokumentation påverkas Ja - PMW kontaktad

 Nej

Verified
Ansvarig S ig n Datum

Åtg ärd /Ko mmentar

Fel i Plutos int erna avst ämning vid bekräftelse av fondorder
Felrapport - Efter at t ha kört det första testet på ~450 fonder och en order på 1,9 miljarder blev det någon form av avrundningsfel i den int erna
avst ämningsrutinen. Enligt Plutonen beror felet på att den checksumma som beräknas får fler signifikanta siffror än vad Pluto klarar av. Felet är totalt
stoppande om man inte st änger av all avstämning.

FHa Batch; Fel i Plutos interna avstämning vid bekräftelse av fondorder

11 796
Work Order

Delivery Binder
For each delivery
- Del Doc's
- Workorders
- Checklist
- Diff lists (current-
previous delivery)

All data
fetched
from
Issue list

QWE2000 - Create your own test tool/Leif Bälter Cap Gemini Ernst & Young - 16

Excel macros creates Test
Data files 1(2)

Shares p-holders
Exchangerates
Fundrates
Funds
Fundchange
Fundchoice
Pensionrights
Person information
Interests
Instructions

9

QWE2000 - Create your own test tool/Leif Bälter Cap Gemini Ernst & Young - 17

Excel macros creates Test
Data files 2(2)

-Buttons for
creation
of test data files

- File location
and name

- Buttons for
calculations

- Expected
result)

QWE2000 - Create your own test tool/Leif Bälter Cap Gemini Ernst & Young - 18

Used Excel features

Hyperlink to screen dumps
 and specifications

Filter, Comments
Macros in Visual Basic

calculations, generation of testdata, reports
Excel Functions
Links to Oracle DB via MS Access
Pivot tables
Graphs

10

QWE2000 - Create your own test tool/Leif Bälter Cap Gemini Ernst & Young - 19

Plus factors for our test tool
choice

Small project. From 6 to 20 totally
Office landscape
Short distances
Unclear Requirements
The competence of the Verification Team
Laptop homework analyse and editing

QWE2000 - Create your own test tool/Leif Bälter Cap Gemini Ernst & Young - 20

Limitations

Restricted write access
Not for distributed projects
Prejudices that a "on the market" tool is
more reliable
You have nothing to start with. (DB,
Reports, defaults values, tool support
from vendor)

11

QWE2000 - Create your own test tool/Leif Bälter Cap Gemini Ernst & Young - 21

Lessons learned 1(2)

Excel is simple but has advanced
capabilities
Nice feeling. "I decide the design content
and usage, not the opposite"
Easy to reuse the tool itself, or ideas to
other projects or your next project
Copy and paste to Word useful
Powerful links to MS Office tools and DB

QWE2000 - Create your own test tool/Leif Bälter Cap Gemini Ernst & Young - 22

Lessons learned 2(2)

Easy to tailor to changed project
objectives
Evolutionary development of test tools is
the best method
Always available, PVCS Tracker using
Oracle DB in neighbour project were not
Start up day one.

12

QWE2000 - Create your own test tool/Leif Bälter Cap Gemini Ernst & Young - 23

My recommendation

"Check the capability and
possibilities with Excel towards
your needs and requirements before
introducing any other Test
Administration tool"

QWE2000 Extra Session

Mr. Richard Kasperowski
(Altisimo Computing)

Opportunistic Software Quality

Key Points

Opportunistic software testing: a strategy for improving quality with limited resources●

Examples from a recent project●

Data and results●

Presentation Abstract

I recently worked on a project for which I was the sole QA person and the ship date
was only three months away. The project was to build and deliver a web-based
billing system for the local telephone customers of a large telephone company. The
team used HTML and JavaScript to present bills, a relational database at the back
end, and Java and Enterprise Java Beans in the middle.

The development team consisted mainly of highly skilled designers and
programmers who knew little about quality assurance. They were motivated to
deliver a great product on time. My job was to help them do that, by inventing and
executing a QA program for the project.

I was the only team member concerned primarily with product quality, and the
delivery date was firm. I didn't have time to develop a well thought-out plan to assure
the goodness of the product. Instead, I kept my eyes open for opportunities to
improve product quality, and took advantage of these opportunities. I later realized
that I have done this many times over the years, and began to think of my
capitalizing on quality improvement opportunities as a general
strategy--"opportunistic software quality."

Here are examples of the opportunities we discovered during this project and how
they helped us deliver a high quality product on time:

Configuration management: Prior to my joining, the team was already using a
configuration management system. They used the system to track source
code changes and to label the configurations that were delivered to their
customer. I increased the rigorous use of this system, making it easier to
identify the configuration that corresponded to the one the customer was
using, and thus making it easier to fix the defects the customer identified.

●

Bug tracking system: Again before I joined, the team put a bug tracking●

QWE2000 -- Conference Presentation Summary

http://www.soft.com/QualWeek/QWE2K/Papers/SB2.html (1 of 3) [10/12/2000 4:16:47 PM]

system in place. They used it sporadically and didn't record all defects in it. I
became the manager of the bug tracking system, making sure all defects
were recorded and addressed. We didn't forget to fix any of the defects we
needed to fix, so the product we delivered was better than otherwise.
Automated nightly builds: Infrequent source code builds are a quality problem.
"Code rot" can occur: individual programmers' code changes can break the
compilation of another programmers' code. Broken builds can be difficult to
repair if the defect was introduced too long ago for the programmer to
remember why he changed the code. On previous projects, I found that it is
possible to find defects simply by compiling the source code and building the
product at regular intervals. On this project, I established a system for
automatically building the product every night, after the programmers had
gone home. The programmers agreed that they would only check-in source
code changes that would at least compile correctly. We found a number of
defects with this method. Because we found the defects the within a day of
the code change, it was easier for the programmers to fix the defects than it
would have been if we hadn't built the code regularly. In addition, builds
usually succeeded when they were needed most, such as for an emergency
patch release.

●

Automated nightly testing: The programmers had built a number of
semi-automated tests for particular sections of code. I fully automated the
existing tests. Over time, I added tests of other important sections of code. I
built a system for automatically executing the tests and analyzing the results. I
augmented the nightly builds with the nightly automated tests. This also
helped us find new defects within a day of a broken code change, making it
easier for the programmers to fix the defects than it would have been if we
hadn't built the code regularly.

●

QA web site: The team's philosophy was that delivering a high quality product
was a group effort, and not merely my responsibility. To give the other team
members a view of the state of the product's quality, I built a QA web site for
the team. The web site consisted of the most recent automated test results, a
way to compare any set of test results with any other set of test results,
hyperlinks to web pages that could be used for manual testing, and hyperlinks
to written procedures. The test results section of the site made it easy for me
to analyze nightly results and update baseline results. The hyperlinks to web
pages that could be used for manual testing turned out to be extremely useful
for the other team members; they vociferously complained whenever the site
was down.

●

Manual testing: It wasn't practical to automate all testing, especially GUI
testing. I adapted an old test script so we could use it to test the current
version of the product. I made it a policy that the script had to be executed at
least once per week, and I rigorously followed the policy. With this regular
planned testing, augmented by ad hoc testing from other team members, we
identified many defects.

●

Source code compiler: One of the team members recommended a better●

QWE2000 -- Conference Presentation Summary

http://www.soft.com/QualWeek/QWE2K/Papers/SB2.html (2 of 3) [10/12/2000 4:16:47 PM]

Java source code compiler. I modified the nightly build-and-test scripts to use
the new compiler. The new compiler used a stricter definition of the Java
language; we identified a few defects simply by using the new compiler.
Improved delivery: One of my responsibilities was to deliver patch releases
and beta releases to the customer. Before I joined the team, these deliveries
were time consuming and plagued with mistakes. I developed a set of scripts
to automatically build and install the product, and a procedure for making the
delivery, drastically reducing the number of delivery mistakes.

●

HTML validation: On a previous project, I used a tool to automatically check
the validity of the HTML code the product delivered to users' web browsers. I
used the tool on this project and successfully found a few defects.

●

There were a few techniques we considered using, but did not use. These were:
automated GUI testing, code coverage analysis, exhaustively testing all source code,
retrofitting pre-existing tests to a better test framework, and reorganizing the source
code to improve building and maintenance.

Our results were good. The customer discovered only 7% of the total number of
known defects. The two best techniques for identifying defects were manual testing
and automated nightly testing. Manual testing was responsible for finding 46% of
known defects, and automated nightly testing helped us find 29% of known defects.
(These figures are slightly out of date; I will present current figures in the final version
of the paper and at the conference.)

We delivered a relatively high quality product on time. The customer accepted the
delivery and found very few defects. The opportunistic strategy worked.

Author Bio...

Richard Kasperowski is president of Altisimo Computing, a software development
consulting firm based in Cambridge, Massachusetts. Richard has worked as tester,
developer, manager, and consultant since 1988. He has a degree from Harvard
University, is a member of the ACM, and usually cycles to his clients' offices.

QWE2000 -- Conference Presentation Summary

http://www.soft.com/QualWeek/QWE2K/Papers/SB2.html (3 of 3) [10/12/2000 4:16:47 PM]

mailto:kasper@altisimo.com?Subject=QWE2000
http://www.altisimo.com/

Abstract: I recently acted as the sole quality advocate on a software project that had a rapid
development schedule. As the project progressed, I realized that I was addressing the need for
quick and productive quality assurance activities in a way that was similar to what I had done
on other projects I was identifying and acting on the best opportunities for quality
improvement, iteratively improving the product’s quality as I went. I call this strategy
"opportunistic software quality."

In this paper I present this strategy, using examples from the project described above. For each
of the opportunities I identified, I present the number of software defects the opportunity helped
me find. For this project and others on which I have worked, this strategy for improving
software quality was successful.

Keywords: Rapid software testing, techniques for quality assurance and quality improvement,
short product development schedule, opportunistically improving software quality

1. Introduction

I recently worked on a project for which I was the sole QA person and the ship date was only
three months away. The goal of the project was to build and deliver a web−based billing system
for the local telephone customers of a large telephone company. The software development
team used HTML, JavaScript, and Java servlets to present bills, a relational database at the back
end to hold customer and bill information, and Java and Enterprise Java Beans (EJB) in the
middle for business logic.

The development team consisted mainly of highly skilled designers and programmers who had
little experience with quality assurance. They were motivated to deliver a great product on time.
My job was to help them do that, by inventing and executing a QA program for the project.

I was the only team member concerned primarily with product quality, and the delivery date was
firm. I didn’t have time to develop a well thought−out plan to assure the goodness of the
product. Instead, I continuously looked for opportunities to improve product quality and took

 Richard Kasperowski is president of Altisimo Computing, a software development consulting firm based in
 Cambridge, Massachusetts.

© 2000 Altisimo Computing Corporation

Opportunistic Software Quality

Richard Kasperowski

Altisimo Computing
28 Regent Street

Cambridge, Massachusetts 02140
http://www.altisimo.com/

Email: kasper@altisimo.com

advantage of these opportunities. I later realized that I have done this on many projects over the
years, and began to think of my capitalizing on quality improvement opportunities as a general
strategy "opportunistic software quality."

2. Opportunistic software quality
The strategy is to identify opportunities to improve software quality and to take advantage of
these opportunities. To take advantage of the opportunities is to turn them into effective,
persistent, reusable processes and procedures. Over the life of a project, one−time hacks are not
as useful as repeatable, sustainable quality improvement activities. The value of this strategy
lies in the improvement to the product gained by the repeated application of the opportunities.

In the following sections, I present examples of the opportunities we identified during this
project and how they helped us deliver a high quality product on time.

2.1 Configuration management
Problem: Configuration management (CM) is an important part of any large project. Most CM
systems share a few characteristics. They make it possible to track revisions of individual files,
including who made the change, why the programmer made the change, and the content of the
change. By branching source code into multiple trees, CM systems make it possible to maintain
a production version of a software system on one branch while enhancing the system on an
independent branch. CM systems also let you label a particular set of files and their revision
numbers, making it easy to identify exactly which set of files corresponds to a particular release
or bug fix.

Opportunistic solution: Prior to my joining, the team was already using CVS [SourceGear] as
the project’ s configuration management system. They used CVS to track revisions to individual
files and to label major releases using CVS’ s tag feature. I increased the use of CVS by creating
branches for maintenance and for further development. I also began labeling each patch release,
making it possible to identify the configuration that corresponded to the one the customer was
using in production, thus making it easier to fix the defects the customer identified.

Results: Our overall experience with CVS was that it is a reasonable CM tool. It does a fine job
tracking revisions to individual files and enabling the identification of sets of files and their
revisions. Unlike some more advanced CM tools, CVS doesn’ t directly facilitate associating
code changes with defect IDs; we worked around this deficiency by keeping a separate database
of release labels and defect IDs.

CVS is a little different from other CM systems in that you don’ t have to exclusively lock a file
in order to edit it. Because the files a programmer is working on aren’ t marked as "locked,"
programmers sometimes forget to check in all their changed files to the central repository; the
result is that a programmer might fix a defect in his private "sandbox" but not fully propagate the
fix to the central repository.

CVS isn’ t for programmers who need a graphical front−end on their CM system. Graphical user
interfaces (GUIs) are available for CVS, but they do not fully support all the CVS features
available on the command line. Using CVS via the command line is thus more powerful than
using it via a GUI, but with command line use it can be easy to make mistakes.

2.2 Defect tracking system
Problem: A defect tracking system is another important tool on large projects. Without a defect
tracking system, it is easy to forget to fix defects you know exist. Another problem is that one
team member can be unaware that another team member is actively solving a problem; the two
team members might duplicate each other’ s efforts. "Number of defects" is a basic quality
metric, but it is difficult to measure without a defect tracking system. Finally, without a defect
tracking system there is no specific history of what went wrong (the defects injected) while
developing the system and how the team addressed the defects.

Opportunistic solution: Again before I joined, the team put JitterBug [Tridgell] in place as the
project’ s bug tracking system. JitterBug is a free defect tracking system used on open source
software projects such as jikes [IBM]. The team used JitterBug sporadically and didn’ t record
all defects in it. I became the manager of the bug tracking system, making sure all defects were
recorded and addressed. We didn’ t forget to fix any of the defects we needed to repair, so the
product we delivered was better than it otherwise would have been.

Results: JitterBug is not as good as low−end commercial defect tracking systems, but it served
our needs nonetheless. By the end of the project, we identified and recorded 177 defects in
JitterBug, including defects identified during the first phase of the project, duplicates, and issues
that turned out not to be defects. The customer perceived a high level of quality in the product
we delivered; the perceived level of quality undoubtedly would have been lower if we had not
been so careful about tracking and fixing defects.

2.3 Automated nightly builds
Problem: Infrequent source code builds are a quality problem. "Code rot" can occur: when old
code is not compiled frequently, new or modified code can make the old code uncompilable.
Broken builds can be difficult to repair if the code changes were introduced too long ago for the
programmer to remember how he changed the code.

Opportunistic solution: An easy way to assure quality is to appoint a build master who makes
sure he can build the code, with no compiler errors, at regular intervals. The interval we chose
was one day. Programmers agreed that by the end of each day, any code changes they had
checked in to the CVS repository would build correctly.

The best way to build the system regularly is to do it automatically. Before I joined the team,
they used a set of build scripts to compile all the source code and build EJB components. The
scripts were interactive, prompting the user for which components he wanted to build. As build
master, I automated the build scripts, replacing interactive prompts with command line
arguments. I added a wrapper script that would backup the previous instance of the source tree,
check out the latest source code, and build the whole system. I used cron to run the wrapper
script automatically each weekday night at 2:00 AM. The wrapper script emailed a log of the
build to me; each morning I reviewed the log for build errors, isolated the source of each error,
and asked the programmer who injected the error to fix it. This system was known as the
"nightly build."

Results: We found a number of defects with this method. The usual problem was that the
programmer didn’ t check in all of his changes, so some source files in the repository were
inconsistent with each other. Because we found the defects within a day of the code change, it
was easier for the programmers to fix the defects than it would have been if we hadn’ t built the

code regularly. In addition, builds usually succeeded when they were needed most, such as for
an emergency patch release.

2.4 Automated nightly testing
Problem: The programmers had built a number of semi−automated tests for particular sections
of code. We wanted to run the tests regularly to help us identify newly introduced defects, but
there were too many tests to be able to run them manually.

Opportunistic solution: I initially attempted to automate the existing tests by adapting them to
the Java Test Driver [Kasperowski]. Because the tests were not designed for that kind of test
framework, however, it was time consuming, and I soon realized that I wouldn’ t be able to finish
porting the tests before the ship date. Instead, I built a wrapper script to simply execute the
existing tests in sequence. I added this script to the nightly build, which became the "nightly
build−and−test."

To analyze the results of each nightly build−and−test, I built a means of automatically
comparing the current results log with the results log of any other run of the nightly build−and−
test. My first attempt to do this was to use diff for a simple file comparison. There were two
problems with this approach: (1) the application’ s running log contained time stamps, which
were expected to be different every day, and (2) the application’ s running log contained verbose
Java garbage collector messages, which by their nature are nondeterministic. I minimized (but
did not completely solve) this problem by augmenting the simple diff with a number of sed
filters to produce a reasonable build−and−test log comparison tool.

Over time, I added tests of other important sections of code, using the Java Test Driver as the
test framework for the new tests.

Results: Automated nightly testing helped us find new defects within a day of a broken code
change, making it easier for the programmers to fix the defects than it would have been if we
had not built the code regularly.

2.5 QA web site
Problem: The nightly build−and−test logs were each over one megabyte in size; I grew tired of
receiving these huge logs as email attachments. I also didn’ t want to have to remember the long
command line required for comparing two sets of nightly build−and−test logs. Finally, I was the
only team member with a view of the results of the nightly build−and−test; I wanted the whole
team to have a view of the quality of each night’ s build−and−test.

Opportunistic solution: I built a QA web site for the team, using the Apache web server
[Apache], the Apache JServ servlet engine [JServ], and Java servlets [Davidson]. The web site,
shown in Figure 1, consisted of the most recent automated test results, a way to compare any set
of test results with any other set of test results, hyperlinks to web pages that could be used for
manual testing, and hyperlinks to written procedures.

Results: Using servlets to build a web site was relatively easy, but it was difficult to learn how to
configure JServ. (My motivation for implementing this web site with servlets was that the
project used servlets in its implementation, and I wanted to understand how they worked.) The
web site made it very easy for me to review nightly build−and−test results.

Figure 1: The nightly build−and−test web site

The test results web site grew into a more general project web site, with hyperlinks to sample
test bills and deployment procedures. The hyperlinks to web pages that could be used for
manual testing turned out to be extremely useful for the other team members; they vociferously
complained whenever the site was down.

Unfortunately, few team members used the test results part of the web site. They were more
interested completing the implementation than in viewing the day−to−day results of the nightly
build−and−test.

2.6 Manual testing
Problem: We wanted to evaluate the quality of the GUI regularly, but it wasn’ t practical to
automate GUI testing. One reason was that the team had not acquired automatic GUI testing
tools and it would have taken too long to purchase one. Another reason was that the GUI design
was not frozen, so it would have been a poor use of our time to develop and maintain automated
GUI tests.

Opportunistic solution: A written script for testing the GUI was left over from the first phase of

the project, and I adapted it for use with the current version of the product. I made it a policy
that the script had to be executed at least once per week, and I rigorously followed the policy.

Results: With this regular planned testing, augmented by ad hoc testing from other team
members, we identified many defects. In fact, manual GUI testing identified more defects than
any other part of the quality program. The success of the manual GUI testing effort probably
stems from the fact that all team members participated; the other quality initiatives were
executed by me alone.

2.7 Source code compiler
Problem: Different Java compilers have different characteristics. One important characteristic is
whether the source code they accept conforms to the Java Language Specification [Gosling]. If
a compiler accepts non−conforming source code, the compiled code’ s behavior might be
unpredictable. In addition, non−conforming source code is more time−consuming to maintain
than conforming source code.

Another important characteristic of a Java compiler is the amount of time it takes to compile the
source tree. Programmers are unlikely to use the project’ s build scripts to test whether their code
is buildable if it takes too long to execute a whole−system build.

A third characteristic of a Java compiler is its cross−platform portability. The usual Java
compiler, Sun’ s javac [Sun], is portable in that it is written in Java, but the format of the path
names in its command line parameters varies depending on whether it is running on Windows or
UNIX. Because of this, we were maintaining two sets of build scripts, one for Windows and one
for UNIX. As the build scripts evolved, it was difficult to keep the Windows−specific build
scripts synchronized with the UNIX−specific ones. Programmers sometimes complained that
the Windows−specific build scripts were broken; the scripts were indeed broken, because we
often forgot to update them to match the behavior of the UNIX−specific build scripts.

Opportunistic solution: One of the team members suggested that we use jikes [IBM] as our
Java compiler. jikes rejects non−conforming source code. jikes is written in C++ and is
compiled into a platform−native executable, so its execution speed is faster than that of javac .
jikes accepts UNIX−style path names (that is, paths with forward slashes) on both Windows
and UNIX. I modified the nightly build−and−test scripts to use jikes by default.

Results: The amount of time it took to build the whole system decreased from 63 seconds to 16
seconds, an improvement of nearly four times. (Times were measured on a Sun Enterprise 250
with 2 CPUs, 512M bytes of RAM, and 27G bytes of total disk space.)

Because jikes accepts UNIX−style path names on both Windows and UNIX, I was able to
retire the Windows−specific build scripts. I no longer had to maintain two sets of build scripts,
struggling to keep them synchronized. Programmers were more likely to use the build scripts
because the single set of scripts was more likely to succeed.

We identified a few instances of non−conforming Java source code. Two kinds of errors were
typical: unreachable code and uncatchable exceptions.

2.8 Improved delivery
Problem: Delivering the product to the customer and installing it on the customer’ s machine was
an ad hoc procedure. It was difficult to repeat successful instances of deployment. The

installation guide was too difficult to follow, so the person installing the system usually made
mistakes. It was time consuming to debug each unsuccessful deployment.

Opportunistic solution: I developed a set of scripts to automatically build and install the product,
as well as a procedure for making the delivery; this drastically reduced the number of
deployment mistakes. I began by carefully recording the steps I followed to build, deliver, and
install the system. I used this list of steps as the de facto procedure for deployment, refining it
every time I deployed the system. When I was comfortable deploying the system manually, I
built a script to do the work for me. Thereafter, the deployment procedure consisted of my
following a few manual steps and running the script.

Results: Deployment was almost always successful. There were no defects injected by poor
deployment.

2.9 HTML validation
Problem: The product is web−based, but there weren’ t enough resources to be able to test the
GUI on every combination of web browser and operating system. How could we be confident
that the application would generate valid web pages for arbitrary combinations of web browser
and operating system, and for arbitrary customer billing information?

Opportunistic solution: On a previous project, I discovered a tool called weblint [Bowers] to
automatically check the validity of the HTML code that the product delivered to users’ web
browsers. weblint validates HTML files against the World Wide Web Consortium’ s HTML
3.2 standard [W3C]. weblint also has parameters to validate the HTML extensions accepted
by Microsoft’ s Internet Explorer and Netscape’ s Navigator browsers.

The billing application generated web pages dynamically based on the user’ s monthly account
information and on what kind of page he requested. weblint can only validate static HTML
files, though. One of the team members had built a simple web spider that visited parts of a
customer’ s bill to ensure they exist. I enhanced the spider to visit every page of a customer’ s
bill, saving the dynamically generated HTML files to disk. I created a large number of
representative bills, saved their HTML to disk, and ran weblint on the disk files to validate
the generated HTML. I added the execution of the web spider and weblint to the nightly
build−and−test.

Results: The generated HTML was surprisingly good we identified only a small number of
defects this way. I write "surprisingly good" based on my experience with other web testing
projects, where the HTML was largely non−conforming with respect to the standard.

When I ran weblint in Netscape−compatibility mode, it identified many instances of non−
compliant HTML code. These were not considered defects because the web pages were
designed to use Internet Explorer HTML extensions.

2.10 Opportunities not taken
There were a few techniques we considered using, but did not use. They were good ideas and
might have identified defects, but we did not have the resources to execute them.

One of our ideas was to automate GUI testing. Unfortunately, we didn’ t already have a GUI
testing tool in our possession, and we probably didn’ t have enough time to develop and maintain
automated GUI tests anyway. In addition, the GUI was in a state of flux, so adjusting the tests to

match a given day’ s instance of the GUI would have been costly. "The cost of automating a test
is best measured by the number of manual tests it prevents you from running and the bugs it will
therefore cause you to miss;"[Marick] by this measure, automating the GUI testing would not
have been a good investment.

We considered performing code coverage analysis to help determine the goodness of our
existing tests and to guide new test development. We went so far as to evaluate tools, select one,
and place an order for it. In this case, big−company bureaucracy impeded us. Two months after
my placing the order, the tool had not arrived; the project was nearing its end date, and we
would not have enough time left to use the tool effectively. In retrospect, this delay might have
been a good thing: we had plenty of other development work to do, and the use of the code
coverage tool might have interfered with other quality assurance activities.

We did not build many new tests. I began building a tool that would identify dependencies
between Java classes. I wanted to test the classes exhaustively, in order from those with the least
number of dependencies to those with the greatest number of dependencies, using a levelization
technique similar to the one described in [Lakos]. However, while building this tool, I would
not have been identifying defects, so I dropped the idea. We were fairly comfortable with the
existing code anyway, despite that it had not been extensively tested in the lab. Much of the
code was already running in production and working well in that environment.

The semi−automated tests that existed before I joined the team exercised large sections of code
and sent the results to stdout. I wanted to modify these tests so they would exercise smaller
sections of code, to make it easier to identify the source of a defect when one was found. I also
wanted the tests to be able to determine automatically whether their results matched the expected
results, and report that information to the human tester. I began retrofitting the existing tests to
work within the Java Test Driver framework. This proved to be too time consuming; I estimated
that I would have spent all my time on this activity and nothing else.

Finally, we wanted to reorganize the Java source code tree. The existing source code tree did
not follow the Java convention. The convention is that the source code tree is a tree of
directories whose names match Java package names. The .java files that declare themselves to
be in a given package go in the corresponding directory. Instead of following this convention,
the files in the source code tree were grouped by module name, which was independent of the
Java package names. This is a problem because Java compilers and other development tools do
not work efficiently, if at all, unless the .java files are in a conventional Java source tree. It also
makes maintenance difficult because experienced Java programmers have difficulty finding
source code files if they are not in the conventional directory tree. I built a tool that takes an
arbitrary Java source tree as its input and constructs a conventional Java source tree. The tool
appeared to work, but we were afraid of the potential instability that reorganizing the source tree
might introduce. We postponed this activity until the next phase of the project.

3. Results
We identified 127 potential defects during this phase of the project. Of these, 21 were duplicates
or were issues that were not really defects, leaving 106 unique defects. The customer discovered
at most 10 of these defects, or 9% of the total number of known defects. In fact, the customer
discovered fewer than 10 defects: 10 is the sum of the number of defects identified by the
customer and the number of defects we identified while investigating those defects. Although
we did not establish a specific target at the beginning of the project, our delivering 10 defects to

the customer indicates that we were successful in delivering a high quality product.

The two best techniques for identifying defects were manual testing and automated nightly
testing. Manual testing was responsible for finding 49 defects, or 46% of known defects, and
automated nightly testing helped us find 28 defects, or 26% of known defects. The combination
of automated nightly build and automated nightly testing together identified 38 defects, or 36%
of known defects.

Table 1 and Figure 2 show the number of defects identified by each defect identification activity.

We delivered a relatively high quality product on time. The customer accepted the delivery and
found very few defects. The opportunistic quality improvement strategy worked.

Table 1: The usefulness of each means of identifying defects is indicated by the number of defects identified by
each means. "Manual testing" includes both GUI and non−GUI manual testing. "Other" includes all ad hoc
means. "Customer discovered" includes defects identified by the customer, as well as defects we identified while
investigating those defects. "Trash" includes duplicates and issues that were not truly defects.

Figure 2: The relative utility of each means of identifying defects. Manual testing is clearly a productive means
of identifying defects. The combination of automated nightly build and automated nightly testing is close behind.

Means of identifying defects % of total
Automated nightly build 10 7.9% 9.4%
Automated nightly testing 28 22.0% 26.4%
Manual testing 49 38.6% 46.2%
Source code compiler 4 3.1% 3.8%

2 1.6% 1.9%
Other (Unknown, code review, etc.) 3 2.4% 2.8%
Customer discovered 10 7.9% 9.4%
Trash (duplicates, non−defects, etc.) 21 16.5%
Totals 127 100.0%
Totals, non−trash 106 83.5% 100.0%

Number of
defects

% of
non−trash

HTML validation

0

5

10

15

20

25

30

35

40

45

50

Comparison of means of identifying defects

Automated nightly
build

Automated nightly
testing

Manual testing

Source code
compiler

HTML validation

Other (Unknown,
code review, etc.)

Customer
discovered

Trash (duplicates,
non−defects, etc.)

Means of identifying defects

of

 d
ef

ec
ts

4. References
[Apache] The Apache Software Foundation. The Apache HTTP server project.

"http://www.apache.org/httpd.html ".

[Bowers] Bowers, N. Weblint. "http://www.weblint.org/ ".

[Davidson] Davidson, J., and Ahmed, S. Java servlet API specification, version 2.1a.
Sun Microsystems, Inc., 1998.

[Gosling] Gosling, J., Joy, B., and Steele, G. The Java Language Specification,
edition 1.0. Sun Microsystems, Inc., 1996.
"http://java.sun.com/docs/books/jls/html/ ".

[IBM] IBM. Jikes project.
"http://oss.software.ibm.com/developerworks/
opensource/jikes/project/ ".

[JServ] The Apache Software Foundation. The Apache JServ project.
"http://java.apache.org/jserv/ ".

[Kasperowski] Kasperowski, R. The design and implementation of a Java test driver. In
Proceedings of the 16th International Conference and Exposition on
Testing Computer Software (Washington, D.C.), 1999;
"http://www.altisimo.com/research/
design−implement−test−driver.html ".

[Lakos] Lakos, J. Large−scale C++ Software Design, Addison−Wesley, 1996,
203−324.

[Marick] Marick, B. When should a test be automated? In Conference
Proceedings: Eleventh International Software Quality Week (San
Francisco), May, 1998.

[SourceGear] SourceGear Corporation. CVS.
"http://www.sourcegear.com/CVS/ ".

[Sun] Sun Microsystems, Inc. Java 2 SDK tools.
"http://java.sun.com/products/jdk/1.2/docs/
tooldocs/tools.html ".

[Tridgell] Tridgell, A. JitterBug.
"http://samba.anu.edu.au/jitterbug/ ".

[W3C] World Wide Web Consortium. HTML 3.2 Reference Specification. Jan.,
1997. "http://www.w3.org/TR/REC−html32.html ".

QWE2000 Extra Session

Mr. Olivier Denoo [Belgium]
(ps_testware)

"Assuring Your E-commerce Revenue"

Key Points

Explaining the generic competitive strategies.●

Explanation of the Business Process Thinking technique to ensure the requirements are as
desired by the customer.

●

Classification of test requirements based on prioritisation on business criticality/added value
and uniqueness to by able to check the chosen competitive strategy.

●

Explanation of the test techniques depending on the classification.●

Comparison of intended competitive strategy on web sites and perceived competitive
strategy.

●

Presentation Abstract

Abstract to be supplied.

About the Speaker

Olivier Denoo is a consultant active in the Business of Structured Software Testing
since 1997. He was the key-developer of ps_testware's Y2K testing techniques.
Nowadays, he still is a highly respected trainer of this methodology. Continuously
looking for new challenges, Olivier started to investigate the possibilities of website
and e-commerce testing and became in charge of ps_testware's
e-commerce/WWW-testing knowledge base. Currently, he is working in a project at
one of the largest Belgian Telecom companies.

QWE2000 -- Conference Presentation Summary

http://www.soft.com/QualWeek/QWE2K/Papers/SB3.html [10/12/2000 4:35:16 PM]

1

QWE2000 – QWE2000 – Assuring YourAssuring Your E- E-
commerce Revenuecommerce Revenue

C
op

yr
ig

ht
 ©

 2
00

0
ps

_t
es

tw
ar

e –
 Q

W
E2

00
0

 A
ss

ur
in

g
yo

ur
 E

-c
om

m
er

ce
 R

ev
en

ue
 -

 1

Copyright © 2000 ps_testware – Olivier Denoo – QWE2000 Assuring your E-commerce Revenue -2

AgendaAgenda
•• IntroductionIntroduction
•• The The four four WebSurfersWebSurfers of Apocalypse of Apocalypse
•• Web benchmarking toolsWeb benchmarking tools
•• Web load Web load / performance test / performance test toolstools
•• Web Web monitoring monitoring toolstools
•• ConclusionsConclusions
•• QuestionsQuestions

2

Copyright © 2000 ps_testware - Olivier Denoo – QWE2000 Usability Testing 3

IntroductionIntroduction

The The New New EconomyEconomy

Copyright © 2000 ps_testware – Olivier Denoo – QWE2000 Assuring your E-commerce Revenue -4

The The New New EconomyEconomy

•• Internet Internet is boomingis booming
••200 million 200 million potential consumerspotential consumers are are

connected todayconnected today
••1 billion 1 billion expected within expected within 10 10 yearsyears

••The number The number of E-commerce of E-commerce web web sites sites isis
growing exponentiallygrowing exponentially

3

Copyright © 2000 ps_testware – Olivier Denoo – QWE2000 Assuring your E-commerce Revenue -5

The The New New EconomyEconomy

•• The new economy is knocking on ourThe new economy is knocking on our
doordoor

••Get webbed or dieGet webbed or die
••Fast-growing businessFast-growing business
••Stock exchange is surfing…its own wayStock exchange is surfing…its own way
••Competitors are already thereCompetitors are already there

Copyright © 2000 ps_testware – Olivier Denoo – QWE2000 Assuring your E-commerce Revenue -6

ButBut……

4

Copyright © 2000 ps_testware – Olivier Denoo – QWE2000 Assuring your E-commerce Revenue -7

TheThe Four Four WebSurfers WebSurfers of of the the Apocalypse Apocalypse
•• AvailabilityAvailability

•• ReliabilityReliability

•• ScaleabilityScaleability

•• PerformancePerformance

Thanks to DC Comics & Marvel

Copyright © 2000 ps_testware – Olivier Denoo – QWE2000 Assuring your E-commerce Revenue -8

Downtime CostsDowntime Costs::

•• Dell computers :Dell computers :
••Half of the sales are made through the webHalf of the sales are made through the web
••Revenue is about 40 million dollars / dayRevenue is about 40 million dollars / day

•• The damages are even bigger :The damages are even bigger :
••Lost salesLost sales
••Lost advertisingLost advertising
••Maintenance and repair costsMaintenance and repair costs
•• Bad impressionBad impression

–– ReliabilityReliability
–– SecuritySecurity
–– …/……/…

5

Copyright © 2000 ps_testware – Olivier Denoo – QWE2000 Assuring your E-commerce Revenue -9

Business Business Costs Costs ::
•• If download time is « too long »If download time is « too long »

–– 33% just leave and do not try again33% just leave and do not try again
–– 44% leave and buy the same from traditional44% leave and buy the same from traditional

retail sourcesretail sources
–– I would leave and buy from competitorsI would leave and buy from competitors

Copyright © 2000 ps_testware - Olivier Denoo – QWE2000 Usability Testing 10

SolutionsSolutions

6

Copyright © 2000 ps_testware – Olivier Denoo – QWE2000 Assuring your E-commerce Revenue -11

SolutionsSolutions

No silver bullets

No amulets and gri-gris

Simply

STRUCTURED TESTING

Simply

STRUCTURED TESTING

Copyright © 2000 ps_testware - Olivier Denoo – QWE2000 Usability Testing 12

Web Benchmarking ToolsWeb Benchmarking Tools

7

Copyright © 2000 ps_testware – Olivier Denoo – QWE2000 Assuring your E-commerce Revenue -13

Web Benchmarking ToolsWeb Benchmarking Tools
•• Measure and compare performancesMeasure and compare performances

–– Download timeDownload time
–– AccessibilityAccessibility
–– « Freshness » of the information« Freshness » of the information
–– …/……/…

•• Test in productionTest in production
•• (Mostly) Encapsulated in services(Mostly) Encapsulated in services
•• Cost = depending on amountCost = depending on amount

 and complexity and complexity

Copyright © 2000 ps_testware – Olivier Denoo – QWE2000 Assuring your E-commerce Revenue -14

Web Benchmarking ToolsWeb Benchmarking Tools
•• Comparing with « competitors »Comparing with « competitors »

–– There’s no game to win except yoursThere’s no game to win except yours
–– Being the first is no issue, only business objectives countBeing the first is no issue, only business objectives count

•• Possible confusion between benchmarking andPossible confusion between benchmarking and
«« benchmarketing benchmarketing » »

•• Environment is not under controlEnvironment is not under control
–– Cache, routing, parameters, …Cache, routing, parameters, …

•• Realistic = Real time Realistic = Real time
•• Hard to reproduceHard to reproduce
•• Could interfere with real businessCould interfere with real business
•• Too lateToo late
•• Cheap & flexibleCheap & flexible

8

Copyright © 2000 ps_testware – Olivier Denoo – QWE2000 Assuring your E-commerce Revenue -15

Web Benchmarking ToolsWeb Benchmarking Tools
•• Some web benchmarking tools:Some web benchmarking tools:

–– Holistic Holistic Performance indexPerformance index
–– WebCriteria WebCriteria WebCriteriaWebCriteria Industry Index Database Industry Index Database

Copyright © 2000 ps_testware - Olivier Denoo – QWE2000 Usability Testing 16

Web Load Web Load / Performance/ Performance
ToolsTools

9

Copyright © 2000 ps_testware – Olivier Denoo – QWE2000 Assuring your E-commerce Revenue -17

Web Load Web Load / Performance / Performance ToolsTools
•• Measure scalabilityMeasure scalability
•• Measure performances through simulating virtualMeasure performances through simulating virtual

clients (traffic simulation)clients (traffic simulation)
•• Number of virtual users depending on computerNumber of virtual users depending on computer

power and software licencepower and software licence
•• Output =Output = nb nb. of users. of users vs vs. Response time or. Response time or

 any relevant metric any relevant metric

Copyright © 2000 ps_testware – Olivier Denoo – QWE2000 Assuring your E-commerce Revenue -18

Web Load Web Load / Performance / Performance ToolsTools
•• Business as usualBusiness as usual

–– (Re)Play normal business scenarios(Re)Play normal business scenarios
–– Use combination of business profilesUse combination of business profiles
–– Measure response time and performancesMeasure response time and performances

•• Breakdown testBreakdown test
–– Load server until it breaks = find boundariesLoad server until it breaks = find boundaries

(slight increase then sudden sky high response time)(slight increase then sudden sky high response time)

–– Define objective up front (no sadistic approach)Define objective up front (no sadistic approach)
–– Use to validate business goalsUse to validate business goals

•• Cost depending onCost depending on
–– TechniqueTechnique
–– Number of virtual usersNumber of virtual users

10

Copyright © 2000 ps_testware – Olivier Denoo – QWE2000 Assuring your E-commerce Revenue -19

Web Load Web Load / Performance / Performance ToolsTools
•• ControllableControllable
•• ReproducibleReproducible
•• Predictive valuesPredictive values
•• Can fail in reproducing real world’s conditionsCan fail in reproducing real world’s conditions
•• Expensive (10.000 – 25.000 Euro)Expensive (10.000 – 25.000 Euro)

Copyright © 2000 ps_testware – Olivier Denoo – QWE2000 Assuring your E-commerce Revenue -20

Web Load Web Load / Performance / Performance ToolsTools
•• Some web load testing tools:Some web load testing tools:

–– RadView RadView WebLoadWebLoad
–– Mercury Interactive Mercury Interactive AstraAstra Site Test Site Test
–– Web Performance Web Performance Web Performance TrainerWeb Performance Trainer
–– Rational Rational Performance StudioPerformance Studio
–– CCompuware ompuware QALoadQALoad
–– RSW RSW e-Loade-Load
–– Segue Segue Silk PerformerSilk Performer

11

Copyright © 2000 ps_testware - Olivier Denoo – QWE2000 Usability Testing 21

Web Web Monitoring Monitoring ToolsTools

Copyright © 2000 ps_testware – Olivier Denoo – QWE2000 Assuring your E-commerce Revenue -22

Web Web Monitoring Monitoring ToolsTools
•• AvailabilityAvailability
•• ReliabilityReliability
•• Performances (download time trigger)Performances (download time trigger)
•• Basic functionality (hyperlinks…)Basic functionality (hyperlinks…)
•• Defined scenarios repeated at different time fromDefined scenarios repeated at different time from

different time zonesdifferent time zones
•• E-Alert is sent to a defined mail boxE-Alert is sent to a defined mail box
•• Separate or encapsulatedSeparate or encapsulated

in servicesin services

12

Copyright © 2000 ps_testware – Olivier Denoo – QWE2000 Assuring your E-commerce Revenue -23

Web Web Monitoring Monitoring ToolsTools
•• Realistic = real timeRealistic = real time
•• Helpful = quick response & warningHelpful = quick response & warning
•• Environment is not under controlEnvironment is not under control

–– Cache, routing, parameters, …Cache, routing, parameters, …

•• Hard to reproduceHard to reproduce
•• Could interfere with real businessCould interfere with real business
•• Too lateToo late
•• Cheap & flexibleCheap & flexible

Copyright © 2000 ps_testware – Olivier Denoo – QWE2000 Assuring your E-commerce Revenue -24

Web Web Monitoring Monitoring ToolsTools
•• Some web monitoring tools:Some web monitoring tools:

–– Compuware Compuware WebCheckWebCheck
–– RSW RSW e-Monitore-Monitor
–– Segue Segue SilkmonitorSilkmonitor
–– Testworks Testworks CAPBAKCAPBAK
–– Mercury Interactive Mercury Interactive TopazTopaz
–– Service Metrics Service Metrics SM-WebSM-Web

13

Copyright © 2000 ps_testware – Olivier Denoo – QWE2000 Assuring your E-commerce Revenue -25

Conclusions:Conclusions:
•• Which ones to use?Which ones to use?

–– AllAll = They are complementary = They are complementary
•• How to include them in your testing?How to include them in your testing?

–– Structured E-Commerce Testing / MethodologyStructured E-Commerce Testing / Methodology
–– Start testing as early as possibleStart testing as early as possible
–– Business Process Thinking Business Process Thinking TMTM

–– Understand the needs and adopt the right approachUnderstand the needs and adopt the right approach
(TRH)(TRH)

–– Plan long termPlan long term
(evolution, post production, maintenance…)(evolution, post production, maintenance…)

•• Do not forgetDo not forget
–– Usability & Information ArchitectureUsability & Information Architecture
–– Functionality & PortabilityFunctionality & Portability
–– SecuritySecurity

TiensesteenwegTiensesteenweg 329 329
B-3010 B-3010 LeuvenLeuven
Tel.: +32 (16) 35.93.80Tel.: +32 (16) 35.93.80
Fax: +32 (16) 35.93.88Fax: +32 (16) 35.93.88
e-mail: e-mail: psps__testwaretestware@@compuservecompuserve.com.com
http://E-Commerce.http://E-Commerce.pstestwarepstestware.com.com

Copyright © 1999 ps_testware - <Name> - <Name Presentation> - 26

14

Copyright © 2000 ps_testware – Olivier Denoo – QWE2000 Assuring your E-commerce Revenue -27

Our BusinessOur Business
•• Structured Software TestingStructured Software Testing

•• MethodologyMethodology

•• Implementation ModelImplementation Model CodingCoding

Audit testAudit test

Acceptance testAcceptance test

System testsSystem tests

Integration testsIntegration tests

Modular testsModular tests

Strategic choicesStrategic choices

User requirementsUser requirements

Logical designLogical design

Physical designPhysical design

Program designProgram design

FollowFollow--upup

TestTest
executionexecution

TestTest
DevelopDevelop--

mentment

TestTest
PlanningPlanning

TestTest RepairRepairRetestRetestScopeScope PlanPlan DesignDesign BuildBuild

™

Copyright © 2000 ps_testware – Olivier Denoo – QWE2000 Assuring your E-commerce Revenue -28

Our ServicesOur Services
•• Training Training (see (see ps_testware instituteps_testware institute))

•• CoachingCoaching
•• ConsultancyConsultancy
•• Outsourcing Outsourcing (now also Total Outsourcing)(now also Total Outsourcing)

Provided by:Provided by:
–– Test ConsultantsTest Consultants

15

Copyright © 2000 ps_testware – Olivier Denoo – QWE2000 Assuring your E-commerce Revenue -29

Our ProductsOur Products
•• TestTest AssessmentAssessment
•• Test AssignmentTest Assignment
•• Test PlanTest Plan
•• Test ReportTest Report
•• Test AdviceTest Advice
•• Test Pack™Test Pack™
•• Test LaboratoryTest Laboratory
•• ToolsTools
•• E-commerce testingE-commerce testing

New

New

Copyright © 2000 ps_testware – Olivier Denoo – QWE2000 Assuring your E-commerce Revenue -30

ReferencesReferences
•• KredietbankKredietbank
•• Barco GraphicsBarco Graphics
•• Exact MaatwerkExact Maatwerk
•• ING BankING Bank
•• Bank Bank Card CompanyCard Company
•• JanssenJanssen

PharmaceuticaPharmaceutica
•• TessaTessa
•• Europese RaadEuropese Raad
•• LernoutLernout & & HauspieHauspie

•• OriginOrigin
•• SpecsSpecs
•• DexiaDexia
•• SiemensSiemens
•• ING ING 22
•• YokogawaYokogawa
•• LinkLink
•• Alcatel BellAlcatel Bell
•• MobistarMobistar
•• AXA-Royale AXA-Royale BelgeBelge

16

Copyright © 2000 ps_testware – Olivier Denoo – QWE2000 Assuring your E-commerce Revenue -31

CredoCredo

ps_testware’s first responsibility goes to the customers who use our
services. Our services must be of high quality and must be a reference
for our customers. In line with our primary business, Structured
Software Testing, we may not indulge in pressure, quantity or quick
profit.

We are responsible to our members, the men and women who work with
us. Every member must be respected as an individual and must be
rewarded personal and fair. We must support our members via a
competent management, an adequate working environment and proper
working conditions. Our members must have the means to provide and
receive feedback, allow them and the organisation to learn continuously.
We must support our members in their family responsibilities. Our
actions must be just and ethical.

Our final responsibility is to our stockholders. Our business must make a
sound profit. We must innovate and continuously improve our methods
and techniques. We must develop new services and implement them
effective and efficient. We must create reserves to provide for adverse
times. Our stockholders must receive a fair return on their investments.

Copyright © 2000 ps_testware – Olivier Denoo – QWE2000 Assuring your E-commerce Revenue -32

The MissionThe Mission

To offer the To offer the best solutionbest solution to quality problems of computer to quality problems of computer
systems by using its systems by using its test expert knowledgetest expert knowledge in a in a professionalprofessional

way.way.

Best solutionBest solution: the solution that provides the highest contribution.: the solution that provides the highest contribution.

Test expert knowledgeTest expert knowledge: the intellectual asset of: the intellectual asset of ps ps__testwaretestware, a profound, a profound
and complete knowledge regarding verification and validation (testing).and complete knowledge regarding verification and validation (testing).

ProfessionalProfessional: the courage to really provide what has been promised.: the courage to really provide what has been promised.

17

C
op

yr
ig

ht
 ©

 2
00

0
 p

s_
te

st
w

ar
e

–
Q

W
E2

00
0

 A
ss

ur
in

g
yo

ur
 E

-c
om

m
er

ce
 R

ev
en

ue
- 3

3

SAI (Studiecentrum voor Automatische Informatieverwerking)
is a non-profit organization whose purpose is to promote the
knowledge of Information. As far as the theoretical as practical
aspects of information knowledge, the organization takes a
stand on social questions that has to do with automation of
information as far as it applies. The activities of the
organization are focused on people who are specialists in
information. SAI organizes discussions, meetings, seminars,
workshops and a magazine called "Informatie".
(http://www.sai.be/)

The aim of TestNet is the professionalization of testing IT
products, and an increase in the awareness and importance of
testing as a profession in its own right. TestNet stimulates the
exchange of professional knowledge and practical experience
amongst testers, and stimulates research, from a scientific
standpoint as well as from a practical perspective.
(http://www.testnet.org)

The Technologisch Instituut is active in all professional fields
where technology and science play a central part. These
include a wide range of activities, ranging from civil
engineering, infrastructure, process technology, electrical
engineering, telecommunications, computer technology, food
and agricultural technology, the study of materials to general
technologies such as management techniques, energy, safety
and environmental technology (34 different sections). (http://www.kviv.be)

 The American Society for Quality is a membership organization dedicated to
promoting the principles and practices of quality improvement, with a mission
to "be recognized throughout the world as the leading authority on, and
champion for, quality." The ASQ Software Division, which represents over
5000 professionals worldwide, is dedicated to "improve the ability of individuals
and organizations to satisfy their customers with quality software products and
services through education, communication, research, outreach, and
professional development. http://www.asq.org

The European Software Institute is one of the world's leading independent
authorities on software process improvement. ESI is a non-profit-making
organisation driven by the demands of European industry. It is supported by
the European Commission, the Basque Government and through company
membership. ESI's work is centred on products and services that are tied
directly to core business objectives such as reducing costs and increasing
predictability of results among others. ESI's headquarters are in Bilbao, Spain.
(http://www.esi.es)

The goal of the European Systems and Software Initiative (ESSI) is to promote
improvements in the software development process in industry, through the
take-up of well-founded and established — but insufficiently deployed —
methods and technologies, so as to achieve greater efficiency, higher quality,
and greater economy. In short, the adoption of Software Best Practice.
(http://www.esi.es/ESSI/welcome.html)

The German Informatics society (GI) is the association of about 21,000 men
and women who, by their work, take part in the progress of informatics or who
are interested in the development of informatics. The work of the GI ist mostly
done in a decentralized way in divisions, expert committees, special interest
groups, working groups, regional groups, advisory councils and in user
groups.
(http://www.gi-ev.de)

QWE2000 Keynote Session K3-1

Rik Daems
Minister of Telecommunications

Government of Belgium

Belgium's Five-Star Plan to Develop The
Information Society

Presentation Summary

The Belgian government has approved a new "Five-Star" master plan for development of the
information society in Belgium. This plan covers all government departments and aims at making
the information society available for everyone in Belgium, and at enhancing Belgium's competitive
positions in the information and communication technologies.

The "Five-Star ICT Masterplan" is based on the best practices from all over the world and is built
up around these five key success criteria:

The introduction of "e-government" in Belgium.●

Universal access and internet competencies.●

ICT infrastructure.●

Knowledge and innovation.●

Regulation and law.●

We look forward to making a primary contribution in the construction of a future-oriented Europe.

QWE2000 -- Conference Presentation Summary

http://www.soft.com/QualWeek/QWE2K/Papers/K31.html [10/24/2000 11:03:57 AM]

QWE2000 Keynote Session K3-2

Mr. Thomas Drake
(ICCI)

The Future of Software Quality - Our Brave New
World - Are We Ready?

Key Points

Quality for network centric systems●

Software quality engineering●

Future of quality and testing●

Presentation Abstract

How will the software quality market evolve over the next few years?

What is at stake? What is it going to take?

Internet, the Web, and e-Business are increasingly demanding higher and higher
levels of quality for network-based software systems with less and less mean time
between failures. Why?

The impact of poor quality and less than robust systems increasingly affect the
bottomline for many businesses.

A lot has happened to improve the situation and new methodologies and new tools
for improving software quality have emerged in the last few years, but I would
suggest that radical new approaches and initiatives must be created and adopted if
the desirable quality levels to support the e-Economy are to be truly realized and
especially at the Internet and global level.

What would that look like?

It will take a combination of component-based development, design by contract,
specification-based testing, and statistical process control. It will require and even
demand much higher levels of predictive and profiling analysis.

It will also demand enterprise level and even systems thinking as more and more
complex "web-enabled" applications are deployed into and amongst various market
spaces. So we have the twin challenges of faster and faster delivery and deployment
times requiring higher and higher levels of quality.

All of these changes are placing great pressure on the traditional ways of testing and
viewing quality.

QWE2000 -- Conference Presentation Summary

http://www.soft.com/QualWeek/QWE2K/Papers/K32.html (1 of 2) [9/28/2000 11:15:31 AM]

The 'target" customer is no longer just the QA or test group. Increasingly what is
demanded is a business and enterprise level focus in addition to the technical.

Moreover, these challenges are not only technical but also cultural in nature and it
may be useful to describe at a survey level this "new" future in terms of the new
initiatives that are now increasingly required including component-based
development and applied software engineering, specification-based testing, test
coverage and analysis technology, design for test principles, various predictive
software and profiling analysis techniques and approaches, and full life-cycle
application testing activities and methodologies as well as a concentrated focus and
emphasis on the various quality and testing ôstatesö as part of these initiatives.

The future of quality demands nothing less.

About the Speaker

Mr. Drake is a software systems quality specialist and management and information
technology consultant for Integrated Computer Concepts, Inc. (ICCI) in the United
States. He currently leads and manages a U.S. government agency-level Software
Engineering CenterÆs quality engineering initiative.

In addition, he consults to the information technology industry on technical
management and software engineering and code development issues.

As part of an industry and government outreach/partnership program, he holds
frequent seminars and tutorials covering code analysis, software metrics, OO
analysis for C++ and Java, coding practice, testing, best current practices in software
development, the business case for software engineering, software quality
engineering practices and principles, quality and test architecture development and
deployment, project management, organizational dynamics and change
management, and the people side of information technology.

He is the principal author of a chapter on ôMetrics Used for Object-Oriented
Software Qualityö for a CRC Press Object Technology Handbook published in
December of 1998. In addition, Mr. Drake is the author of a theme article entitled:
ôMeasuring Software Quality: A Case Studyö published in the November 1996 issue
of IEEE Computer. He also had the lead, front page article published in late 1999 for
Software Tech News by the US Department of Defense Data & Analysis Center for
Software (DACS) entitled: ôTesting Software Based Systems: The Final Frontier.ö

Mr. Drake is listed with the International WhoÆs Who for Information Technology for
1999, is a member of IEEE and an affiliate member of the IEEE Computer Society.
He is also a Certified Software Test Engineer (CSTE) from the Quality Assurance
Institute (QAI).

QWE2000 -- Conference Presentation Summary

http://www.soft.com/QualWeek/QWE2K/Papers/K32.html (2 of 2) [9/28/2000 11:15:31 AM]

 1 Thomas A. Drake

The Future of Software Quality Quality Week Europe 2000

THE FUTURE OF
SOFTWARE QUALITY

-- OUR BRAVE NEW WORLD --
ARE WE (YOU!) READY?

Thomas A. Drake
Quality Architect/Software Anthropologist

Enterprise Management and Information Technology Consulting
Certified Software Test Engineer (CSTE)

4th International Software & Internet Quality Week Europe 2000
Keynote K3-2

Integrated Computer Concepts, Inc. (ICCI)
http://www.integratedcc.com
thomas.drake@integratedcc.com

© Copyright 2000 by Thomas Drake. All Rights Reserved

 2 Thomas A. Drake

The Future of Software Quality Quality Week Europe 2000

Facing the Real Quality
Challenge...

Presented at the Speed of
Internet

3 hours of info in 45 minutes!

 3 Thomas A. Drake

The Future of Software Quality Quality Week Europe 2000

An Historical Perspective...

"The conveniences and comforts of humanity in
 general will be linked up by one mechanism,
 which will produce comforts and conveniences
 beyond human imagination. But the smallest
 mistake will bring the whole mechanism to a
 certain collapse.”

 -Pir-o-Murshid Inayat Khan, 1922
 (Tasawuuf leader)

 4 Thomas A. Drake

The Future of Software Quality Quality Week Europe 2000

Another Historical
Perspective…!

“The accelerating rate of change in society is providing
increased pressure on management to incorporate the

computer into the planning process. The implementation
and use of these systems are, however, extremely

difficult from the managerial, not the technical,
viewpoint. Computer assisted planning alters the power

structure of the organization, changes patterns of
communications, revolutionizes decision making, and

makes new demands on the database. Moreover, it
restructures management roles and general disturbs

human relationships by threatening security and
imposing new demands for cooperation. Traditional

management theory and practices are no longer
appropriate, and fragmented organizational perspectives

must be abandoned.”

 - James B. Boulden, Computer-Assisted Planning Systems, 1975.

 5 Thomas A. Drake

The Future of Software Quality Quality Week Europe 2000

Historical Evolution

T

E

E

T T
T

T

T

E

1950 to 1980
• System-centric systems
• Data Processing
• MIS

E = Enterprise
T = Technology

1981 to 1995

• Data processing
• User-centric systems
• Departmental computing
• Distributed computing
• Workgroup computing

1996 to 2000+
• Data warehousing
• End-user empowerment
• Network computing
• Client-Server computing
• Workgroup computing
• Intranet/Internet & OLTP
• Electronic commerce
• Business-centric
• Enterprise computing

 6 Thomas A. Drake

The Future of Software Quality Quality Week Europe 2000

Running Rampant in
Cyberspace

Missing the Obvious

Forgetting the Fundamentals

Shortened Product Release Schedules

Testing Never Stops when Content is
Continuously Changing

Web Time is ALL the Time!

What’s Missing “Big Time” ?

Systems Thinking and Perspective!

 7 Thomas A. Drake

The Future of Software Quality Quality Week Europe 2000

The Software Development Challenge:
“Easy to Hack Out - Easy to Hack In…”

Swamp Beehive

Hacker’s
Heaven Software

Factory

High

Low Organizational Maturity

T
ec

hn
ol

og
y

In
ve

st
m

en
t

 8 Thomas A. Drake

The Future of Software Quality Quality Week Europe 2000

Software - NOT a Naturally
Occurring Phenomena!

If you exclude the time it takes to learn, the money
that it take to train, the elusive reuse benefits, the
resistance to change, the constantly arising trouble
spots, the frequent upgrades, the long lead times
required to build applications from scratch, the
complex programming languages, the lack of

scalability, the shortage of talent, the performance
penalties, the deployment challenges, the heavy

maintenance burdens, the difficulty in comprehension,
and the expense of manually reapplying one’s

customization, then software technology is quite
beneficial. :-)

Completely dependent on who we are as human
beings! After all it is us humans doing the creating!
A product of our fertile imaginations and intellect!

 9 Thomas A. Drake

The Future of Software Quality Quality Week Europe 2000

The Challenge for the
Enterprise

þ Boston Consulting Group, Inc. Study - Winter 2000

þ 100 executives in industries from manufacturing,
telecommunications, to financial services
üOnly one of three enterprise management software

implementations was successful in terms of cutting
costs, meeting business goals and showing a tangible
financial impact

ü 60% of respondents said the new systems had helped
ü Just over 1/2 said it met their business goals
ü 1/3 said software vendors encouraged “excessive”

spending
ü 12% of the vendors were “fired”

 10 Thomas A. Drake

The Future of Software Quality Quality Week Europe 2000

Sobering Numbers (1)

þ Standish Group Study in late 1995
ü USA spent $81 billion for cancelled software projects
ü $59 billion for projects completed late, over budget, or

lacking key or essential functionality
ü Only 16.2% of projects were completed on time & within

budget with only 9% in larger companies
ü In larger companies completed projects had an average of 42%

of the desired functionality

þ Causal Analysis?
ü Lack of user/customer input (requirements not

understood/captured)
ü Incomplete requirements and specifications
ü Changing requirements and specifications/requirements creep

(+ & -)

 11 Thomas A. Drake

The Future of Software Quality Quality Week Europe 2000

Sobering Numbers (2)

þ Standish Group study updated 4 years later…
ü Over $250 billion spent annually on IT application development
ü 31% of all projects are cancelled before completion
ü 88% of all projects are over schedule, over budget, or both
ü For every 100 projects started, there are 94 restarts
ü Average cost overrun is 189% of original estimates
ü Average time overrun is 222% of original estimates

þ Even with strong technical skills many project managers and
project team members find themselves in over their heads
ü On projects out of control
ü Without the necessary business, organizational and political

skills

þ Faith is not a management method! Oh, DUHHH!!

 12 Thomas A. Drake

The Future of Software Quality Quality Week Europe 2000

Lack Of Quality - The
Epidemic Of Buggy Software

þ Recently published - The Software Conspiracy by Mark Minasi

þ We are all guilty! Would you unplug your automated toaster after every
6 slices of bread just to reset the internal software?!
ü The myth that bug-free code is not possible

þ Software publishers/contractors STILL aren’t generally interested in
producing stable, functionally fit, error free software
ü It is features, not quality, that sells! And we buy!

þ By hiring the “best and the brightest” we may actually be sabotaging
our own efforts - it’s embedded in the culture
ü It is the boring but absolutely necessary work that does it!

þ Time to emphasize quality - Remember the car industry in the USA in
the late 50s, 60s, and early 70s??
ü Also see Jeremy Main’s book - Quality Wars

þ And it’s the business side of software quality that gets us in trouble!

 13 Thomas A. Drake

The Future of Software Quality Quality Week Europe 2000

 14 Thomas A. Drake

The Future of Software Quality Quality Week Europe 2000

Conventional Wisdom For
Software Quality Engineering :-)

þ Software Engineering Guidebook on Terminology, v2.0n

þ NEW: Different colors from previous version.

þ ALL NEW: Software is not compatible with previous version.

þ UNMATCHED: Almost as good as the competition.

þ ADVANCED DESIGN: Upper management doesn't understand it.

þ NO MAINTENANCE: Impossible to fix.

þ BREAKTHROUGH: It finally booted on the first try.

þ DESIGN SIMPLICITY: Developed on a shoe-string budget.

þ UPGRADED: Did not work the first time.

þ UPGRADED AND IMPROVED: Did not work the second time.

 15 Thomas A. Drake

The Future of Software Quality Quality Week Europe 2000

 16 Thomas A. Drake

The Future of Software Quality Quality Week Europe 2000

Living in a state of
constant ambiguity...

 17 Thomas A. Drake

The Future of Software Quality Quality Week Europe 2000

 18 Thomas A. Drake

The Future of Software Quality Quality Week Europe 2000

Depends on what you mean
by “done” - Or depends on

what “is” really is!

 19 Thomas A. Drake

The Future of Software Quality Quality Week Europe 2000

 20 Thomas A. Drake

The Future of Software Quality Quality Week Europe 2000

What’s Happening?

þ Dynamic and New Information Sources
ü Global Information Network
ü Diversity of Telecommunication Alliances and Global

Arrangements/Alignments
ü New Telecommunication Technologies
ü Explosion of Wireless, IP Telephony, Virtual Numbers and more!
ü Internet and Beyond (Dynamic Roaming)

þ New Information Technologies
þ New Protocol Structures
þ Massive Interdependencies
þ Software can be technically correct, but still not succeed
þ All place HUGE demands and MASSIVE Strain on Quality!

 21 Thomas A. Drake

The Future of Software Quality Quality Week Europe 2000

Where Are We Going?

þ Integrated Component Design and Code
þ Software Reuse (domain/pattern level)
þ Network Common Services
þ XML & Web-Enabled Technologies
þ Intelligent Agents
þ Data Visualization - (2-D vs 3-D)
þ Dynamic Security
þ Private/Public Network
þWeb-based Workflow
þ Extreme Programming
þ AutoCode Generation
þ The “Old” QA Paradigms Come Up Way Short!

 22 Thomas A. Drake

The Future of Software Quality Quality Week Europe 2000

The IT Adventure - Software
is at the Heart of IT!

þ Internet/Virtual Reality - Just the Click of a Mouse!

þ Surfing the Planet/Real-Time Data Flows

þ E-mailing/Electronic Communication and Messaging

þ Critical Reliance on Cyberspace

þ Satellites/Computer Networks/Digital
broadcasting/Cellular/Interactive TV

þ Entertainment and Games!

 23 Thomas A. Drake

The Future of Software Quality Quality Week Europe 2000

Our Reliance on
Software is Huge!

þThe network is the program

þ Increased recognition that software is a
critical national resource for many countries
and vital to the economy

þSoftware is THE core technology that supports
practically every kind of human activity - Think
about it!

þCan’t talk about our lives now, or in the future,
without mentioning software. It is ubiquitous!

 24 Thomas A. Drake

The Future of Software Quality Quality Week Europe 2000

And Only Getting MORE
Connected

þ The future is not what it used to be!

þ Pace of change (Default Standard)

þ Time, communications, space (compressing)

þ Implication - Speed of light access and impact

þ All linked together in one dense,
interconnected web of information
and data!

þ Places HUGE demands on
QUALITY!

 25 Thomas A. Drake

The Future of Software Quality Quality Week Europe 2000

Internet/Cyberspace Quality (1)

þ Internet and World Wide Web are the next logical step
ü The Web is huge - 24/7 & 365
ü Part of our culture
ü Look at any ad on television and you will see a Web address

þ Endless possibilities for the Web and they go far beyond
just static advertising
ü A cybersurfer can find information on almost anything, play

games, download software, interact with “live” humans
ü Web is the “Great Equalizer”
ü A one or two person company can look like a multibillion dollar

corporation to its customers

 26 Thomas A. Drake

The Future of Software Quality Quality Week Europe 2000

Internet/Cyberspace Quality (2)

þ Competing for shelf space versus competing for Web space
ü Producing a shift toward the Web and more and more testing

of internet-based software

þ More complex programs and applications using Java and
Shockwave and Flash are emerging

þ Testing on multiple platforms and operating systems
ü Different Internet service providers and methods of

connecting to the Internet
ü Can't afford to put out a shoddy product on the Web

þ Quality is STILL quality and even more so on the Web
ü Stakes are much higher in this kind of “operating”

environment and bugs/problems/defects are much more visible

 27 Thomas A. Drake

The Future of Software Quality Quality Week Europe 2000

 Quality Makes a Difference!

þ Issue of market cycle time and shelf life

þ Problem of code entropy

þ Impact of incremental patching and upgrading

þDoing it right the first time - interface design is
everything

þSimple and elegant solutions - stand the test of time
and the marketplace

þQuality is, as quality does!

 28 Thomas A. Drake

The Future of Software Quality Quality Week Europe 2000

Best Practices - The Use of
Domain/Design Patterns (1)

þ Set of objects with certain known roles and responsibilities
ü Relationship to each other
ü Common usage
ü Prerequisites
ü Cataloged/documented
ü Refinement/updates/extensibility

þ Emerging due to Internet time/intense schedules

þ Program structures are fundamental
ü Where are the execution cycles
ü “The most efficient instruction set is the one that’s never

executed!”
ü Provides for the abstraction that provides summary/overview

 29 Thomas A. Drake

The Future of Software Quality Quality Week Europe 2000

Best Practices - The Use of
Domain/Design Patterns (2)

þ Patterns should also identify the intended use audience
ü Provide for the external and internal assumptions

þ Document/Document/Document! (1)
ü Name, problem, context, constraints, trade-offs, static

relationships and dynamic rules/behavior,
variants/specializations

ü Examples - sample implementations
ü Known uses - describes known occurrences of the pattern and

its relationship and application within existing systems

þ Generalize! - How can the program be developed such that
it minimizes the code interdependencies among the various
subsystems?

(1) Source: Patterns and Software: Essential Concepts and Terminology - Brad Appleton
(www.enteract.com/~bradapp/docs/patterns-intro.html)

 30 Thomas A. Drake

The Future of Software Quality Quality Week Europe 2000

The Power of Patterns

þ Patterns…
ü Patterns provide a relationship between actions and then “embody” it

in a design artifact
ü Ultimately facilitates the reuse of code and design
ü If clean design is the most difficult and important step in software

engineering, there could be real benefits in adopting

þ Where do patterns come from?
ü Tangible: Architecture/materials

Intangible: process/procedures

þ A domain pattern “sensitivity” problem…
ü Software development culture is still dominated by “bottom-up”

thinkers (trees/forests)
ü For patterns, you need to think “top down” and not just on the bit

level but the aggregate of bits (atoms/molecules)

 31 Thomas A. Drake

The Future of Software Quality Quality Week Europe 2000

So What Is Software Quality
Engineering Really All About??

þ “…Too many organizations have spent too much time obsessing on
the information they want their networks to carry and far too
little time on the effective relationships those networks should
create and support. This is a grave strategic error.”
ü Michael Schrage, MIT Media Lab Research Associate, in a white

paper of The Merrill Lynch Forum

þ The language is not THE answer! But the language is a primary
means of communication with its own syntax, structure, rules and
meaning.
ü Design by Contract - Precise definitions/relationships
ü And it shows in the Code!
ü Rigor and discipline are fundamental
ü And it is the quality of the software “experience”

that may be the real measure of quality!

 32 Thomas A. Drake

The Future of Software Quality Quality Week Europe 2000

Software Quality Engineering - The
Heart of Information Technology

PROCESS

PEOPLE

TECHNOLOGY

 QUALITY
PRODUCT!

IT Enterprise Foundation

ProductivityMaturity

 33 Thomas A. Drake

The Future of Software Quality Quality Week Europe 2000

Quality Communication
It’s All About People! (1)

þ Here is the real challenge -
ü Language of the programmer, software engineer and developer

is in terms of data structures and procedures, and network
routers and protocols

ü Language of the end-user, customer, operations support is in
terms of general behavior, “state” or use conditions,
applications, and operational functionality

þ Two types of information knowledge
ü Control flows and data structures vs. descriptive

þ Also helps explain the presence of “unstable” business
requirements, poor “contract and program management,
and overly optimistic evaluations that are largely date
driven - all “soft” side issues not technology issues

 34 Thomas A. Drake

The Future of Software Quality Quality Week Europe 2000

Quality Communication
It’s All About People! (2)

þ Most end-users/customers express requirements in terms
of natural language (NL)

þ Developer translates NL into symbolic/representational
objects making up a domain model

þ And neither the twain shall meet!

þ The “weak link” theory about requirements (the missing
link)
ü Need to trace the human sources of actual requirements
ü Traceability problem is particularly serious in the later stages

of requirements engineering with HUGE impact “downstream”
ü Impact: Design decision rationale is rooted in the

specification, ambiguity here will reflect in the product!

 35 Thomas A. Drake

The Future of Software Quality Quality Week Europe 2000

Quality Communication
It’s All About People! (3)

þ Many design decisions are tradeoffs in the absence of key
data and between competing requirements

þ Information behind the design and the conceptual
framework or operational understanding is vital

þ Each set of differing stakeholders interprets in light of
their own background assumptions

þ Need the opportunity to check that the interpretation is
the same as the intention (or different)

þ Organizational and social issues between and among people
have the single greatest influence on the effectiveness of
requirements communication and engineering process

þ Yes, technology is important, but must dynamically measure

 36 Thomas A. Drake

The Future of Software Quality Quality Week Europe 2000

Statistical Process Control
Dynamic Measuring/Tracking

þ “Trend” analyze one evolution of software with another

þ Determine “velocity and acceleration” between the key
metrics over time - “delta gap analysis” or “variableness”

þ Track addition of new features vs defects via the metrics
(correlate) - phase containment effectiveness

þ Use previous release analysis results as “baseline” and
regression analyze the subsequent release

þ Understanding how software quality “evolves” and plot
trends in improvements over time - map traceability

þ Based on key static and dynamic measures of code and
executable attributes

þ Determine maturity and productivity over time - (BOE/ABC)

þ Analyze major and minor releases - continual CM control!

þ Compare similar subsystems, functionality between software
products in equivalent domains

 37 Thomas A. Drake

The Future of Software Quality Quality Week Europe 2000

Statistical Process & Product
Control - It’s Competitive Edge!

Modified “spider” Kiviat diagram for graphically showing
differences in quality between Release 1 and Release 2

Many other static and dynamic metrics can be mapped and are!

 38 Thomas A. Drake

The Future of Software Quality Quality Week Europe 2000

The Future of Quality
Into the Looking Glass! (1)

þMoving away from large development programs
ü Fixed set of ideas, very difficult to maintain or modify

þVirtual computing -- 24/7, 365 & around the world!

þ Component-based development

þDesign logic to code!
ü An increasing trend (code engines)
ü Solves many of the “hand” created complexity problems

þ Contract-based/specification-based outcomes

þTest and Quality By Design Principles (Design by
Contract)

 39 Thomas A. Drake

The Future of Software Quality Quality Week Europe 2000

Into the Looking Glass! (2)

þ Do not be overly transfixed by C++ or OO or Java or Jini
or even the very latest and greatest! Still way too many
buzz words and ambiguity!

þ Real-time operations across multi-distributed and
heterogeneous environments

þ The network IS increasingly becoming THE program - just
get it!

þ Key to software development innovation is business savvy,
smart developers, and high quality products that meet and
exceed customer expectations and still meet the bottom
line!

þ Managing in this environment requires a “paradigm shift”

 40 Thomas A. Drake

The Future of Software Quality Quality Week Europe 2000

The “Genetic”
Heart and Core of Quality

þDesign is fundamental!

þBusiness Rule Algorithms

þBehavioral modeling

þAttributes - The key for quality

 41 Thomas A. Drake

The Future of Software Quality Quality Week Europe 2000

The Continuing Software
Quality Challenge

þ Taming the “uncontrolled” distribution of data

þ In software, data is an abstraction

þ Software’s strength IS abstraction!

þ Concrete representation vice the abstract notion
üHow do you build software??
ü Concept by concept or brick by brick??

þ Agree on the concept!

þ Information hiding is critical
ü Each module must only access the information it needs
ü And every software element must have a specification
ü Use Design by Contract - architecture is critical!

 42 Thomas A. Drake

The Future of Software Quality Quality Week Europe 2000

Quality Paradigm Shift
Where Do You Live on the Continuum?!

Degree
of

Change

Software
Development

Practices
(Legacy)

Product
Integration
(Transition)

People,
Processes

and Technology
(Transformation)

The
Future!

Time

 43 Thomas A. Drake

The Future of Software Quality Quality Week Europe 2000

Some Final Thoughts About
Quality and Software

þ Dealing with multiple levels of complexity
ü Quality enemy #1 - orders of magnitude greater

þ Nth Order Computing (modeled after cell life)
ü Computer is 1st order - computational!
ü Autonomous objects/components are 2nd order
ü Interaction of objects is 3rd order - no object alone
ü Result/outcome/state transition is 4th order
ü Nth Order is shifting function onto structure and code onto

data - Built in dynamic living networks - It’s alive!

þ Computers as machines containing cyberspace containing
machines - (Bandwidth, Turnaround Time, and Complexity)

þ So… Are you now ready for this brave new world?! :-)

1

Quality Week Europe 2000
 November 22-24, 2000

Ensuring Data Quality for
E-Commerce Systems

 The Hidden Role of Data Quality in E-Commerce Success

Eric Messin
Director of Sales

La Grande Arche Paroi Nord
92444 Paris La Defense

France
011-33-140-90-3518

www.vality.com

Quality Week Europe 2000
 November 22-24, 2000

E-Commerce: Fast Track To The
Promised Land?

• Electronic highway’s benefits
– Instant, global, two-way communication

• More buyers
• Seamless ties to partners, suppliers, customers

• Potholes in the electronic highway
– Easier, “unattended” access makes it more difficult to

provide customer service
– Increased volume of data = increased data variations,

misinterpretations and misrepresentations

2

Quality Week Europe 2000
 November 22-24, 2000

Obvious Challenges

• Shoppers’ product searches garner
– Too many irrelevant results; or
– No results at all

• Customers’ free-form data entries not easily
linked to back-end standards

• Internal systems’ data “not ready for prime
time”

Quality Week Europe 2000
 November 22-24, 2000

E-Commerce: Fast Track To The
Promised Land?

• The answer is a qualified “Yes”
• The key enabler is data quality
• E-commerce requires a common, data

quality solution – e-quality content
management

3

Quality Week Europe 2000
 November 22-24, 2000

Defining Data Quality In The E-
Commerce Context

• Data quality misconceptions
– Data is either right or wrong
– Data is either correctly or incorrectly

represented
• Misconceptions oversimplify the fact that

perception of data quality varies by user and
usage

Quality Week Europe 2000
 November 22-24, 2000

Data Quality Demystified: An
Example

• Order fulfillment, shipping, direct mail
• Marketing
• Contract administration

Name Street City Zip

DEC 216B Old County Rd Lincoln 01773-4603

Digital Equipment Corp 216 Old County Rd Ste B Lincoln 01773-4603

Compaq 216 Old County Rd Lincoln 01773-4603

4

Quality Week Europe 2000
 November 22-24, 2000

Data Quality Demystified

• Data quality not an absolute state
– It is a relative assessment of the degree of

usefulness and reliability for an intended
purpose

• The more user communities and business
processes served by the same data, the
greater the risk

Quality Week Europe 2000
 November 22-24, 2000

Data Quality Is Multidimensional

• Data quality has a time dimension
– Data values that are correct when recorded may

become liabilities in the future
• Marriages
• Mergers
• Zip code reassignments
• Area code expansions

– Historical representations often have intrinsic
and legal “correctness” that must be preserved

5

Quality Week Europe 2000
 November 22-24, 2000

Data Quality Is Multidimensional

• Data quality is contextual
– Data in internal systems may be inappropriate

to expose to a wide public
• Special discounts and negotiated terms
• Confidentiality
• Internal comments

– Data collected to assist delivery personnel may alienate
customers if exposed – “Mean dog in back yard”, “stone
deaf: holler at them”

Quality Week Europe 2000
 November 22-24, 2000

Data Denial

• Data quality problems have always existed
• Problems have been

– Masked or managed by business logic of
legacy applications

– Hidden by an intermediary
• E-commerce “pierces the veil” of

operational data

6

Quality Week Europe 2000
 November 22-24, 2000

E-Commerce Trends
Accentuating Data Quality Issues
• Breadth of user exposure
• Diversity and volume of source data
• Disintermediation
• Privacy and ethical issues

Quality Week Europe 2000
 November 22-24, 2000

Breadth Of User Exposure

• E-commerce is extending the exposure of
the relative nature of data quality

• Older operational data may be unclear or
inappropriate, particularly to user whose
perspective may be different than
anticipated

Example: 14-gauge GRN cable
Is it 14-gauge green cable or grounded cable?

7

Quality Week Europe 2000
 November 22-24, 2000

Diversity And Volume Of Source
Data

•Transactions must be quick and convenient
– Minimum of edit checking and verification
– Web data not easily reconciled with operational

data for analyses
• May even deliberately circumvent fraud and abuse

of purchasing policies

Example: Steve Brown, S Brown, Stephen
Brown, Steve Bron – Same customer? On
credit hold?

Quality Week Europe 2000
 November 22-24, 2000

Disintermediation

•E-commerce has a self-serve business model
– Positives: Speeds transactions, saves money
– Negatives: Loss of buffer or translator,

discrepancies left unresolved, loss of revenue
Example: I search for pants, you sell slacks.
An intermediary would automatically make
the translation and the sale – not any more!

8

Quality Week Europe 2000
 November 22-24, 2000

Privacy And Ethical Issues

• Misuse of private data is gaining increasing
publicity

• Not just a legislative issue – it’s also a data
quality issue
– Incorrect social security # reveals information
– Inability to identify unique customer reveals

financial data

Quality Week Europe 2000
 November 22-24, 2000

The E-Quality Content
Management (“eQCM”) Process

• When does it occur?
– Anytime that data is in motion
– Not a one-time “clean-up”
– Real-time data quality maintenance filters are

required
– eQCM must mediate the daily activity that goes

against your enterprise databases

9

Quality Week Europe 2000
 November 22-24, 2000

eQCM Control Points

Quality Week Europe 2000
 November 22-24, 2000

What Processes Are Involved?

• Context mediation
– Determination of business meaning of word or value

based on context
• Fuzzy searching

– Ability to perform quick and product retrieval of data
without a precise key

• Fuzzy matching
– Application of your business rules, and measure of

statistical certainty, to determine when to declare
critical relationships within the data, such as duplication
and affiliation

10

Quality Week Europe 2000
 November 22-24, 2000

What Does It Cost?
• Costs vary depending on the complexity of

the data and affected business processes
– Costs escalate in proportion to amount of

risk/reward
• High-dollar transactions necessitate very high data

quality

• WARNING: One size does not fit all
– For example, shrink-wrapped “data-cleansers”

designed to prepare bulk mailings will not
provide data quality for sales, marketing and
CRM efforts

Quality Week Europe 2000
 November 22-24, 2000

Conclusion
• You must have a requirement to manage

data quality whenever:
– Data is re-purposed or deployed for new

business purposes
– External data sources are integrated, linked or

queried
– Transactions of external origin are

synchronized with your Web-site or back office
– Users (prospects, customers, partners) search

your published databases

11

Quality Week Europe 2000
 November 22-24, 2000

Ensuring Data Quality for
E-Commerce Systems

 The Hidden Role of Data Quality in E-Commerce Success

Eric Messin
Director of Sales

La Grande Arche Paroi Nord
92444 Paris La Defense

France
011-33-140-90-3518

www.vality.com

Su
cc

es
s.

Tri
ed

an
d

Tes
ted

.

Sales Professionals

Packages to £150k

London EC1.

t h e a r t o f t e s t i n g

www.tescom-intl.com

TesCom European Head Office
5 St. John’s Lane, London EC1M 4BH.

You’ll encounter few objections when communicating the advantages of TesCom. Such is our standing
as the world’s leading e-testing company and Europe’s largest independent software testing
solutions provider.

In a huge global market with an insatiable appetite for our top-quality services, we bring new
generation software development projects to fruition across Banking, Financial Services, Telecomms,
Retail and Utilities - for clients that include Microsoft, JP Morgan, Tesco, the BBC and Cable & Wireless.

Tried, tested and totally focused on even greater success, this is your opportunity to lead our expansion
and market a world-class capability built on leading-edge platforms, technologies and software. If you
have the technical empathy and track record in a successful team in a consulting sales environment, find
out more about our entrepreneurial culture that rewards results and initiative.
Contact Helen Brudenell on 020 7250 4705, fax:020 7250 0464, email: helen.brudenell@tescom-intl.com

SOFTWARE QUALITY ASSURANCE

Amphora Quality Technologies

Amphora Quality Technologies (AQT) is a high-tech company that provides the most
comprehensive and effective Software Quality Assurance (QA) and Testing solutions to its
clients. AQT supplies services that significantly reduce the client's risk. AQT helps you to
develop high-quality software that is delivered on time and on target, meets current business
requirements and is scalable to future needs.

AQT believes that cost and performance are no longer the main problems of the modern IT
industry as was the case several years ago – now, the problem is software complexity.
Nowadays, the complexity of information systems is a decisive factor in software quality. That
is why AQT guarantees Software Quality, supplying the latest high standard Testing and
Quality Assurance services to Developers and Corporations worldwide.

Structurally, AQT consists of four divisions:
· Web Lab – a laboratory specializing in quality of Web Site and Internet applications;
· Functionality Lab – a laboratory for software functionality testing, software test results and
source code analysis center;
· Performance Lab – a laboratory for the analysis of software performance characteristics and
reliability;
· Research department – the company research center;

Services

Amphora Quality Technologies provides complete Software Quality Assurance solutions to its
clients, rendering a full range of Consulting, Testing and Analytical services. Other than the
traditional Functionality analysis (black box testing), AQT offers a wide range of special QA
services, such as:

· Consulting;
· Web site and Internet application testing;
· Performance and Load analysis;
· Reliability testing;
· Security analysis;
· Middleware server/component testing;
· Communication and Integration analysis;
· Usability testing;
· Technical requirements analysis;
· White Box testing & Source Code analysis;
· Cause Analysis and interpretation of test results.

See www.in-amphora.com/aqt for detailed information.
--

http://www.in-amphora.com/aqt

CMG plc is a leading European ICT services group, providing business
information solutions through consultancy, systems development, software
applications and managed services. Established in 1964, CMG operates
internationally from its European bases in the UK, The Netherlands, Germany,
France and Belgium, implementing and supporting applications for clients
around the world. The Group is listed on the London and Amsterdam stock
exchanges.

CMG has proven knowledge, products and solutions in the finance, trade
transport & industry, telecommunications, media, energy, utility and
government markets. The Group also provides managed information services
ranging from payroll processing and personnel administration to call centres
and networks.

CMG works alongside its customers to generate success for them. Through the
quality of its services and the long term commitment of its staff, CMG adds
value to its customers' businesses and thereby creates a basis for the
Group's long term success. You can find more information on CMG at
<http://www.cmg.com>.

About TestFrame

TestFrame, developed by CMG, provides a well-documented software testing
method that has proven itself in practice. Organisations can easily
integrate TestFrame into their current ICT environment. Examples of use are
the thorough testing of online systems, web applications, APIs, batch
systems, client/server solutions and embedded systems. TestFrame enables
organisations to control testing routes better, to enhance the effectiveness
of the testing and to improve the maintainability of testing products.

elementool, Inc. is the leading Application Service Provider of Web
based software bug tracking and support management tools. elementool
provides its tools to software companies and business web sites from
all over the world. elementool is used on a daily basis by its
customers, and is integrated in their product development process.
Benefits of the elementool tools: no installation of software or
hardware is required - it is only one click away, application is
available from every location in the world using the Internet,
customizable forms, powerful reports, enables the submission of
issues by your customers directly from your web site, email
notifications, self-download of issue list for off-site backup and
much more. Logon today to our web site for demo:
http://elementool.com

eValid TM -- The Internet Quality Authority TM

Client-Side Browser-Based WebSite Quality Checking,
Testing, Validation, Tuning, Loading, 24x7 Monitoring

Training, Consulting, Seminars
© Copyright 2000 by eValid, Inc.

About eValid -- The Internet Quality Authority

eValid enhances your e-business success by assuring that your WebSite is trouble-free,
reliable, speedy, and available 24x7. In a Web-paced world your WebSite is your key

asset. eValid checks, protects and insures.

eValid Products

eValid's Test Enabled Web BrowserTM is
a test engine that provides you with
browser based 100% client side quality
checking, dynamic testing, content
validation, page performance tuning,
and webserver loading and capacity
analysis.

This new cutting-edge technology, is
100% client side based, and is
completely object-oriented. eValid
offers a unified approach to WebSite
testing that is unique in its simplicity,
power, efficiency, effectiveness, and
superior ease of use.

By focusing entirely on the users' view
of WebSite quality, eValid results are
accurate, complete, repeatable, and
highly effective -- all as experienced by
your users. The eValid test engine is
available in several product
configurations.

eValid Services

eValid website quality services are all
based on the eValid test engine, and are
are supported through training,
consulting, and technical seminars.

● Standard Monitoring: eValid
monitoring, based on the eValid test
engine, runs standard tests on your
site. eValid's 24x7 website
performance monitoring provides for
email and/or pager/beeper alert
service, plus customer access on our
WebSite to historic testing and
monitoring data. Be the first to know
whenever your site is misbehaving.
More...

● Custom Monitoring: Use eValid
test services to contract us to run
tests you have recorded and proved
out yourself using the standard
eValid test engine. Custom eValid
test executions run on standard
intervals, in varying time zones, and
are all 24x7. Make sure your own
tests run successfully all the time.
More...

● WebSite Testing, Qualification,
Verification, Loading: eValid
consulting services include WebSite
testing, test suite development,

eValid -- The Internet Quality Authority

http://www.soft.com/eValid/summary.html (1 of 2) [10/11/2000 3:08:55 PM]

http://www.soft.com/eValid/Products/Support/release.2.1.html
http://www.soft.com/eValid/Technology/White.Papers/index.html
http://www.soft.com/eValid/Services/Monitoring/index.html
http://www.soft.com/eValid/Services/Monitoring/index.html
http://www.soft.com/eValid/Services/Monitoring/index.html
http://www.soft.com/eValid/Services/Monitoring/index.html
http://www.soft.com/eValid/Services/Loading/index.html
http://www.soft.com/eValid/Services/Loading/index.html

● Testing: eValid test scripts can
exercise the key parts of your site,
confirm links, check content, and
simulate users' activities. Make sure
your customers get the right
message! More...

● Validation: eValid can confirm
selected content, validate document
properties, images and applets. Have
confidence that you are delivering
correct information! More...

● Tuning: eValid timing
capabilities let you identify
slow-loading pages so you can "tune
up" your site for optimum
performance. Keep customers from
clicking away! More...

● Loading: eValid load testing
scenarios can simulate 100's or
1000's of users. Can your WebSite
handle the traffic when a serious
crunch comes? More...

WebSite qualification, e-commerce
verification, and WebSite loading
and capacity checking exercises. All
work is based on application of the
eValid test engine plus other
non-released WebSite analysis
facilities. More...

● WebSite Quality Consulting &
Seminars: eValid website quality
experts can work along side your
web developers to make sure your
site meets the highest reliability,
quality, performance, and capacity
standards. eValid seminars and
workshops are aimed at bring your
own team up to speed. More...

eValid -- Your E-Business Partner

eValid -- offering products and custom services -- is your one stop solution provider for
WebSite quality. eValid is your true e-business partner.

eValid, Inc.
901 Minnesota Street

San Francisco, CA 94107 USA

Phone [+1] 415.550.3020
FAX [+1] 415.550.3030
info@soft.com.

eValid -- The Internet Quality Authority

http://www.soft.com/eValid/summary.html (2 of 2) [10/11/2000 3:08:55 PM]

http://www.soft.com/eValid/Products/Documentation.2/create.html
http://www.soft.com/eValid/Products/Documentation.2/create.html
http://www.soft.com/eValid/Products/validation.info.html
http://www.soft.com/eValid/Products/validation.info.html
http://www.soft.com/eValid/Products/Charts/eVPerformance.html
http://www.soft.com/eValid/Products/Charts/eVPerformance.html
http://www.soft.com/eValid/Products/Documentation.2/load.unlinked.html
http://www.soft.com/eValid/Products/Documentation.2/load.unlinked.html
http://www.soft.com/eValid/Services/Loading/index.html
http://www.soft.com/eValid/Services/Consulting/index.html
http://www.soft.com/eValid/Services/Consulting/index.html
http://www.soft.com/eValid/Services/Consulting/index.html
mailto:info@soft.com

Gitek nv
Gitek nv was founded in 1986 and is in addition to the design and development of software, specialised
in software testing. Gitek employs more than 120 people, with 40 professional software Test Engineers.
Its customers include the pharmaceutical industry, the financial industry, the telecom industry and
insurance companies.

The difference
Gitek is an enthusiastic team of professionals, specialised in customised IT solutions and structured
testing. A personal approach forms the basis of our success. This ensures better-adapted services to
the customer’s specific requirements, and a committed and motivated team ensuring optimal efficiency.

Structured Testing
Gitek is exclusive distributor of TMap® (Test Management Approach), TPI® (Test process Improvement)
and TAKT© (Knowledge of Testing, Automation and Tools) in Belgium.
Gitek provides services that offer a complete solution for testing:
• Participation in the operational test process

− Test planning and test management
− Test design and test execution

• Complete test projects and fixed price projects
• Test advice and support
• Defining and implementing a structured test process
• Selection and implementation of test tools
• Improvement of the test process
• Training and coaching in testing

Contact us
Gitek nv
Sint Pietersvliet 3
B-2000 Antwerp (Belgium)
http://www.gitek.be
e-mail: gitek@gitek.be

REF . : INTRO-I2B24 C 1/1
COPYRIGHT © 2000, ALL RIGHTS RESERVED BY I2B

 I D E A T O B U S I N E S S
 INNOVATION MANAGEMENT SERVICES

CONSULTANCY FOR THOSE WHO CHANGE THE WORLD

I2B (Idea to Business) is a new Belgian consultancy company founded in 2000 by six people of
which five are experienced consultants. Their consolidated know-how and skills have resulted in a
complete portfolio of competences required to run projects concerning ICT, E-Commerce or Innovation
(new business development). Together they result in Innovation Management Services, offered to
two types of clients: Large Enterprises and Small & Medium Sized Enterprises (SME’s).
For the latter, I2B developed a special delivery model allowing SME’s to receive expert knowledge to
which normally only big organisations have access to.

The Mission of I2B is:

T o a s s u r e t h a t c o m p a n i e s c a n i n n o v a t e a n d
r e a l i s e s u s t a i n a b l e b u s i n e s s f r o m t h e i r i d e a s .

INNOVATION MANAGEMENT SERVICES

We live in an era of Innovation. Product life cycles are shrinking; new technologies are
developed faster. It becomes a real challenge to meet deadlines and to make it to the market
before competition does. To survive in this extremely dynamic world, companies face the
paradox of having to master a variety of competences (gaining experience) whilst continuously
changing and improving (learning new technology).

I2B provides its competences, listed aside, through a team of experienced consultants. We
help you improve on your Key Performance Areas using a combination of these skills.

We basically work in two main area’s. ICT Engineering and Strategic Innovation. In the
first area we provide a range of tactical services that will help you in realising successful projects
in ICT or E-Commerce. Amongst the many issues of ICT projects, assuring quality is the most
difficult one. The backside of this flyer gives some examples of situations you might be in.

The second area concerns innovation. A lot of companies
struggle with their legacy. They have difficulty in catching up
with the new technology and they find themselves losing
market share from small new and dynamic entrepreneurs.
These companies need agility if they wish to survive in the
future.

We provide training, coaching, operational and
management consultancy

Our competences:
• Structured Testing
• Quality Assurance
• Requirements Mgt.
• Release Management
• Joint Engineering
• Project Management
• Change Management
• Knowledge Mgt.
• Innovation Mgt.
• Human Resources

Company/Product description
for QWE '2000 Expo Guide and CD-ROM Proceedings

McCabe & Associates (UK)
Chancery Court
Lincoln Road
High Wycombe
Bucks
HP12 3RE
Tel: +44 (0) 1494 463 233
Fax: +44 (0) 1494 463 288
Email: sales@mccabe.co.uk
http:// www.mccabe.com

McCabe & Associates is an international leader in software solutions for improving the quality
and reliability of enterprise software applications. Based on over twenty years of research
and experience in software quality, testing and re-engineering, McCabe IQ™ is an integrated
approach to building quality into your software development lifecycle. McCabe IQ combines a
strong theoretical foundation with practical, visual tools to help organisations:

! Accurately assess software quality, complexity, and testing requirements
! Pinpoint potential problems and high-risk areas
! Eliminate redundant code
! Thoroughly test applications
! Validate coverage of high-risk areas

McCabe IQ™ supports developments in Java, C++, C, VB, COBOL, FORTRAN, PL1 and Ada

Since 1977, we have been working closely with our customers to improve the quality of large-
scale, mission-critical software. Many of the worlds most influential corporations and
government organisations have used our products successfully to test, re-engineer, and verify
the quality of over 30 billion lines of mission-critical code. Today, we are one of the most
highly respected vendors of products for source code analysis and testing. Our structured
testing methodology has been adopted and published by the National Institute of Standards
and Technology (NIST).

Solidly based on source code analysis technology, McCabe IQ integrates the build, test and
change phases of software development. By linking these processes through advanced
visualisation, industry standard metrics and dynamic monitoring, McCabe IQ raises the quality
standards of your deliverables, reduces your overall development costs, decreases your time
to market and lets you focus your resources where they will have the greatest impact.

Adrian Cowderoy
ProfessionalSpirit
+44(UK) 118 9 427 970
46 Western Alms Avenue
Reading RG30 2An
United Kingdom

Tiensesteenweg 329 • 3010 Leuven • Belgium
Tel.:+32-16-359380 • Fax:+32-16-359388
E-mail: info@pstestware.com • http://www.pstestware.com

ps_testware is a privately held company, active in the world of Information
Technology. We provide Software Testing Services to the IT market.

In a business concerning software quality, ps_testware has chosen a qualitative
approach over a quantitative. We provide our services through a team of highly
skilled Management Consultants, Test Consultants and Test Engineers. Using our
years of experience, we help you to improve your software processes and assist you
with our knowledge of Structured Software Testing. Not only can we advise you on
the right procedures, we can also help with, or perform, the tests you need to assure
software quality to your customers.

Through our unique services, we can not only assess your testing department but also
your complete IT department. If necessary, advice can be given to structure your
processes and procedures.

Next to this, we train our customers in the methodology of Structured Software
Testing. Instead of just offering you a stand-alone training, we have created three
profiles. Depending on the function and responsibilities of a person, we provide the
correct training. This way we can ensure a shorter learning curve and less coaching on
the job.

Through our outsourcing services, we test for our customers. We can even create a
complete test laboratory on site or at our own offices.

If you need expert knowledge in Software Testing Services, don't hesitate and contact
us or visit our website: http://www.pstestware.com.

PolySpace Technologies Invites You at Quality Week

A Quantum Leap in Software Verification

 PolySpace Technologies provides today a groundbreaking solution to drastically improve
software reliability of Ada and C applications.

 The PolySpace Verifier product aims at statically and automatically detect run-time errors
in Ada and C critical software applications. It allows substancial verification costs reduction and
increase quality to a level which was simply impossible to attain before.

 The PolySpace Verifier product was first experienced after the Ariane 5 European Launcher
crash and is now used in avionics, space, energy, automotive and railways transportation sectors.

Technical addendum:

 PolySpace Verifier relies on a breakthrough in Static Verification Technology based on
abstract interpretation. It's a radical departure from existing and debugging tools. Instead of
dynamically and iteratively verifying software consistency, it statically, exhaustively and
automatically discovers sections of code that are sources of run-time errors including attempt to
read non-initialized data, null and out-of-bounds pointers dereferencing, out-of-bound array
accesses, float and integer overflow, illegal type conversion, arithmetical exception, division by
zero and concurrent accesses to unprotected shared data.

 If you are involved in critical software development you'll be sure interested by our
technology. Complete now your development process by using PolySpace Verifier: You will
reduce your validation costs and increase the quality and the reliability of your applications without
changing anything in your way of working.

Radview Software Ltd.

Corporations are gaining a competitive edge by investing broadly in Web
technologies including E-business systems that link them with customers,
employees and partners. Businesses and business models are evolving to
fully leverage the potential of Web technologies, and are dependent upon
maximum availability and performance in their line-of-business systems to be
successful.

RadView Software specializes in developing Web application testing
solutions. Our mission is to deliver best-of-breed scalability and integrity
testing tools developed specifically to meet the evolving needs of Web
developers, testers and IT resources. Our vision is to provide high-
performance, easy-to-use and cost-effective testing solutions to a broad
market. RadView introduced its award winning, flagship product WebLoad, in
November 1997 and it quickly emerged as the premier Web application
testing solution.

WebLoad is the only testing tool that unifies load, performance and functional
testing into a single process for shortened development cycles and
unmatched verification of scalability and integrity prior to deployment.
WebLoad verifies Web application scalability by generating a load composed
of Virtual Clients that simulate real-world traffic. Users create JavaScript-
based test scripts that define the behavior of the Virtual Clients. WebLoad
executes these test scripts and monitors the Web application’s performance
providing real-time graphical and statistical results and comprehensive
reports.

WebLoad Resource Manager extends comprehensive testing and
analysis capabilities throughout the application lifecycle, improving
organization collaboration and enabling verification of application
quality. Through a single, standard solution, it allows organizations to
pool Virtual Clients and hardware providing faster issue resolution and
allowing everyone in the development team to contribute to a
successful deployment.

For additional information about the company, contact radview at +972-3-765-
0555, e-mail: info@radview.com or visit us on the internet at:
http://www.radview.com

Rational
the e-development company
Rational Software helps organizations develop and deploy software for

e-business, e-infrastructure, and e-devices through a combination of

software engineering best practices, tools, and services. The Rational

e-development solution helps organizations overcome “the e-software

paradox” by accelerating time-to-market while improving software

quality. This unique, integrated solution simplifies the process of

acquiring, deploying and supporting a comprehensive software

development platform, reducing total cost of ownership.

IDC has recognized Rational as the

market revenue leader in multiple

segments of the software development

life-cycle management market for

four years in a row.
Process Made Practical

The implementation of a predictable, repeatable

process is crucial to software development suc-

cess. That’s why Rational developed the Rational

Unified Process™, a set of software engineering

best practices optimized for the rapid develop-

ment of quality software. The Rational Unified

Process integrates with Rational tools to pro-

vide seamless, browser-based delivery of best

practices. Adopted by IBM, Microsoft, Sun, and

thousands of other leading development orga-

nizations, the Rational Unified Process is wide-

ly recognized as a defacto industry standard.

Unified Tools for the Team

Rational tools enable team members to effi-

ciently perform their roles and share their work

throughout the project lifecycle. Individually,

Rational tools are leaders in their respective

market categories. Combined, they offer

unprecedented automation and ease of use.

Only Rational offers a unified set of tools that

fully supports individual practitioners, and fully

supports the team. Rational tools span

Windows® NT and UNIX platforms, and support

a host of languages, IDEs and operating

environments, including: C/C++, Java, EJB,

XML, COM/+, and CORBA.

Key products:
Rational offers over 40 products, which can be

purchased individually or in integrated Suite

editions. The Rational Suite™ product family,

introduced in December 1999, provides a con-

venient and cost-effective way for companies to

acquire a complete e-development platform on

one CD-ROM. Each Rational Suite Studio

combines one or more practitioner tools with

a team unifying platform that enhances

collaboration across the entire team.

The Rational Suite Product Family:
4 Rational Suite AnalystStudio™ – for

system definition

4 Rational Suite DevelopmentStudio –

for software development

4 Rational Suite DevelopmentStudio RealTime –

for real-time and embedded software

development

4 Rational Suite TestStudio™ – for functional

and reliability testing

4 Rational Suite PerformanceStudio® – for func-

tional, reliability and performance testing

4 Rational Suite Enterprise – for the practitioner

who spans multiple functional areas

FactSheet3.qxd 8/8/00 4:23 PM Page 1

Our mission is to be the industry leader in providing customer/market driven innovative solutions, using
software and services, to meet the requirements of product development, on a worldwide basis.

SDRC's e-PKM software is a suite of solutions that helps you store and archive product and process data
within your entire enterprise. It enables you to reuse that data, creating information in a digital process. As
information is reused -becoming knowledge- your organization can move into higher levels of competitive
excellence.

SLATE™ is a systems engineering solution for capturing "the voice of the customer" by way of product
requirements. SLATE supports Integrated Requirements Management. This means the requirements are
integrated with the entire product development process--allowing requirements to influence the design
decisions of all disciplines, which tends to guarantee compliance with customer desires. The result is that
more compliant products are built on schedule and under budget in general, rather than as the exception.

SLATE™ is a groupware solution that enables companies to apply a first-of-its kind set of systems
engineering capabilities to product development, in a client/server, multi-user, repository based
environment. The SLATE product line is divided into different modules, with each one able to access the
same SLATE database providing different capabilities:
• SLATE REquire™ is a requirements engineering and management system. REquire enables system

engineers to make architectural trade-offs in the context of customer requirements. REquire provides a
wide range of capabilities including document management and requirements engineering.

• SLATE Architect is the full-featured SLATE system. It contains all system modeling, requirements
engineering and document management functions.

SLATE™ integrations with UML CASE tools provide the ability to trace structured software requirements
to UML Software system elements and their test results.

SDRC SLATE™ development strategy is to extend conventional user interfaces, such as MS Office
applications and Visio, with SLATE U/I functionality which can be used to let engineers work with the
SLATE database using a particular view depending on their role in the organization.

SDRC Nederland BV
Rivium Quadrant 81
2909 LC Capelle a.d. Ijssel
Marsh & McLennan Bldg
The Netherlands
Tel: +31-10-44-72-088
Fax: +31-10-20-23-434
http://www.sdrc.com

The SIM Group
The consultancy for efficient testing services

SIM has been professionally testing software for more than 11 years and has a proven reputation for
success in testing and, most importantly, the projects and systems SIM has tested. SIM’s approach to
testing follows the good practice established and standards encountered during this history of successful
testing. All of SIM’s testing work involves the best possible use of Automated Testing techniques, an area
in which SIM has a 100% success rate.

The SIM approach to testing makes the best possible use of testing technology and the most effective
use of professional and well-qualified testers. The result of a SIM testing project is efficiency,
effectiveness and excellence. SIM has a team of approximately 70 permanent staff based in the UK.

SIM TestLab – SIM have a TestLab staffed with a team of testing professionals which operates 24 hours
a day, 7 days a week. SIM are able to provide a variety of services from our TestLab which include:

• Functionality, regression and penetration testing
• Compatibility testing
• Usability testing
• Load, performance and stress testing
• Continuous monitoring of your site to ensure your site is available 24/7

SIM Services – SIM provide other high quality services which are all aimed at efficient and effective
testing. These services range from short term consultancy projects, fully managed testing projects
through to outsourcing of testing.

SIM’s independence - SIM’s independent position on all issues related to testing is invaluable to its
clients. SIM provides an objective view of the test processes taking place and can recommend the tools,
utilities and technology best suited to each environment. SIM’s working relationship with major tool
vendors - such as Mercury Interactive, Segue, McCabe and Associates, Rational, Compuware and RSW,
and experience in the implementation and use of such tools - places the Group in an unparalleled position
for independent advice.

Methodologies – A documented testing methodology is essential for system delivery. SIM develops and
documents the procedures, methods and material for formal, structured testing to meet the specific needs
of each client. SIM has also developed its own approach to Automated Testing Support called tMosaic -
an automation process unique to SIM - based upon an already proven combination of techniques, tools
and training. tMosaic is effective on all systems and platforms and has the flexibility to be customised to
support existing methodologies already in use at client sites.

Contact:
The SIM Group Ltd
White Rose Court
Oriental Road
Woking
Surrey
GU22 7PJ
Tel: +44 (0) 1483 740289
Fax: +44 (0) 1483 720112
http://www.simgroup.co.uk/
Email: info@simgroup.co.uk

Software Research, Inc.'s TestWorks, an integrated suite of software test tools, is the broadest test tool
suite available. TestWorks tools help automate and streamline the software development and testing
process with product lines that work independently or as an integrated toolsuite. TestWorks is the only
tool suite that offers Regression Testing, Test Suite Management, and Test Coverage support for Web
and Windows and UNIX Platforms.

TestWorks
Overview

You can get most of your basic questions about TestWorks products answered
from the TestWorks Frequently Asked Questions (FAQs).

Send Email with your question to info@soft.com and we're respond quickly.

TestWorks
for Web

TestWorks/WebTM is a bundle of software test tools tailored to support
complete regression testing for Web Sites, including those that exploit the
advanced features of JavaTM.

The TestWorks/Web product bundle consists of three major components:

eValid for Windows
 Frequently Asked Questions(FAQs)
 Take a Tour of eValid
 Features and Benfits Summary
 Pricing and Order Form
SMARTS (hierarchical test controller)
TCAT for Java/Windows (coverage analyzer for Java)

Read the new White Papers by Edward Miller on The WebSite Quality
Challenge. and WebSite Testing.

Consider one or more of our new subscription-based eValid Test Service Options
that analyze your site's security, reliability, content quality and performance.

TestWorks
For Windows

TestWorks for Windows, an integrated suite of automated testing tools, is the
broadest suite of tools available to test applications running under MS/Windows
(Win3.1), MS/Windows NT or MS/Windows '95/'98 (Win32).

Testworks for Windows has two main bundles of tools:

TestWorks/Regression
CAPBAK/MSW
SMARTS/MSW

TestWorks/Coverage

TCAT C/C++
TCAT for Java/Windows

TestWorks
For UNIX

TestWorks for UNIX is designed to work independently or as an integrated tool
suite to provide an efficient, automated testing environment for most UNIX-based

platforms.

TestWorks for UNIX consists of three product lines:

TestWorks/Regression
CAPBAK
SMARTS
EXDIFF

TestWorks/Coverage
TCAT C/C++
TCAT for Java/UNIX
TCAT/S-TCAT Ada/f77

TestWorks/Advisor
METRIC
TDGEN
STATIC

Your
Quality

Process

TestWorks products support a multi-filter Quality Process ArchitectureTM for
software development projects in C, C++, Java, plus Ada and F77.

The TestWorks Quality Index is a quantitative Quality Index (Figure Of Merit)
that characterizes your Application Development Process.

Downloading
Products

Download Datasheets

DOWNLOAD PRODUCTS

License Key Request

QuickStart Manuals

User Manuals

 Platforms
Support Check Available Bundles, Products, Platform/OS, and Versions

Technology Builders, Inc. (TBI)

Technology Builders, Inc. (TBI)
400 Interstate North Parkway Suite 1090
Atlanta, GA 30339 USA
770-937-7900
Fax 770-937-7898
Info@tbi.com <mailto:Info@tbi.com>
www.tbi.com <http://www.tbi.com>

About TBI

Technology Builders, Inc. is an Atlanta-based software and services company
providing integrated solutions for enterprise and e-business application
development within the Automated Software Quality, Business Information
Management and Internet and Client/Server markets. Through the TBI-Caliber=AE
suite of software products and strategic vendor partnerships, the company
provides best-of-class technologies in requirements management,
requirements-based testing, test case design, configuration management,
test planning and management, and defect tracking. Ranked 15th on the
Deloitte & Touche Fast 500 list, TBI maintains a client base of over 500
companies, many among the Fortune 1000.

Caliber-RM

TBI markets and sells Caliber-RM=AE, a collaborative, Internet-based
requirements management system that enables project teams to deliver
higher quality applications. In an effort to detect and eliminate requirement
errors and deficiencies earlier in the development cycle, Caliber-RM
allows teams to fully define, manage and communicate changing requirements.
Changes to requirement data such as traceability, status, priority and more are
recorded and stored in Caliber-RM's central repository, providing
reliable, up-to-date information for effective requirements-driven development
and testing.

Caliber-RBT

Another TBI product, Caliber-RBT, formerly SoftTest, is a requirements-based
functional test case design system that drives clarification of the application requirements
and streamlines the testing process. Caliber-RBT enables project teams to analyze and
refine requirements to eliminate ambiguities and conflicts, then use those requirements to
design a minimum set of test cases for functionally complete test coverage.

TesCom is the leading international provider of software testing and quality management
services, with over 700 consultants operating in Europe, USA and the Far East. During our
eleven years of operation, we have developed effective testing solutions based on our wealth of
experience across a broad range of sectors and technologies such as: load/performance testing,
test automation, e-lab test centre, Interactive Digital Television (iDTV), WAP, e-security,
usability testing, and network testing. For more information visit www.e-testing.com.

Our main service offerings include the following:
Test strategy
Test planning and design
Test execution
Test automation
Test Centres
Training on testing standards, methods and
techniques

Test management
Project audits & reviews
Risk assessment and management
Testing benchmarks
Tools selection and implementation
Configuration management

Our experience covers a broad range of technologies and application areas, including:
E-Business systems
ERP/ERM systems
Security systems
Financial products
Real-time systems

Internet and new media systems
Customer relationship management systems
Euro systems
Billing systems
Embedded systems

Security systems Healthcare systems
Biotechnology systems Communication systems

TTeessCCoomm UUKK LLttdd..
5 St. John’s Lane London EC1M 4BH
T: 020 7250 4705 F: 020 7250 0464

UPSPRING Software, Inc.
15 Third Avenue
Burlington, MA 01803
Tel: 781-359-3300 or 1-888-9-DISCOVER
Fax: 781-359-3399
Web: www.upspringsoftware.com
E-mail: info@ upspringsoftware.com

UPSPRING Software, Inc. (UPSPRING) is a software infrastructure
solutions company that develops, markets, and supports two compatible
product lines for software development; CodeRover™, a targeted family of
desktop software infrastructure applications to enhance personal
productivity of individual software developers, and DISCOVER®, an
enterprise-wide solution for organizational productivity.

CodeRover applications come in three categories; Productivity, Quality
and Change, with many individually purchasable applications. CodeRover
applications are downloadable over the Web, are easily self-installed,
and are fully supported through Internet and telephone hotlines. Most
CodeRover applications include the CodeRover Browser and are available
with optional annual maintenance. Maintenance automatically provides
upgrades to new versions as they are released. CodeRover applications are
compatible with the complete enterprise-wide DISCOVER software
Development Information System.

UPSPRING's flagship product, DISCOVER, is a complete enterprise-wide,
software Development Information System made up of a series of integrated
solutions created to address some of today's most challenging software
development problems. By using DISCOVER, enterprises can rapidly evolve
the software infrastructure of their existing eBusiness and other mission
critical software applications. DISCOVER analyzes source code and
related artefacts, creating a Web accessible, scalable, common database
of information (the Information Model). The Information Model captures
the relationships between all entities resulting in a high-level
architectural perspective and a detailed view of the entire application,
which can be shared across the organization and monitored over time.

DISCOVER enables software professionals to more thoroughly understand
Their software systems, to more efficiently and accurately effect changes
to a large body of source code, and to more easily reengineer or
reorganize a complex software system, thus improving organizational
productivity and quality, while reducing cost and time-to-market. All
DISCOVER solutions come with turnkey services to assure effective
deployment and ongoing customer success.

CMG FINANCE CMG TRADE, TRANSPORT & INDUSTRY CMG PUBLIC SECTOR CMG TELECOMMUNICATIONS & UTILITIES CMG BUSINESS SERVICES

Organizations operate in a turbulent market. More and more the need is felt to prevent inter-
ruptions of core business processes by computer failure. CMG has gained a wealth of experience
in setting up test organizations using their full scale method for structured testing, named
TestFrame. The emphasis in TestFrame is on the strategic support of the complete testing
processes, from organization to test execution, in which all test products are put in place and
related to one another. The underlying concept of TestFrame is that a test is set up right from
the start with maintenance in mind, so that future checks can be carried out with the minimum
adjustment to the test material. Because the testing products are re-usable, you will have
recouped your investment after just a few re-tests.
For more information please contact the TestFrame Research Centre
of CMG, telephone +31 348 45 40 00, fax +31 348 45 40 13, e-mail
testframe@cmg.nl, Internet: www.testframe.com.

Information Technology
Organizations are stronger with CMG.

Getting testing
under control

99057730_wereldbol_nieuw 09-09-1999 08:59 Pagina 1

Gitek nv
Gitek nv was founded in 1986 and is in addition to the design and development of software, specialised
in software testing. Gitek employs more than 120 people, with 40 professional software Test Engineers.
Its customers include the pharmaceutical industry, the financial industry, the telecom industry and
insurance companies.

The difference
Gitek is an enthusiastic team of professionals, specialised in customised IT solutions and structured
testing. A personal approach forms the basis of our success. This ensures better-adapted services to
the customer’s specific requirements, and a committed and motivated team ensuring optimal efficiency.

Structured Testing
Gitek is exclusive distributor of TMap® (Test Management Approach), TPI® (Test process Improvement)
and TAKT© (Knowledge of Testing, Automation and Tools) in Belgium.
Gitek provides services that offer a complete solution for testing:
• Participation in the operational test process

− Test planning and test management
− Test design and test execution

• Complete test projects and fixed price projects
• Test advice and support
• Defining and implementing a structured test process
• Selection and implementation of test tools
• Improvement of the test process
• Training and coaching in testing

Contact us
Gitek nv
Sint Pietersvliet 3
B-2000 Antwerp (Belgium)
http://www.gitek.be
e-mail: gitek@gitek.be

 Quality Week Europe 2000
Internet Access Station Sponsored by

Leading Web-based Bug Tracking Tool
http://www.elementool.com

●● RRecordingecording

●● PlaybacPlaybackk

●● SScript Creationcript Creation

●● Content Content VValidationalidation

●● PPerformance erformance TTuninguning

●● LLoad oad TTestingestingee
YYourour e-Businesse-Business Partner Partner

Make Your WebSite 100% reliable
 – automatically
Make Your WebSite 100% reliable
 – automatically

www.e-valid.comwww.e-valid.com

Quality Testing of WebSitesQuality Testing of WebSites

	QWE 2000
	Conference Program
	Pre-conference Tutorials
	Conference Day #1
	Conference Day #2
	Conference Day #3
	Extra Presentations

	Tutorials
	A1: Bazzana
	B1: Teunissen
	C1: Wills
	D1: Russell
	E1: Gilb
	F1: Sabourin
	G1: Cowderoy
	H1: Russell
	A2: Bazzana
	B2: Lee
	C2: Hausen
	D2: Russell
	E2: Gilb
	F2: Drake
	G2: Mayer & Miller
	H2: Russell

	Conference
	Keynotes
	K1-1: Gilb
	Abstract/Bio
	Slides
	Paper

	K1-2: Pas
	Abstract/Bio
	Slides
	Paper

	K1-3: Aigrain
	Bio
	Paper

	K2-1: Crispin
	Abstract/Bio
	Slides
	Paper

	K2-2: Buwalda
	Abstract/Bio
	Slides

	K3-1: Daems
	Abstract/Bio

	K3-2: Drake
	Abstract/Bio
	Slides

	Technology
	1T: Bromnick
	Abstract/Bio
	Slides
	Paper

	2T: Hazdra
	Abstract/Bio
	Slides
	Paper

	3T: Basanieri
	Abstract/Bio
	Slides
	Paper

	4T: Crispin
	Abstract/Bio
	Slides
	Paper

	5T: Teunissen
	Abstract/Bio
	Slides

	6T: Piazza
	Abstract/Bio
	Slides
	Paper

	7T: Lewis
	Abstract/Bio
	Slides

	8T: Mayer
	Abstract/Bio
	Slides

	9T: Stetter
	Abstract/Bio
	Slides
	Paper

	10T: Paul
	Abstract/Bio
	Slides
	Paper

	11T: Kasperowski
	Abstract/Bio
	Slides

	12T: DasGupta
	Abstract/Bio
	Slides
	Paper

	Applications
	1A: Hartmann
	Abstract/Bio
	Slides

	2A: Mueller
	Abstract/Bio
	Slides
	Paper

	3A: Hendriks
	Abstract/Bio
	Slides
	Paper

	4A: Litterjohn
	Abstract/Bio
	Slides

	5A: VanVeenendaal
	Abstract/Bio
	Slides
	Paper

	6A: DuPreez
	Abstract/Bio
	Slides
	Paper

	7A: Pritchet
	Abstract/Bio
	Slides
	Paper

	8A: Anderer
	Abstract/Bio
	Slides

	9A: Klyachko
	Abstract/Bio
	Slides
	Paper

	10A: Bartlett
	Abstract/Bio
	Slides

	11A: Bevan
	Abstract/Bio
	Slides
	Paper

	12A: Kolawa
	Abstract/Bio
	Slides
	Paper

	Internet
	1I: Jin
	Abstract/Bio
	Slides
	Paper

	2I: Levy
	Abstract/Bio
	Slides
	Paper

	3I: Spolverini
	Abstract/Bio
	Slides

	4I: Cowderoy
	Abstract/Bio
	Slides
	Paper

	5I: Agarwal
	Abstract/Bio
	Slides
	Paper

	6I: Denoo
	Abstract/Bio
	Slides

	7I: Itakura
	Abstract/Bio
	Slides
	Paper

	8I: Messin
	Abstract/Bio
	Slides

	9I: Cowderoy
	Abstract/Bio
	Slides
	Paper

	10I: Probert
	Abstract/Bio
	Slides
	Paper

	11I: Bartlett
	Abstract/Bio
	Slides

	12I: Porter
	Abstract/Bio
	Slides
	Paper

	Management
	1M: Dekkers
	Abstract/Bio
	Slides
	Paper

	2M: Tan
	Abstract/Bio
	Slides
	Paper

	3M: Hopman
	Abstract/Bio
	Slides
	Paper

	4M: Birk & Mueller
	Abstract/Bio
	Slides
	Paper

	5M: Niese, Margaria, Nagelmann, Steffen, Brune & Ide
	Abstract/Bio
	Slides
	Paper

	6M: Lebsanft & Mehner
	Abstract/Bio
	Slides

	7M: Machado, Oliveira & Rocha
	Abstract/Bio
	Slides
	Paper

	8M: Feather & Kurtz
	Abstract/Bio
	Slides
	Paper

	9M: Pearson
	Abstract/Bio
	Slides
	Paper

	10M: Lewis
	Abstract/Bio
	Slides

	11M: Sylaidis, Stasinos & Theodoros
	Abstract/Bio

	12M: Lamsa
	Abstract/Bio
	Slides
	Paper

	Vendor Technical
	VT1: Bortz
	Abstract/Bio
	Slides

	VT2: Hoven
	Abstract/Bio
	Slides

	VT3: Walker
	Abstract/Bio
	Slides

	VT4: Buwalda
	Abstract/Bio
	Slides

	VT5: Malshakov
	Abstract/Bio
	Paper

	VT6: Ntourntoufis
	Abstract/Bio
	Slides
	Paper

	VT7: Brady
	Abstract/Bio
	Slides

	VT8: Teunissen
	Abstract/Bio
	Slides

	VT9: Sterck
	Abstract/Bio
	Slides

	VT10: Miller
	Abstract/Bio
	Slides

	VT11: Bouyssounouse
	Abstract/Bio

	VT12: Bartlett
	Abstract/Bio
	Slides

	Extra Speakers
	Extra 1: Balter
	Abstract/Bio
	Slides

	Extra 2: Denoo
	Abstract/Bio
	Slides

	Extra 3: Kasperowski
	Abstract/Bio
	Slides
	Paper

	Cooperating Organizations
	ASQ, ESI, ESSI & GI
	SAI, TestNet & TI KVIV

	Industry Sponsors
	Gold
	CMG
	eValid
	Gitek

	Silver
	elementool
	ps_testware
	TesCom

	Exhibitors
	Amphora Quality Technologies
	CMG Information Technology
	elementool
	eValid, Inc.
	Gitek n.v.
	I2B
	McCabe & Associates
	Polyspace
	ProfessionalSpirit
	ps_testware
	Radview
	Rational Software
	SDRC
	SIM Group Limited
	Software Research, Inc.
	Technology Builders, Inc.
	TesCom
	UPSPRING Software, Inc.

